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Protease inhibitors (PIs) are biochemical compounds commonly found in all organisms;
function to regulate proteases activities in cell. Plant Pls such as cysteine protease
inhibitor (CYP) and Kunitz trypsin inhibitor (KTI) have been reported to show anti-
pathogenic properties and are responsible for the plant tolerance against various
stresses. Similar to other plant defence-related proteins, numerous plant Pls genes have
been characterized and expressed as recombinant proteins for industrial applications or
genetically inserted into crop plants for phytoprotection. However, the effectiveness of
these applied plant defence-related proteins (including PIs) in combating the targeted
pathogens slowly weakens as there are continuous adaptation processes and resistance
developed by pathogens. One important approach to overcome this is to discover and
incorporate the use of new Pl genes from novel sources where they have not been
exposed to the pathogens before. The objectives of this study are to characterize novel
Pl genes from turmeric, Curcuma longa, as turmeric extracts were reported to contain
numerous medicinal properties including inhibition of viral proteases. The identified Pl
genes were to be expressed as recombinant proteins and their functional activities were
assessed. Besides, this study also aimed to generate a transcriptomic library of
Curcuma longa for future molecular biology works. Initially, complementary-DNA
(cDNA) fragments of CYP and KTI were identified from leaf samples of Curcuma
longa treated with methyl jasmonate by using degenerate polymerase chain reaction
(PCR). The full-length cDNAs, designated CypCl and CIKTI, were obtained by using
rapid amplification of cDNA ends method (RACE) with complete open reading frames
(ORFs) detected. The cDNA sequences have been deposited in NCBI database with the
accession number KF545954.1 (CypCl) and KF889322.1 (CIKTI). The expression
profile of CypCl and CIKTI genes in methyl jasmonate treated tissues was determined
by using Real-Time quantitative-PCR (RT-gPCR) and it was found that the Pls genes
were generally induced in all treated tissues. Both Pls were cloned into expression
vectors and recombinant protein expressions were optimised in the bacterial-host
systems. Optimum incubation temperature and concentrations of isopropyl B-D-1-



thiogalactopyranoside (IPTG) used for the recombinant protein expression was
determined at 37°C and 0.5 mM of IPTG for 2 hours induction. The recombinant CypCI
was expressed as soluble protein while recombinant CIKTI was expressed as inclusion
bodies. Recombinant CypCl was purified using immobilized metal affinity
chromatography (IMAC) and anion-exchange chromatography while recombinant
CIKTI was solubilized and refolded before purification by IMAC. The concentration of
the purified recombinant CypCl obtained was 5 pg/pL and the refolded CIKTI was 1
Mg/uL. The purified recombinant proteins were shown to possessed protease inhibitory
activities but did not show obvious anti-pathogenic potential from screenings
performed using agar plate well-diffusion method. Lastly, transcriptomic library of
Curcuma longa was generated through next-generation sequencing (NGS), RNA-seq,
from RNA of differently treated leaf samples using Illumina Hiseq platform. The de
novo transcriptome assembly was conducted from the combined raw RNA-seq reads by
using Trinity software and resulted in 113,209 assembled transcripts. Around 50% of
the assembled transcripts were found to be functional annotated which included gene
ontology (GO) terms annotation by the sequence homology search performed on
known proteins from different databases by using Trinotate software. The differential
expressed genes (DEG) in the methyl jasmonate-treated sample as compared to the
control were identified with 1,559 upregulated transcripts and 2,715 downregulated
transcripts. In conclusion, two novel Pl genes (CYP and KTI) were identified from
turmeric and their expressions profiling were characterized. Recombinant expression in
E. coli system, refolding and purification of PIs were optimised and inhibitory activities
were suggested from the inhibitory assays while weak to resistance anti-pathogenic
potential were concluded from the tested fungi. Finally, a transcriptome library of
turmeric was obtained and the transcripts were annotated and analysed.
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Perencat protease (Pl) merupakan sebatian biokimia yang biasa dijumpai dalam semua
organisma yang terlibat di dalam pengawalaturan aktiviti protease sel. Pl tumbuhan
seperti perencat protease sisteina (CYP) dan perencat protease Kunitz (KTI) telah
dikenalpasti mempunyai ciri anti-patogenik dan bertanggungjawab dalam toleransi
terhadap pelbagai jenis tekanan pada tumbuhan. Seperti protein berkait pertahanan
yang lain, kebanyakkan Pl tumbuhan telah diciri dan diekpreskan sebagai protein
rekombinan sebagai aplikasi industri ataupun kejuteraan genetik untuk fitopertahanan.
Namun begitu, keberkesanan protein ini (termasuk PI) dalam melawan patogen
menjadi lemah secara perlahan-lahan disebabkan wujudnya proses adaptasi berterusan
dan rintangan yang terbina oleh patogen. Satu pendekatan penting bagi mengatasi
masalahan ini adalah dengan mencari dan menggabungkan penggunaan gen Pl baru
dari sumber novel dimana ianya masih belum terdedah kepada patogen. Objektif kajian
ini adalah untuk mencirikan gen-gen Pl novel dalam kunyit, Curcuma longa, kerana
ekstrak kunyit telah dilaporkan mengandungi pelbagai sifat perubatan termasuk
perencatan protease viral. Seterusnya, gen Pl yang ditemui itu diekspreskan sebagai
protein rekombinan dan fungsi aktivitinya dikenalpasti. Kajian ini juga bertujuan untuk
menghasilkan perpustakaan transkriptomik Curcuma longa bagi kerja-kerja biologi
molekul pada masa hadapan. Pada dasarnya, jujukan serpihan komplementari-DNA
(cDNA) bagi CYP dan KTI telah dikenalpasti dari sampel daun Curcuma longa yang
dirawat dengan metil jasmonat melalui tindakbalas polimerase berantai (PCR)
degenerat. Jujukan penuh rangka bacaan terbuka (ORFs) cDNA bagi CypCl dan CIKTI,
telah diperolehi melalui kaedah rapid amplification of cDNA ends (RACE). Jujukan
cDNA tersebut telah didepositkan dalam pangkalan data NCBI dengan nombor aksesi
KF545951.1 (CypCl) dan KF889322.1 (CIKTI). Profil pengekspresan gen-gen CypCl
dan CIKTI dalam tisu yang telah dirawat dengan metil jasmonat ditentukan melalui
kuantitatif-PCR masa nyata (RT-qPCR) dan secara umumnya, pengekspran Pl sasaran
diaruh dalam semua tisu yang dirawat. Kedua-dua ORF PI tersebut diklonkan ke dalam
vektor pengekspresan sistem bakteria. Suhu inkubasi dan kepekatan optimum isopropil
B-D-1-tiogalaktopiranosida (IPTG) dalam pengekspresan protein rekombinan telah
dilakukan pada 37°C dan 0.5 mM IPTG untuk aruhan selama 2 jam. CypCl rekombinan



terekspres sebagai protein larut manakala CIKTI rekombinan telah diekspreskan
sebagai protein tidak larut (inclusion bodies). CypCl rekombinan telah ditulenkan
menggunakan immobilized metal affinity chromatography (IMAC) dan anion-exchange
chromatography manakala CIKTI rekombinan telah disolubilisasikan dan melalui
proses perlipatan semula sebelum ditulenkan menggunakan IMAC. Kepekatan CypCl
rekombinan yang ditulenkan adalah sekitar 5 pg/puL manakala CIKTI adalah sekitar 1
Mg/uL. Protein rekombinan yang telah ditulenkan tersebut telah menunjukkan aktiviti
perencatan protease tetapi tidak menunjukkan potensi anti-patogen yang nyata
berdasarkan kaedah pernyaringan yang telah dilakukan iaitu kaedah well-diffusion
dalam kultur agar. Akhir sekali, perpustakaan transkriptomik Curcuma longa telah
dihasilkan melalui kaedah next generation sequencing (NGS), melalui platform
Illumina Hiseq RNA-seq, dengan menggunakan RNA keseluruhan dari sampel daun
yang dirawat secara berbeza. Proses himpunan transkriptom secara de novo telah
dijalankan dengan mengumpulkan kesemua bacaan RNA-seq menggunakan perisian
Trinity dan sebanyak 113,209 himpunan transkrip dihasilkan. Fungsi annotasi termasuk
annotasi terma ontologi gen (GO) untuk Kira-kira 50% daripada himpunan transkrip
tersebut telah diketahui melalui pencarian jujukan homolog terhadap protein yang
diketahui daripada pangkalan data yang berbeza dengam menggunakan perisian
Trinotate. Pembezaan pengekspresan gen (DEG) dalam sampel yang dirawat dengan
metil-jasmonat berbanding dengan sampel terkawal telah ditentukan melalui perisian
edgeR dengan sebanyak 1,559 transkrip pengawalaturan naik dan sebanyak 2,715
transkrip pengawalaturan turun. Kesimpulannya, dua gen novel Pl (CYP dan KTI)
telah dikenalpasti dari sample kunyit and profil pengekspresannya telah dicirikan.
Pengekpresan rekombinan, perlipatan and penulenan protein Pl telah dioptimumkan
dan aktiviti perencatan dapat dikesan dari asai perencatan walaupun hanya potensi anti-
patogen yang lemah ke rintangan didapati daripada kulat yang diuji. Perpustakaan
transkriptomik kunyit telah diperolehi dan transkrip tersebut telah diannotasikan.
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Volicitin, an oral secretion which are having a similar structure
with linolenic acid also activates the octadecanoid pathway. The
pathway produces jasmonic acid and leads to the mRNA expression
of Pls (Adapted from Koiwa et al., 1997).

Turmeric (Curcuma longa) planted at the botanical garden of UPM.
A) Turmeric plant. B) The rhizome of turmeric with an oblong
shape and root-like branches.

Comparison of total RNAs (1 pg) extracted from three different
methods viewed on 1% agarose gel electrophoresis. The integrity of
the total RNAs bands was different in comparison to the different
methods used. 1) Modified CTAB method, 2) RNAzol RT, 3)
RNeasy Plant Mini Kit.

The novel cDNA fragment amplified from degenerate PCR of A)
cysteine protease inhibitor, CYP (500 bp) and B) Kunitz trypsin
inhibitor, KTI (400 bp) viewed on 1% agarose gel respectively
(M1: 1 kb DNA marker, M: 100 bp DNA marker).

Detection of 5°’-/3’- Rapid Amplification cDNA End (RACE)
product generated by using SMARTer RACE kit. Al) 5°- RACE
product for CYP, A2) 3’- RACE product for CYP, B) 5’- and 3’-
RACE product for KTI. The PCR product was excised, purified and
sent for DNA sequencing to determine the identity of the product.
(M: 100 bp DNA marker)

Detection of band formed from PCR product of full-length. A) CYP
and B) KTI obtained from long distance PCR covering from 5°- to
/3’- end by using primers designed from RACE products at size
~750 bp and ~850 bp respectively. (M: 100 bp DNA marker)

Nucleotide and deduced amino acid sequences of the longest open
reading frame (ORF) detected from the full-length CYP cDNA
sequence. A signal peptide (from amino acid position 1-29") as
indicated by the horizontal arrow was predicted by using SignalP
3.0 program. The cleavage site is between amino acid 29 and 30 (as
indicated with black arrow). Several motifs of phytocystatin were
detected in the full-length sequence, such as i) one G residues
towards N-terminal, ii) LARFAVEEHN, iii) QVVAG, iv) PW
dipeptide and v) SNSL. The respective motifs had been boxed.

XViii

Page

11

17

31

33

34

35

37



3.6

3.7

3.8

3.9

3.10

3.11

3.12

Graphical summary of BLAST results of the deduced amino acids
of CypCl on conserved domains. It showed that several conserved
cystatin superfamily domains are detected on the sequence
suggesting a novel putative phytocystatin isolated from Curcuma
longa.

Phylogenetic tree generated with phytocystatins containing C-
terminal extensions by using neighbour-joining method with 100
bootstrapping. CypCl shown to be related to phytocystatin from
Elaeis guineensis (African oil palm).

Structural model of the identified CypCl. Common motifs of
cystatin such as the LARFAVEEHN (red), QVVAG (green) and
PW (yellow) were detected from the amino acid sequence. The
tertiary structure was modelled by using phytocystatin structure
acquired from Sesamum indicum as model template.

Multiple sequence alignments of the deduced amino acids of the
full-length sequence of CypCl (indicated with black arrow) with
other phytocystatin sequences from other plants obtained from the
GenBank database in the NCBI website.

A full-length sequence of CIKTI with deduced amino acid
sequence. A start codon, ATG, is located at nucleotide position 3
while a stop codon, TAG, is located at position 641-643. The motif
of Kunitz trypsin inhibitor (KTI) ([L,I,V,M]-X-D-X3-G-X;
[L,I,V,M]-Xs-Y-X-[L,I,V,M]) and the reactive site motif (G/E-I-S)
were detected as boxed. Signal peptide was detected on the
sequence, which spanned by a length of 24 amino acids as indicated
by the horizontal arrow and the calculated cut-off point is between
the 24™ and 25™ amino acids (AEA-TS), as indicated by the vertical
arrow.

Graphical summary of BLAST results of the deduced amino acids
of CypCl on conserved domains. It shows that several conserved
cystatin superfamily domains are detected on the sequence
suggesting a novel putative phytocystatin isolated from Curcuma
longa.

Phylogenetic tree constructed using neighbour-joining method with
100 bootstrapping using deduced amino acids sequence of CIKTI
(accession no: AHJ25677.1) with other KTI sequences from
different plant species. CIKTI shows the closest evolutionary
relationship with KT1 belonging to Theobroma cacao.
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3.13

41

4.2

4.3

4.4

4.5

Ribbon representation of the predicted 3D protein model of CIKTI
based on homology modelling. Cysteine residues were represented
in green ball-and-stick and disulphide bridges were indicated in
lines and labelled. The theoretical CIKTI tri-dimensional protein
structure was modelled by using a trypsin inhibitor from Murraya
koenigii as model template.

Specificity test of the designed specific RT-gPCR primers designed
on 1% agarose gel electrophoresis by using the amplified PCR
products. A) The specificity test of CypCl primers in the different
Curcuma longa tissues. (M = 100 bp DNA marker, 1 = Flower, 2 =
Basal Stem, 3 = Stem, 4 = Rhizome, 5 = Root). B) The specificity
test of CIKTI and three other reference gene candidates in the
different Curcuma longa tissues. (M = 100 bp DNA marker, 1 =
CIKTI, 2 = Actin, 3 = a-tubulin, 4 = Ubox). The amplified PCR
products of the different designed primers of the respective
Curcuma longa tissues showed the formation of single band on the
1% agarose gel, indicating specificity of the designed primers.

Specificity validation of the designed RT-gPCR primers through
melting curve analysis. Based on the resulted melting curve, only a
single peak was detected from the respective targets and this
indicated that the designed primers were specific with a single
amplicon. (A = Actin, B = Alpha-tubulin, C = Ubiquitin, D =
CypCl, E = CIKTI)

Standard curve analysis for the efficiency test of the designed RT-
gPCR primers. Based on the resulted standard curve, the efficiency
of the designed primers and R? value of the plot were within the
acceptable range in which a 90% - 110% for the efficiencies and
0.98 — 0.99 for R? value. (A = Actin, B = Alpha-tubulin, C =
Ubiquitin, D = CypCl, E = CIKTI)

Expression stability of the reference gene candidates and their
stability ranking generated by RefFinder. The quantification cycle
value, Cq, of the three reference genes expressed in five different
tissues, namely flower, stem, basal stem, rhizome and root in all
treatment condition was used in the analysis. A) RefFinder
incorporated the different software and algorithms to calculate the
expression stability and ranked them B) A comprehensive result
generated by RefFinder and actin was ranked as the most stable
reference gene.

Normalized fold expression of CypCl and CIKTI in methyl-
jasmonate (MJ) treated and non-treated (NT) tissues by RT-qPCR
using actin as reference gene for normalization. Generally, the
expression of CypCl was similar between MJ treated and NT
tissues while the expression of CIKTI was higher in MJ treated as
compared to NT tissues.
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5.1

5.2

5.3

5.4

5.5

5.6

Colony PCR analysis on the presences of inserted ORF in the
expression vector. A single intact band at the expected size was
detected from the PCR colony product using the specific CypCl and
CIKTI primer and this act as the preliminary indication of the
presence of the insert. (M: 1 kb DNA marker, 1 — 7: Transformed
colonies)

Restriction endonuclease analysis by BamHI and Hindlll on the
presences of the inserted ORF in the expression vector. Intact band
at the expected size was detected on the 1% agarose gel after the
double digestion and was indicative of the presences of the insert.
(M: 100 bp DNA marker, 1: CypCl, 2: CIKTI)

SDS-PAGE analysis comparing recombinant proteins expressed in
the supernatant of BL21(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CypCl (on the right). The results indicated that
recombinant CypCl was successfully expressed at the size ~30 kDa
from pRSETA as the band intensity is higher compared to the
control samples (empty pRSETA). (M: Marker; Xi: Uninduced)

Western blot analysis in detecting recombinant CypCl proteins in
comparison between the supernatant obtained from BI21(DE3) cells
induced with 0.5 mM IPTG containing empty pRSETA (on the left)
and pRSETA containing ORF of CypCl (on the right). The results
confirmed the results from SDS-PAGE where soluble recombinant
CypCl protein was expressed under the different incubation
temperatures. (M: Marker; Xi: Uninduced)

SDS-PAGE analysis comparing recombinant proteins expressed in
pellets of BL21(DE3) cells induced with 0.5 mM IPTG transformed
with empty pRSETA (on the left) and pRSETA containing ORF of
CypCl (on the right). Recombinant protein was found expressed as
inclusion bodies in the pellet at the size ~26 kDa from pRSETA and
the band intensity is higher as compared to the control samples
(empty pRSETA). (M: Marker; Xi: Uninduced)

Western blot analysis in detecting expressed recombinant proteins
in comparison between the pellet obtained from BL21(DE3) cells
induced with 0.5 mM IPTG containing empty pRSETA (on the left)
and pRSETA containing ORF of CypClI (on the right). The results
indicated that there was recombinant proteins expressed as
inclusion bodies as predicted from the SDS-PAGE analysis. (M:
Marker; Xi: Uninduced)
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5.7

5.8

5.9

5.10

511

SDS-PAGE analysis comparing recombinant proteins expressed in
the supernatant of BL21(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). The results indicated that
recombinant protein was expressed at the size ~30 kDa from
PRSETA as the band intensity is higher compared to the control
samples (empty pRSETA). (M: Marker; Xi: Uninduced)

Western blot analysis in detecting recombinant CIKTI proteins in
comparison between the induced supernatant obtained from
BL21(DE3) cells containing empty pRSETA (on the left) and
pRSETA containing ORF of CIKTI (on the right). The results
showed that only low amount of recombinant protein was present in
the induced supernatant sample as faint band was detected on the
membrane. The recombinant protein could be a contamination of
recombinant CIKTI from pellet samples. The results were the same
for the different incubation temperature. (M: Marker; Xi:
Uninduced)

SDS-PAGE analysis comparing recombinant proteins expressed in
the pellet of BL21(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). The results indicated that
recombinant CIKTI was expressed at the size ~30 kDa from
pRSETA as the band intensity is higher compared to the control
samples (empty pRSETA) and the size matched the expected size.
(M: Marker; Xi: Uninduced)

Western blot analysis in detecting recombinant CIKTI proteins in
comparison between the induced supernatant obtained from
BL21(DE3) cells containing empty pRSETA (on the left) and
pRSETA containing ORF of CIKTI (on the right). The results
showed that the size of the band matched the expected size of
recombinant CIKTI. Majority of the expressed recombinant CIKTI
was detected in induced pellet sample as the band was in higher
intensity compared to the band from the supernatant sample. The
results were the same for the different incubation temperature. (M:
Marker; Xi: Uninduced)

SDS-PAGE analysis comparing recombinant proteins expressed in
the supernatant of C43(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). The results showed that
there was not much different detected between the protein profiles
of both samples. (M: Marker; Xi: Uninduced)
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5.12

5.13

5.14

5.15

5.16

5.17

Western blot analysis comparing recombinant proteins expressed in
the supernatant of C43(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). There were no bands
detected from the protein profiles of both samples and this
indicated that no recombinant protein was expressed in the
supernatant samples of both conditions in the C43(DE3) host. (M:
Marker; Xi: Uninduced)

SDS-PAGE analysis comparing recombinant proteins expressed in
the pellet of C43(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). Similarly to the results
from supernatant, there was not much different detected between
the protein profiles of both samples. (M: Marker; Xi: Uninduced)

Western blot analysis comparing recombinant proteins expressed in
the pellet of C43(DE3) cells induced with 0.5 mM IPTG
transformed with empty pRSETA (on the left) and pRSETA
containing ORF of CIKTI (on the right). There were no bands
detected from the protein profiles of both samples and this
indicated that no recombinant protein was expressed in the pellet
samples of both conditions in the C43(DE3) host. (M: Marker; Xi:
Uninduced)

SDS-PAGE analysis comparing recombinant proteins expressed in
the supernatant (left) and pellet (right) samples of Origami cells
induced with 0.5 mM IPTG transformed with pET32b containing
ORF of CIKTI incubated at 20°C. The results showed that the
recombinant CIKTI could be formed as inclusion bodies as higher
band intensity was detected in pellet samples. (M: Marker; Xi:
Uninduced; 1,2,3,4: Samples)

Western blot analysis comparing recombinant proteins expressed in
the supernatant (left) and pellet (right) samples of Origami cells
induced with 0.5mM IPTG, transformed with pET32b containing
ORF of CIKTI incubated at 20°C. The results showed that large
amount of the expressed recombinant CIKTI was formed as
inclusion bodies as intense band was detected in pellet samples at
the size of ~35 kDa. (M: Marker; Xi: Uninduced; 1,2,3,4: Samples)

SDS-PAGE analysis comparing recombinant proteins expressed in
the supernatant (left) and pellet (right) samples of BL21(DE3)
induced with 0.5 mM IPTG, transformed with pET32b containing
ORF of CIKTI and incubated different temperatures. The results
showed that the recombinant CIKTI could be formed as inclusion
bodies at the size ~30 kDa as higher band intensity was detected in
pellet samples. (M: Marker; Xi: Uninduced)
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5.18

5.19

5.20

521

5.22

6.1

Western blot analysis comparing recombinant proteins expressed in
the supernatant (left) and pellet (right) samples of BL21(DE3)
induced with 0.5 mM IPTG, transformed with pET32b containing
ORF of CIKTI and incubated different temperatures. The results
showed that a large amount of recombinant CIKTI were formed as
inclusion bodies at the size ~30 kDa with 37°C incubation
temperature having the highest intensity. (M: Marker; Xi:
Uninduced)

SDS-PAGE analysis comparing the recombinant proteins expressed
in the supernatant (left) and pellet (right) in the large scale
recombinant expression of CypCl. The results showed that high
intensity bands were detected at the expected size of ~30 kDa
suggesting the presence of CypCl. (M: Marker; 1,2,3,4: Samples)

Western blot analysis comparing the recombinant proteins
expressed in the supernatant (left) and pellet (right) in the large
scale recombinant expression of CypCl. The results confirmed that
soluble recombinant CypCl was successfully expressed at the
expected size of ~30 kDa from the supernatant samples. (M:
Marker; 1,2,3,4: Samples)

SDS-PAGE analysis comparing the recombinant proteins expressed
in the supernatant (left) and pellet (right) in the large scale
recombinant expression of CIKTI. The results showed that high
intensity bands were detected at the expected size of ~30 kDa
suggesting the presence of CIKTI. (M: Marker; 1,2,3: Samples)

Western blot analysis comparing the recombinant proteins
expressed in the supernatant (left) and pellet (right) in the large
scale recombinant expression of CIKTI. The results confirmed that
the inclusion bodies of recombinant CIKTI were successfully
expressed at the expected size of ~30 kDa from the pellet samples.
(M: Marker; 1,2,3: Samples)

SDS-PAGE analysis on the fractions obtained from the different
stages of recombinant CypCl purification by immobilized metal
affinity chromatography (IMAC). The results (Lane 6 — 9)
indicated that CypClI was successfully purified from the supernatant
but there were also presences of contaminant proteins other than
CypCl eluted. (Lane M: Marker; Lane 1: Flow-through; Lane 2:
Wash 1; Lane 3: Wash 2; Lane 4: Wash 7; Lane 5: Wash 8; Lane 6:
Elution 1; Lane 7: Elution 2; Lane 8: Elution 7; Lane 9: Elution 8)
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6.3

6.4

6.5

6.6

Western blot analysis on the fractions obtained from the different
stages of recombinant CypCl purification by immobilized metal
affinity chromatography (IMAC). The results (Lane 6 — 9)
indicated that CypCl was successfully purified from the
supernatant. (Lane M: Marker; Lane 1: Flow-through; Lane 2:
Wash 1; Lane 3: Wash 2; Lane 4: Wash 7; Lane 5: Wash 8; Lane 6:
Elution 1; Lane 7: Elution 2; Lane 8: Elution 7; Lane 9: Elution 8)

Immobilized metal affinity chromatography (IMAC) purification
chromatogram of the recombinant CypCl by using the pre-packed
HiTrap IMAC HP column paired with the AKTAprime system. The
results showed that a single peak was detected when the column
was eluted with the elution buffer, which indicated the presence of
the purified recombinant CypCl. The blue line represents the UV
absorbance of protein eluted out from the column; the red line
represents the conductivity in the column; the green line represents
the concentration of elution buffer in the column.

SDS-PAGE analysis of the fractions containing the purified
recombinant CypCl obtained from the elution step in immobilized
metal affinity chromatography (IMAC) by using pre-packed HiTrap
HP Column paired with AKTAprime System. The results showed
that a single high intensity band was detected at the expected
molecular weight of CypCl. (M: Marker; F1 — F7: Fractions)

Western blot analysis in detecting the presence of purified
recombinant CypCl in the collected elution fractions obtained in
immobilized metal affinity chromatography (IMAC) by using pre-
packed HiTrap HP Column paired with AKTAprime System. The
results showed that a single high intensity band was detected at the
expected molecular weight of CypCl. (M: Marker; F1 — F7:
Fractions)

Anion-exchange chromatography purification chromatogram of the
recombinant CypCl by using the pre-packed HiTrap Q XL HP
column paired with the AKTAprime system. The results showed
that a single peak was detected when the column was eluted with
increasing in gradient-wise of the 1 M NaCl solution, which
indicated the presence of the purified recombinant CypClI. The blue
line represents the UV absorbance of protein eluted out from the
column; the red line represents the conductivity in the column; the
green line represents the concentration of elution buffer in the
column.
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6.8
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6.10

6.11

6.12

SDS-PAGE analysis of the fractions containing the purified
recombinant CypCl obtained from the elution step in anion-
exchange chromatography by using pre-packed HiTrap Q XL
column paired with AKTAprime System. The results showed that a
single high intensity band was detected at the expected molecular
weight of CypClI and only faint traces of contaminant proteins were
present. (M: Marker; F1 — F7: Fractions)

Western blot analysis in detecting the presence of purified
recombinant CypCl in the collected elution fractions obtained from
anion-exchange chromatography by using pre-packed HiTrap Q XL
Column paired with AKTAprime System. The results showed that a
single high intensity band was detected at the expected molecular
weight of CypCl. (M: Marker; F1 — F7: Fractions)

Inhibition of papain activity by recombinant CypCl. 20 pM of
papain was incubated with various concentrations of recombinant
CypCl and the residual papain activity was determined by the
addition of substrate, BANA, and colour development by p-DMCA.
A) The colour development in solution containing increasing
amount of recombinant CypCl. B) Graph showing the residual
papain activity (%) detected in the increasing concentration of
recombinant CypClI.

Lineweaver-Burk plot of papain inhibition assays inhibited by
purified recombinant CypCl. The papain activity was measured in
the papain assay with increasing amount of BANA concentrations,
conducted with the presences of 50 pg of recombinant CypCl and
without any inhibitor (replaced by elution buffer). From the
constructed plot, it indicated that recombinant CypCl was a non-
competitive inhibitor.

Dixon plot of the inhibition of papain activity by increasing amount
of recombinant CypCl. The assay was conducted with 20 uM of
papain in increasing concentration of recombinant CypCl, E-% M, in
two different concentration of substrate (1 mM and 2 mM). From
the Dixon plot, the K; was determined at the meeting point of the
two plotted lines on the x-axis. The obtained K; value of
recombinant CypCl was 2.33 + 0.01 x 10 M or 23 nM.

SDS-PAGE analysis of the supernatant and pellet samples acquired
from the inclusion bodies washing and solubilisation step of
recombinant CIKTI. It can be observed in the supernatant samples
that most of the impurities were removed gradually from the
washing step and increased the purity of the pellet. It can be
observed in the SS sample that the most of the recombinant CIKTI
was solubilised. M: Marker; SS: Solubilised supernatant; SP:
Solubilised pellet; S: Supernatant; P: Pellet)
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6.14

6.15

6.16

6.17

6.18

Western blot analysis of the supernatant and pellet samples
acquired from the washing and solubilisation step of recombinant
CIKTI inclusion bodies. The solubilised recombinant CIKTI was
detected in the SS sample and most of the inclusion bodies were
solubilised as only a faint band was detected in the SP sample. M:
Marker; SS: Solubilised supernatant; SP: Solubilised pellet; S:
Supernatant; P: Pellet)

Chromatogram of the refolding process of solubilised recombinant
CIKTI by using on-column procedures with pre-packed HiTrap
IMAC column paired with the AKTAprime system. The
chromatogram showing the refolding process where contaminant
proteins were washed out during the washing step and the refolding
of the solubilised recombinant CIKTI was completed with the
increasing refolding buffer. The blue line represents the UV
absorbance of protein eluted out from the column; the red line
represents the conductivity in the column; the green line represents
the concentration of refolding buffer in the column.

Chromatogram of elution of the refolded recombinant CIKTI using
on-column procedures with pre-packed HiTrap IMAC column
paired with the AKTAprime system. The chromatogram indicated
that the refolded recombinant CIKTI was purified and eluted out
during the elution with 100% concentration of elution buffer
containing 250 mM imidazole. The blue line represents the UV
absorbance of protein eluted out from the column; the red line
represents the conductivity in the column; the green line represents
the concentration of elution buffer in the column.

SDS-PAGE analysis of the fractions containing the purified
recombinant CIKTI after refolding and eluted from the pre-packed
HiTrap HP IMAC column paired with AKTAprime System. The
results showed that a high intensity band was detected at the
expected molecular weight of CIKTI and there were some faint
traces of contaminant proteins present. (M: Marker; F1 — F8:
Fractions)

Western-blot analysis of the fractions containing the purified
recombinant CIKTI after refolding and eluted from the pre-packed
HiTrap HP IMAC column paired with AKTAprime System. The
results confirmed the presence of recombinant CIKTI was purified
as high intensity band was detected at the expected molecular
weight of CIKTI. Nonetheless, faint traces of contaminant proteins
were also detected to be eluted together with the refolded
recombinant CIKTI. (M: Marker; F1 — F8: Fractions)

The residual trypsin activity in the increasing volume of refolded
recombinant CIKTI (1 pg/uL). The amount of bovine pancreas
inhibitor used in the test was 100 pg and its activity was expected
to be completely inhibited at ~80 g of CIKTI.
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6.20

6.21

7.1

7.2

7.3

7.4

Anti-bacterial screening using recombinant CypCl against two
different Pseudomonas sp. 1) 20 pL of ampicillin solution (5
mg/mL), 2) 20 pL of elution buffer from IEX chromatography, 3)
20 pL of CypCl (1 pg/pL) and 4) 20 pL of CypClI (5 pg/pL).

Anti-fungal screening by using 20 pL of different amount of
recombinant CypCl (0 = control, 5 = 25 pg, 10 = 50 pg and 20 =
100 pg) against the A) Colletotrichum gloeosporioides, B)
Pestalotiopsis theae, C) Pyricularia oryzae and D) Fusarium
solani.

Anti-pathogenic screening by the solubilised and refolded
recombinant CIKTI. A) Anti-bacterial potential screening against
Pseudomonas sp. 1) 20 puL of 5 mg/mL ampicillin, 2) 20 pL of
IMAC elution buffer and 3) 20 pL of refolded recombinant CIKTI
(1 pg/uL). Anti-fungal potential screening conducted using 50 pL
of CIKTI against B) Fusarium solani and C) Pyricularia oryzae
where the ‘X’ indicated 20 puL of IMAC elution buffer as control
and ‘S’ indicated 20 pL of refolded CIKTI.

Overall graph representation of the number of RNA-seq reads
before and after the quality assessment trimming in the differently
treated samples. (W — wound-treated, MJ — methyl jasmonate-
treated, C — control)

The number of assembled transcripts from the Curcuma longa
samples having sequence homologies with the entries from
different queried databases. The number of unique protein entries
identified in database of UniProt, Pfarm and GO was 13,820, 3,905
and 10,532 respectively.

The percentage of assembled transcripts in Curcuma longa
annotated by GO term categorized into different functional
categories namely biological process, cellular component and
molecular function.

Volcano plot visualising the differential expression in methyl
jasmonate-treated samples where each dot representing a transcript
and significant differential expression were represented in red dots.
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LIST OF APPENDICES

IUPAC ambiguity codes for degenerate primer design.

Calculation of the expression fold of CIKTI in comparison of
methyl-jasmonate treated and non-treated in different Curcuma
longa tissues by real-time gPCR using AACT method.

Inhibition of papain activity by using different concentration of
purified recombinant CypCl. Absorbance reading was produced
from the residual papain activity in the presences of difference
concentration of recombinant CypCl by using BANA as
substrate and p-DMCA to develop the colour.

Inhibition activity on bovine pancreas trypsin by using different
concentrations of purified recombinant CIKTI. The changes in
absorbance value of the solution with and without the presence
of the various CIKTI concentrations were recorded and the
inhibitory activities were calculated.

Blue-white colony screening where ligation product of pPGEM-T
vector with the target cDNA was transformed into TOP10
competent cells and spread on LB-ampicillin agar plate. White
colony indicates successfully transformed colony while blue
colony indicates unsuccessful transformant.

Comparison between recombinant proteins profiles induced by
two different concentrations of IPTG for the recombinant
expression of CypCl using pRSETA vector transformed in
BL21DE3 competent cells. The band formed by the recombinant
CypCl was as indicated by the black arrow. (Xi: Uninduced; M:
Marker)

The unscaled chromatogram of total purification of recombinant
CypCl by using HiTrap IMAC column paired with the
AKTAprime system.

The partial cDNA sequences of alpha tubulin and ubox acquired
from other PCR reactions involving Curcuma longa. These
sequences were used in the primer design of reference gene
candidates.

Recipe for buffers
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LIST OF ABBREVIATIONS

3D Three-dimensional

ABA Abscisic acid

BAEE Na-benzoyl-L-arginine ethyl ester
BANA N-benzoyl-Larginine-2-napthylamide
BBI Bowman Birk Inhibitor

BLAST Basic Local Alignment Search Tools
BSA Bovine Serum Albumin

Bt Bacillus thuringiensis

CAMP Cyclic adenosinemonophosphate
cDNA Complementary-deoxyribonucleic acid
CTAB Cetyltrimethylammonium bromide
CYP Cysteine protease inhibitor

DEG Differential expressed gene

dH20 Distilled H,O

DNA Deoxyribonucleic acid

dNTP Deoxynucleotide

EDTA Ethylenediaminetetraacetic acid

etal. Et alia

EtBr Ethidium bromide

FC Fold-change

FDR False discovery rate

GO Gene ontology

GSP Gene specific primer

HCMV Human cytomegalovirus

HCV Hepatitis C virus

HIV Human immunodeficiency virus

IDA Iminodiacetic acid

IEX lon exchange chromatography

IMAC Immobilized metal affinity chromatography
IPTG Isopropyl thiogalactopyranoside
IUPAC International Union of Pure and Applied Chemistry
Ki Inhibition constant

XXX



Km Michaelis constant

KTI Kunitz trypsin inhibitor

LB Luria-bertunia

LiCl Lithium chloride

MARDI Malaysian Agriculture Research and Development Institute

MgCl, Magnesium chloride

mMRNA Messenger RNA

MSI Mustard trypsin inhibitor

NaCl Sodium Chloride

NBT/BCIP Nitro-blue tetrazolium/5-bromo-4-chloro-3-indolyl-
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CHAPTER 1

INTRODUCTION

Agriculture is one of the important income sources to Malaysia and most of the crop
plantings are conducted in a gigantic scale especially for crops like palm oil, rice and
rubber trees. It is not uncommon to find pest problems in the plantations and during
crop post-harvesting. These amounted to a major loss of profits to the country. Instead
of using chemical pesticides which could be harmful to the environment and consumers,
the production of crop plants with enhanced traits through biotechnology technique is
one of the alternatives to overcome these problems. Advancement in technology had
enabled the production of genetically engineered crop plants where the crops acquired
beneficial defensive genes from other plants which helped in the protection against
pests. One example of these beneficial genes which are responsible in natural plant
protection is the gene coding for protease inhibitors.

Protease inhibitors (PIs) are generally defined as molecules that inhibit the proteolysis
of protease. Proteolysis is the degradation actions by proteases where large proteins are
breakdown into smaller proteins and amino acids. In non-host plant pathogenesis, Pls
are released as one of the resistance response by plants when they are attacked by pest
insects and microorganisms (van Wyk et al., 2016; Benchabane et al., 2010; Habib &
Fazili, 2007; Heath, 2000). During the process of pathogenesis, pest insects and
microorganisms attack the plants by causing mechanical injury and release digestive
proteases into the cells of the targeted plant. These released proteases degrade the plant
proteins into peptides and amino acids which then formed a large reservoir of nutrients
for the pest insects and microorganisms (Schaible & Kaufmann, 2005). The production
of Pls are often stimulated by wounding and the Pls produced can be found locally and
subsequently other parts distal from the injury area (Koiwa et al., 1997).

In recent development, various Pls from plants have been extracted and characterized.
Previous studies showed that genes coding for Pls can be identified from the plants
genome and some are reported to be utilised in the production of genetically engineered
plant that expressed phytoprotection towards certain pest insects or microorganism
naturally (Schliiter et al., 2010; Christou et al., 2006; Dunaevsky et al., 2005;
Lawrence & Koundal, 2002). In addition, Pls or the recombinant protein of Pls could
also be utilised as active compound in biopesticides because they showed anti-
pathogenic properties in direct test assays and when ingested by pest insects, a
profound reduction in body size was observed (Cruz et al., 2013; Rodrigues Macedo et
al., 2010; Hag et al., 2004). Through these applications, the use of chemical pesticides
will be reduced and these posed as an environmental friendly alternative apart from a
costs saving strategy. Moreover, due to the nature of being able to inhibit proteases, Pls
have pharmaceutical potentials and are used as a synthetic product in synthesizing
medications especially towards diseases that are implicated by the loss of proteolytic
activities of proteases in human body and infection by pathogenic proteases (Scott &
Taggart, 2010; Haq et al., 2004).



Nonetheless, over the course of time, pest insect and pathogens are able to develop
resistance towards the currently available engineered protection. These applied
phytoprotection strategies become less effective in combating the pathogens and could
leads to serious damages if precautionary steps are not taken (van Wyk et al., 2016;
Haq et al.,, 2004). Hence, one of the necessary preparations in overcoming the
resistance adaptation of insects and pathogens is to discover more novel Pls genes from
novel sources. Novel sources here are referred to plants or organisms which are
unrelated to the target crop plants that needed protection (Haq et al., 2004). Owing to
the Pls novelty, the specific pathogens have not been exposed to them before and
therefore the novel Pl gained an advantage in combating against the resistance
portrayed (Schliter et al., 2010; Christou et al., 2006; Haq et al., 2004). One of the
suitable candidates that could serve as a source for the discovery of novel Pls is the
turmeric plant.

Turmeric (Curcuma longa) is a well-known traditional medicine and is commonly used
as spices in culinary arts in country like India, Malaysia, Thailand and other Asian
countries. Turmeric has the characteristic of being anti-fungal and anti-inflammatory
(Lantz et al., 2005; Apisariyakul et al., 1995). Moreover, recent studies have also
proven that turmeric exhibits anti-tumour, anti-microbial, anti-HIV, nematocidal and
anti-oxidant properties which potentially act as an alternative and cheaper medicine
source (Krup et al., 2013; Jayaprakasha et al., 2005; Aradjo & Leon, 2001).
Sookkongwaree et al., (2006) had discovered that aqueous extracts from Zingiberaceae
family (including turmeric) exhibited antiviral properties through viral protease
inhibition. However the compound(s) responsible for the antiviral activity was not
identified in the study. Based on this, the antiviral properties from turmeric extracts are
speculated to be contributed by the presence of Pls and turmeric could exhibit Pls with
protease inhibition activity. This could not be determined at the present moment as Pls
and PI genes are yet to be discovered and studied from turmeric and the availability of
molecular information on turmeric is limited. Hence, this research was aimed to answer
the highlighted research problems with the following research objectives:

i) To isolate and characterize novel cysteine protease inhibitor (CYP) and
Kunitz-type trypsin inhibitor (KTI) genes from leaves of Curcuma longa.

i) To study the gene expression profile of CYP and KTI under methyl
jasmonate treatment via RT-qPCR analysis

iii) To clone and optimise recombinant expression of CYP and KTI in
bacterial-host system

iv) To optimise the purification of the recombinant CYP and KTI and
screening of inhibitory activity and anti-pathogenicity potential

V) To generate a transcriptomic library of Curcuma longa via Illumina Hiseq
platform
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