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Protease inhibitors (PIs) are biochemical compounds commonly found in all organisms; 

function to regulate proteases activities in cell. Plant PIs such as cysteine protease 

inhibitor (CYP) and Kunitz trypsin inhibitor (KTI) have been reported to show anti-

pathogenic properties and are responsible for the plant tolerance against various 

stresses. Similar to other plant defence-related proteins, numerous plant PIs genes have 

been characterized and expressed as recombinant proteins for industrial applications or 

genetically inserted into crop plants for phytoprotection. However, the effectiveness of 

these applied plant defence-related proteins (including PIs) in combating the targeted 

pathogens slowly weakens as there are continuous adaptation processes and resistance 

developed by pathogens. One important approach to overcome this is to discover and 

incorporate the use of new PI genes from novel sources where they have not been 

exposed to the pathogens before. The objectives of this study are to characterize novel 

PI genes from turmeric, Curcuma longa, as turmeric extracts were reported to contain 

numerous medicinal properties including inhibition of viral proteases. The identified PI 

genes were to be expressed as recombinant proteins and their functional activities were 

assessed. Besides, this study also aimed to generate a transcriptomic library of 

Curcuma longa for future molecular biology works. Initially, complementary-DNA 

(cDNA) fragments of CYP and KTI were identified from leaf samples of Curcuma 

longa treated with methyl jasmonate by using degenerate polymerase chain reaction 

(PCR). The full-length cDNAs, designated CypCl and ClKTI, were obtained by using 

rapid amplification of cDNA ends method (RACE) with complete open reading frames 

(ORFs) detected. The cDNA sequences have been deposited in NCBI database with the 

accession number KF545954.1 (CypCl) and KF889322.1 (ClKTI). The expression 

profile of CypCl and ClKTI genes in methyl jasmonate treated tissues was determined 

by using Real-Time quantitative-PCR (RT-qPCR) and it was found that the PIs genes 

were generally induced in all treated tissues. Both PIs were cloned into expression 

vectors and recombinant protein expressions were optimised in the bacterial-host 

systems. Optimum incubation temperature and concentrations of isopropyl β-D-1-
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thiogalactopyranoside (IPTG) used for the recombinant protein expression was 

determined at 37ºC and 0.5 mM of IPTG for 2 hours induction. The recombinant CypCl 

was expressed as soluble protein while recombinant ClKTI was expressed as inclusion 

bodies. Recombinant CypCl was purified using immobilized metal affinity 

chromatography (IMAC) and anion-exchange chromatography while recombinant 

ClKTI was solubilized and refolded before purification by IMAC. The concentration of 

the purified recombinant CypCl obtained was 5 µg/µL and the refolded ClKTI was 1 

µg/µL. The purified recombinant proteins were shown to possessed protease inhibitory 

activities but did not show obvious anti-pathogenic potential from screenings 

performed using agar plate well-diffusion method. Lastly, transcriptomic library of 

Curcuma longa was generated through next-generation sequencing (NGS), RNA-seq, 

from RNA of differently treated leaf samples using Illumina Hiseq platform. The de 

novo transcriptome assembly was conducted from the combined raw RNA-seq reads by 

using Trinity software and resulted in 113,209 assembled transcripts. Around 50% of 

the assembled transcripts were found to be functional annotated which included gene 

ontology (GO) terms annotation by the sequence homology search performed on 

known proteins from different databases by using Trinotate software. The differential 

expressed genes (DEG) in the methyl jasmonate-treated sample as compared to the 

control were identified with 1,559 upregulated transcripts and 2,715 downregulated 

transcripts. In conclusion, two novel PI genes (CYP and KTI) were identified from 

turmeric and their expressions profiling were characterized. Recombinant expression in 

E. coli system, refolding and purification of PIs were optimised and inhibitory activities 

were suggested from the inhibitory assays while weak to resistance anti-pathogenic 

potential were concluded from the tested fungi. Finally, a transcriptome library of 

turmeric was obtained and the transcripts were annotated and analysed.    
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Perencat protease (PI) merupakan sebatian biokimia yang biasa dijumpai dalam semua 

organisma yang terlibat di dalam pengawalaturan aktiviti protease sel. PI tumbuhan 

seperti perencat protease sisteina (CYP) dan perencat protease Kunitz (KTI) telah 

dikenalpasti mempunyai ciri anti-patogenik dan bertanggungjawab dalam toleransi 

terhadap pelbagai jenis tekanan pada tumbuhan. Seperti protein berkait pertahanan 

yang lain, kebanyakkan PI tumbuhan telah diciri dan diekpreskan sebagai protein 

rekombinan sebagai aplikasi industri ataupun kejuteraan genetik untuk fitopertahanan. 

Namun begitu, keberkesanan protein ini (termasuk PI) dalam melawan patogen 

menjadi lemah secara perlahan-lahan disebabkan wujudnya proses adaptasi berterusan 

dan rintangan yang terbina oleh patogen. Satu pendekatan penting bagi mengatasi 

masalahan ini adalah dengan mencari dan menggabungkan penggunaan gen PI baru 

dari sumber novel dimana ianya masih belum terdedah kepada patogen. Objektif kajian 

ini adalah untuk mencirikan gen-gen PI novel dalam kunyit, Curcuma longa, kerana 

ekstrak kunyit telah dilaporkan mengandungi pelbagai sifat perubatan termasuk 

perencatan protease viral. Seterusnya, gen PI yang ditemui itu diekspreskan sebagai 

protein rekombinan dan fungsi aktivitinya dikenalpasti. Kajian ini juga bertujuan untuk 

menghasilkan perpustakaan transkriptomik Curcuma longa bagi kerja-kerja biologi 

molekul pada masa hadapan. Pada dasarnya, jujukan serpihan komplementari-DNA 

(cDNA) bagi CYP dan KTI telah dikenalpasti dari sampel daun Curcuma longa yang 

dirawat dengan metil jasmonat melalui tindakbalas polimerase berantai (PCR) 

degenerat. Jujukan penuh rangka bacaan terbuka (ORFs) cDNA bagi CypCl dan ClKTI, 

telah diperolehi melalui kaedah rapid amplification of cDNA ends (RACE). Jujukan 

cDNA tersebut telah didepositkan dalam pangkalan data NCBI dengan nombor aksesi 

KF545951.1 (CypCl) dan KF889322.1 (ClKTI). Profil pengekspresan gen-gen CypCl 

dan ClKTI dalam tisu yang telah dirawat dengan metil jasmonat ditentukan melalui 

kuantitatif-PCR masa nyata (RT-qPCR) dan secara umumnya, pengekspran PI sasaran 

diaruh dalam semua tisu yang dirawat. Kedua-dua ORF PI tersebut diklonkan ke dalam 

vektor pengekspresan sistem bakteria. Suhu inkubasi dan kepekatan optimum isopropil 

β-D-1-tiogalaktopiranosida (IPTG) dalam pengekspresan protein rekombinan telah 

dilakukan pada 37ºC dan 0.5 mM IPTG untuk aruhan selama 2 jam. CypCl rekombinan 
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terekspres sebagai protein larut manakala ClKTI rekombinan telah diekspreskan 

sebagai protein tidak larut (inclusion bodies). CypCl rekombinan telah ditulenkan 

menggunakan immobilized metal affinity chromatography (IMAC) dan anion-exchange 

chromatography manakala ClKTI rekombinan telah disolubilisasikan dan melalui 

proses perlipatan semula sebelum ditulenkan menggunakan IMAC. Kepekatan CypCl 

rekombinan yang ditulenkan adalah sekitar 5 µg/µL manakala ClKTI adalah sekitar 1 

µg/µL. Protein rekombinan yang telah ditulenkan tersebut telah menunjukkan aktiviti 

perencatan protease tetapi tidak menunjukkan potensi anti-patogen yang nyata 

berdasarkan kaedah pernyaringan yang telah dilakukan iaitu kaedah well-diffusion 

dalam kultur agar. Akhir sekali, perpustakaan transkriptomik Curcuma longa telah 

dihasilkan melalui kaedah next generation sequencing (NGS), melalui platform 

Illumina Hiseq RNA-seq, dengan menggunakan RNA keseluruhan dari sampel daun 

yang dirawat secara berbeza. Proses himpunan transkriptom secara de novo telah 

dijalankan dengan mengumpulkan kesemua bacaan RNA-seq menggunakan perisian 

Trinity dan sebanyak 113,209 himpunan transkrip dihasilkan. Fungsi annotasi termasuk 

annotasi terma ontologi gen (GO) untuk kira-kira 50% daripada himpunan transkrip 

tersebut telah diketahui melalui pencarian jujukan homolog terhadap protein yang 

diketahui daripada pangkalan data yang berbeza dengam menggunakan perisian 

Trinotate. Pembezaan pengekspresan gen (DEG) dalam sampel yang dirawat dengan 

metil-jasmonat berbanding dengan sampel terkawal telah ditentukan melalui perisian 

edgeR dengan sebanyak 1,559 transkrip pengawalaturan naik dan sebanyak 2,715 

transkrip pengawalaturan turun. Kesimpulannya, dua gen novel PI (CYP dan KTI) 

telah dikenalpasti dari sample kunyit and profil pengekspresannya telah dicirikan. 

Pengekpresan rekombinan, perlipatan and penulenan protein PI telah dioptimumkan 

dan aktiviti perencatan dapat dikesan dari asai perencatan walaupun hanya potensi anti-

patogen yang lemah ke rintangan didapati daripada kulat yang diuji. Perpustakaan 

transkriptomik kunyit telah diperolehi dan transkrip tersebut telah diannotasikan.   
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CHAPTER 1 

 

INTRODUCTION 

 

Agriculture is one of the important income sources to Malaysia and most of the crop 

plantings are conducted in a gigantic scale especially for crops like palm oil, rice and 

rubber trees. It is not uncommon to find pest problems in the plantations and during 

crop post-harvesting. These amounted to a major loss of profits to the country. Instead 

of using chemical pesticides which could be harmful to the environment and consumers, 

the production of crop plants with enhanced traits through biotechnology technique is 

one of the alternatives to overcome these problems. Advancement in technology had 

enabled the production of genetically engineered crop plants where the crops acquired 

beneficial defensive genes from other plants which helped in the protection against 

pests. One example of these beneficial genes which are responsible in natural plant 

protection is the gene coding for protease inhibitors. 

 

Protease inhibitors (PIs) are generally defined as molecules that inhibit the proteolysis 

of protease. Proteolysis is the degradation actions by proteases where large proteins are 

breakdown into smaller proteins and amino acids. In non-host plant pathogenesis, PIs 

are released as one of the resistance response by plants when they are attacked by pest 

insects and microorganisms (van Wyk et al., 2016; Benchabane et al., 2010; Habib & 

Fazili, 2007; Heath, 2000). During the process of pathogenesis, pest insects and 

microorganisms attack the plants by causing mechanical injury and release digestive 

proteases into the cells of the targeted plant. These released proteases degrade the plant 

proteins into peptides and amino acids which then formed a large reservoir of nutrients 

for the pest insects and microorganisms (Schaible & Kaufmann, 2005). The production 

of PIs are often stimulated by wounding and the PIs produced can be found locally and 

subsequently other parts distal from the injury area (Koiwa et al., 1997). 

 

In recent development, various PIs from plants have been extracted and characterized. 

Previous studies showed that genes coding for PIs can be identified from the plants 

genome and some are reported to be utilised in the production of genetically engineered 

plant that expressed phytoprotection towards certain pest insects or microorganism 

naturally (Schlüter et al., 2010; Christou et al., 2006; Dunaevsky et al., 2005; 

Lawrence & Koundal, 2002). In addition, PIs or the recombinant protein of PIs could 

also be utilised as active compound in biopesticides because they showed anti-

pathogenic properties in direct test assays and when ingested by pest insects, a 

profound reduction in body size was observed (Cruz et al., 2013; Rodrigues Macedo et 

al., 2010; Haq et al., 2004). Through these applications, the use of chemical pesticides 

will be reduced and these posed as an environmental friendly alternative apart from a 

costs saving strategy. Moreover, due to the nature of being able to inhibit proteases, PIs 

have pharmaceutical potentials and are used as a synthetic product in synthesizing 

medications especially towards diseases that are implicated by the loss of proteolytic 

activities of proteases in human body and infection by pathogenic proteases (Scott & 

Taggart, 2010; Haq et al., 2004). 
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Nonetheless, over the course of time, pest insect and pathogens are able to develop 

resistance towards the currently available engineered protection. These applied 

phytoprotection strategies become less effective in combating the pathogens and could 

leads to serious damages if precautionary steps are not taken (van Wyk et al., 2016; 

Haq et al., 2004). Hence, one of the necessary preparations in overcoming the 

resistance adaptation of insects and pathogens is to discover more novel PIs genes from 

novel sources. Novel sources here are referred to plants or organisms which are 

unrelated to the target crop plants that needed protection (Haq et al., 2004). Owing to 

the PIs novelty, the specific pathogens have not been exposed to them before and 

therefore the novel PI gained an advantage in combating against the resistance 

portrayed (Schlüter et al., 2010; Christou et al., 2006; Haq et al., 2004). One of the 

suitable candidates that could serve as a source for the discovery of novel PIs is the 

turmeric plant. 

 

Turmeric (Curcuma longa) is a well-known traditional medicine and is commonly used 

as spices in culinary arts in country like India, Malaysia, Thailand and other Asian 

countries. Turmeric has the characteristic of being anti-fungal and anti-inflammatory 

(Lantz et al., 2005; Apisariyakul et al., 1995). Moreover, recent studies have also 

proven that turmeric exhibits anti-tumour, anti-microbial, anti-HIV, nematocidal and 

anti-oxidant properties which potentially act as an alternative and cheaper medicine 

source (Krup et al., 2013; Jayaprakasha et al., 2005; Araújo & Leon, 2001). 

Sookkongwaree et al., (2006) had discovered that aqueous extracts from Zingiberaceae 

family (including turmeric) exhibited antiviral properties through viral protease 

inhibition. However the compound(s) responsible for the antiviral activity was not 

identified in the study. Based on this, the antiviral properties from turmeric extracts are 

speculated to be contributed by the presence of PIs and turmeric could exhibit PIs with 

protease inhibition activity. This could not be determined at the present moment as PIs 

and PI genes are yet to be discovered and studied from turmeric and the availability of 

molecular information on turmeric is limited. Hence, this research was aimed to answer 

the highlighted research problems with the following research objectives: 

 

i) To isolate and characterize novel cysteine protease inhibitor (CYP) and 

Kunitz-type trypsin inhibitor (KTI) genes from leaves of Curcuma longa.   

ii) To study the gene expression profile of CYP and KTI under methyl 

jasmonate treatment via RT-qPCR analysis 

iii) To clone and optimise recombinant expression of CYP and KTI in 

bacterial-host system 

iv) To optimise the purification of the recombinant CYP and KTI and 

screening of inhibitory activity and anti-pathogenicity potential  

v) To generate a transcriptomic library of Curcuma longa via Illumina Hiseq 

platform 
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