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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Master of Science 

STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF 

BISMUTH FERRITE CERAMICS SUBSTITUTED WITH YTTRIUM 

AND INDIUM 

By 

AMMAR ABD ALI NAJM 

October 2016 

Chairman :  Professor Abdul Halim Bin Shaari, PhD 

Faculty :  Science  

Multiferroic materials demonstrate the simultaneous presence of ferromagnetic, 

ferroelectric, or ferroelastic orderings. BiFeO3 (BFO) is one of the significant 

multiferroic materials with high TC ~ 1103 K and TN ~ 643 K at room temperature. 

BFO suffers high leakage current and weak ferromagnetic and ferroelectric 

properties. This study was aimed to synthesize BiFe1-xMxO3 (M = Y
3+

, In
3+

) samples;

where x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0, investigate their phase formation 

due to Y
3+

 and In
3+

 substitution as well as their magnetic and electrical properties.

Solid-state technique was used to synthesize BiFe1-xMxO3, (M = Y
3+

, In
3+

) using

Bi2O3, Fe2O3, Y2O3 and In2O3 as raw materials. XRD, SEM and EDX were used to 

determine the crystal structure, morphology of the grain size and elemental 

compositions respectively. Their leakage current, dielectric and magnetic properties 

were quantified by Keithley source measure unit, Impedance analyzer and VSM 

respectively. 

XRD revealed the hexagonal single phase of pure BFO. The phase changed to cubic 

with Y
3+

 substitution and BFO remains the primary phase until x = 0.2. Substitution

of In
3+

 promotes the growth of Bi25FeO40, and BFO remains the primary phase until

x = 0.4. For SEM results, the average grain size of pure BFO decreased from 2.04 to 

0.29 μm with Y
3+

 substitution, while it decreases to 0.32 μm for In
3+

 substitution.

EDX revealed no impurities in the pure and substituted samples. From magnetic 

analysis, pure BFO shows antiferromagnetic behavior. A maximum Ms value of 2.9 

emu/g and Mr of 0.09 were observed with Y
3+

 substitution at x = 0.2. The magnetic

properties showed nonlinear dependent on In
3+

 substitution. The highest Ms value of

0.0405 emu/g and Mr of 6.22 × 10
-4

 emu/g was achieved at x = 0.3. The dielectric

measurement showed that the εʹr of the samples increased from 26.5 at x = 0 to 105 

at x = 0.4, with Y
3+

 substitution. The values also improved with In
3+

 substitution and

reached an optimum value of 372 at x = 0.6. The J-E measurement revealed that the 

leakage current density, J of x = 1.0 (4.6 × 10
-8

 A/cm
2
) substituted with Y

3+ 
is

decreased significantly by about four order of magnitude compared to that of x = 0 
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(9.24 × 10
-4

 A/cm
2
). Moreover, the J of x = 1.0 (1.51× 10

-6
 A/cm

2
) substituted with

In
3+

 is decreased significantly by about three order of magnitude compared to that of

x = 0 (9.24 × 10
-4

 A/cm
2
).

In conclusion, substituted BFO ceramics possess improved dielectric, magnetic 

properties and has reduced the leakage current. The prepared ceramics could be 

employed for several applications such as disk read/write heads and ceramic pressure 

sensor. 
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Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

SIFAT STRUKTUR, ELEKTRIK DAN MAGNET SERAMIK BISMUT 

FERIT DENGAN PENGGANTIAAN ITERIUM DAN INDIUM 

Oleh 

AMMAR ABD ALI NAJM 

Oktober 2016 

Pengerusi 

Fakulti 

:  Profesor Abdul Halim Bin Shaari, PhD 

:  Sains  

Bahan multiferoik menunjukkan kehadiran serentak sifat feromagnet, feroelektrik, 

dan feroelastik. Salah satu bahan multiferoik yang mempunyai suhu curie, TC 

~1103K dan suhu Neel, TN ~643 K yang tinggi pada keadaan suhu bilik ialah 

BiFeO3 (BFO). Walaubagaimanapun, limitasi BFO ialah kebocoran arus yang tinggi 

di samping mempunyai sifat feromagnetik dan feroelektrik yang lemah. Oleh itu, 

kajian ini bertujuan untuk mensintesis selain mengkaji sifat magnet serta elektrik 

bagi bahan multiferoik BiFe1-xMxO3 (M = Y
3+

, In
3+

) dengan penggantian Y
3+

 dan

In
3+

 berdasarkan perubahan pembentukan fasa (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8

dan 1.0). 

Teknik keadaan pepejal konvensional telah digunakan untuk mensintesis BiFe1-

xMxO3, (M = Y
3+

, In
3+

) dengan menggunakan Bi2O3, Fe2O3, Y2O3 dan In2O3 sebagai

bahan mentah. XRD, SEM dan EDX telah digunakan untuk mengenal pasti struktur 

kristal, morfologi saiz butiran dan komposisi elemen. Manakala sifat dielektrik, sifat 

magnet dan kebocoran arus bahan telah diukur menggunakan penganalisis impedans 

VSM dan unit ukuran sumber Keithley.  

Analisis XRD menunjukkan fasa tunggal heksagon bagi BFO tulen. 

Walaubagaimanapun, fasa tersebut berubah kepada kubik dengan penggantian Y
3+

namun BFO kekal sebagai fasa primer sehingga x = 0.2. Manakala, penggantian In
3+

menggalakan pertumbuhan Bi25FeO40 namun BFO turut kekal sebagai fasa primer 

sehingga x = 0.4. Keputusan kajian SEM menunjukkan nilai purata saiz butiran BFO 

tulen menurun daripada 2.04 kepada 0.29 μm dengan penggantian Y
3+

. Berbeza

dengan penggantian In
3+

 yang menurun sehingga 0.32 μm. Selain itu, analisis EDX

mengesahkan tiada bendasing terdapat dalam sampel tulen mahupun sampel yang 

telah didopkan. Tambahan pula, BFO tulen mempunyai sifat antiferomagnetik 

dengan nilai maksimum Ms ialah 2.9 emu/g dan Mr ialah 0.09 emu/g apabila Y
3+

digantikan pada x = 0.2. Sifat-sifat magnet menunjukkan kebergantungan tidak linear 

ke atas penggantian In
3+

. Nilai tertinggi Ms ialah 0.0405 emu/g dan Mr ialah 6.22 ×
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10
-4

 emu/g, masing-masing dicapai pada x = 0.3. Ukuran diaelektrik membuktikan 

bahawa εʹr sampel meningkat daripada 26.5 pada x = 0 kepada 105 pada x = 0.4, 

dengan penggantian Y
3+

. Nilai tersebut juga semakin bertambah baik dengan 

penggantian In
3+

 sehingga mencapai nilai optimum iaitu 372 pada x = 0.6. 

Pengukuran J-E mendapati bahawa kebocoran ketumpatan arus, J ialah 4.6 × 10
-8

 

A/cm
2 

pada x = 1.0 dengan penggantian Y
3+

 telah menurun dengan ketara kira-kira 

sebanyak empat turutan magnitud berbanding dengan keadaan pada x = 0 iaitu 9.24 

× 10
-4

 A/cm
2. 

Tambahan itu,
 
nilai J pada x = 1.0 ialah 1.51× 10

-6
 A/cm

2
 dengan 

penggantian In
3+

 telah menurun dengan ketara kira-kira sebanyak tiga turutan 

magnitud berbanding dengan keadaan pada x = 0 iaitu 9.24 × 10
-4

 A/cm
2
. 

 

 

Kesimpulannya, pendopan seramik BFO dapat menambah baik sifat dielektrik, sifat 

magnet selain dapat mengurangkan kebocoran arus turut dapat kepada nilai yang 

agak rendah. Seramik yang telah disintesis boleh digunakan untuk beberapa aplikasi 

seperti cakera membaca/menulis atau sensor tekanan seramik. 
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1 

 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Background of multiferroic  

 

 

In the current age of device miniaturization, multiferroics are technologically 

significant. It involves the coexistence of two or more ferroic order parameters viz. 

ferroelectricity, ferromagnetism and ferroelasticity in a single phase (Schmid, 1994). 

As a logical definition to the term multiferroic, it is any material presenting two of 

these three ferroic properties. However, the most interesting combination was 

thought to be materials presenting ferroelectricity and ferromagnetism 

simultaneously. Nevertheless, the most significant is to involve a strong coupling 

interaction between these two-ferroic orders. In multiferroic materials, the coupling 

interaction between the different order parameters can yield additional 

functionalities, such as a magnetoelectric (ME) effect (Ma et al., 2011). 

Magnetoelectric effect gives place to extra degrees of freedom, which may permit 

magnetization to be switched by an electric field and polarization to be switched by a 

magnetic field (Yatom and Englman, 1969; Eerenstein et al., 2006; Chu et al., 2007). 

 

 

Although there are multiferroic materials that are not magnetoelectric and vice versa, 

for fundamental reasons, the magnetoelectric coupling in single-phase materials is 

largest in multiferroic materials. For this reason, the development of these classes of 

materials is intimately related. Ferroelectric and ferromagnetic materials are 

characterized by their spontaneous polarization (electric or magnetic, respectively). 

 

 

However, most materials do not exhibit a spontaneous order, but they do interact 

with applied fields. An electric field (E) produces an electric dipole moment and 

hence electric polarization (P) in the material. Conversely, a magnetic field (H) 

produces magnetization (M) and stress (s) produces stain (ε) (Velev et al., 2011). 

 

 

Multiferroism is observed in very few naturally available single-phase multiferroic 

systems. Moreover, commercial device engineering considerations impose further 

restrictions on the materials to exhibit ferroelectric/magnetic ordering at room 

temperature (RT) or close to RT. Boracites were possibly the first multiferroics 

materials identified (Khomskii, 2006), while others were soon to be found in nature, 

or synthesized artificially. Initially, most of the focus was on materials such as 

BiFeO3, which have ferroelectric and magnetic transition temperatures close to or 

above RT (Roy et al., 2012). 
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1.2 Multiferroic materials 

 

 

Complex oxide materials display a varied range of properties especially due to 

various interactions that occur among the electronic degrees of freedom, structural 

and magnetic properties. H. Schmidt initially invented the expression “multiferroic” 

in 1994 to define multiferroic as a single phase material that has either two or three 

order parameters of ferroic which coexistence at the same phase, such ferroic are 

ferroelectricity, ferromagnetism, ferroelasticity and ferrotoroidic order which shows 

a strong coupling between the two ferroic orders (Schmid, 1994; Fiebig, 2005). 

Specifically, ferroelectric and ferromagnetic are materials with high technological 

relevance, and can be used in magneto-electric sensors driven magnetic data storage 

and recording devices (Spaldin and Fiebig, 2005). 

 

 

Considering materials performing multiferroic properties, a coupling interaction that 

arises between ferroic parameters which yield additional characteristics, include 

magnetoelectric (ME) effect (Ma et al., 2011). The incidence of ferromagnetic and 

ferroelectric orders in a material with a single-phase crystal structure is based on 

three conditions namely: 

 

 

i. Symmetry conditions. 

ii. The existence of sufficient structural building blocks which allows off-

center ion displacement, related to the ferroelectric spontaneous 

polarization or other different mechanism for ferroelectricity lone pair: 

BiFeO3, BiMnO3 or geometric thwarting e.g.YMnO3 (Hill, 2000). 

iii. Magnetic-interaction pathways for the magnetic order, more commonly of 

super-exchange type (Gheorghiu et al., 2013). 

 

 

The expression “magnetoelectric”, has lately become widespread, this term  consists 

of not only ferroelctromagnets, but also with the materials upon which any two 

ferroic parameters coexist such as ferroelectric materials, antiferroelectric materials, 

ferromagnetic materials, antiferromagnetic materials, ferrimagnetic materials, 

ferroelastic materials and ferrotoroidic materials (Eerenstein et al., 2006). 

 

 

1.3 Types of multiferroics  

 

 

To comprehend all fundamental phenomena in the multiferroic field, it is important 

to classify multiferroics according to the different basic mechanisms into two types. 

Recently, multiferroic materials have been categorized into two sorts: Type I and 

Type II (Khomskii, 2009). The magnetism and ferroelectricity in Type I resulted 

from different sources and the influence independent of each other, but unfortunately 

the degree of coupling between the magnetism and ferroelectricity, is often weak. 

The spontaneous polarization (P) of such materials is usually large of the order (10 - 

100 μC/cm
2
) and the best example of such materials is bismuth ferrite (BiFeO3) (TC 

≈ 1103K, TN ≈ 643 K, P ~ 88 - 100 µC/cm
2
) (Xie et al., 2014), Yttrium manganite 
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(YMnO3) (TC ≈ 914 K, TN ≈ 76 K, P ~ 6 µC/cm
2
). In type II multiferroic materials 

such as TbMnO3, Ni3V2O6 and MnWO6, magnetism causes coexistence of 

ferroelectricity, which implies a strong coupling between the two. A much smaller 

polarization (10
-2

 μC/cm
2
), is displayed in the presence of its magnetized state 

(Kimura et al., 2003). 

 

 

1.4 Multiferroic bismuth ferrite  

 

 

Bismuth ferrite (BiFeO3: BFO) is a prototype multiferroic among all the novel 

multiferroic materials that are currently in use. BiFeO3 has been widely considered 

in the form of ceramics, thin films and nano-powders (Simões et al., 2011). 

Generally, BiFeO3 is denoted by BFO in the field of materials science. BFO consists 

of bismuth (Bi), iron (Fe) and oxygen (O) which is considered an inorganic 

compound. BFO displays multiferroic properties especially at room temperatures. In 

addition, BFO also shows high transition temperature (1103 K) and in particular, a 

single crystal of BFO displays high electric polarization (~ 100 μC/cm
2
) when 

compared to other ferroelectric materials. It is often a great challenge to produce a 

single phase BFO. Previously, the difficulties of preparing single phases of BFO has 

been reported elsewhere (Xie et al., 2014), where the characteristic single phase of 

BFO with ferroelectric Curie temperature (TC) of 1103 K and Neel temperature (TN) 

of 653 K has been reported (Xie et al., 2014). The special arrangement of R3c group 

in the crystal lattice of BFO, which has rhombohedrally distorted perovskite 

structure, allows spontaneous ferroelectric polarization that can be either any of the 

eight diagonal [111] directions as revealed in Figure 1.1. Usually BFO polarization 

comes from A-site which is mainly due to the lone pair of Bi ions (6s
2
 orbital), in the 

same manner the magnetization result from Fe
3+

 at B-site. 

 

 

 
 

Figure 1.1: Representative image of the atomic structure of BiFeO3 and the 

direction of the polarization along [111]. Source: Adapted from (Velev et al., 

2011). 
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1.5 Phase diagram of BiFeO3  

 

 

Figure 1.2 shows the phase diagram of bismuth oxide (Bi2O3)/iron oxide (Fe2O3) 

(Morozov et al., 2003; Palai et al., 2008). The preparation of bismuth ferrite 

(BiFeO3) is always from the equal mixtures of raw materials i.e., Bi2O3 + Fe2O3 

(1:1), at high temperatures, the mixture has the tendency to decompose back to its 

starting (raw) materials based on the following equation (1.1). 

 

2 3 2 3 3Bi O Fe O 2BiFeO             (1.1) 

 

 
 

Figure 1.2: Phase diagram of BiFeO3. Source: Adapted from (Catalan and Scott, 

2009). 

 

 

BFO is likely to show parasitic phases in which they nucleate together in the form of 

impurities at grain boundaries (Valant et al., 2007). Previously, BFO has been 

reported to be truly metastable in atmospheric air, especially due to its optically 

visible impurity that are commonly found well below the melting point (Catalan and 

Scott, 2009). The remnant magnetization artificially improves due to the impurities 

and oxygen vacancies (Bea et al., 2005; Lou et al., 2007). When 200 kV/cm of 

electric field are applied, the BFO decomposes to produce a by-product Fe3O4 

(magnetite) at room temperature (Leontsev and Eitel, 2009) as shown in the equation 

(1.2) below: 
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3 3 4 2 36BiFeO 2Fe O  3Bi O  O           
 

  (1.2) 

 

The phase Bi2O3 was possibly undetectable due to its known glass-forming 

compound, or because of its vaporizing capability within thermal decomposition. In 

addition, Bi2O3 reaches a melting point at temperature above 800 °C (Palai et al., 

2008). 

 

 

1.6 Problem statement 

 

 

There are some problems associated with BiFeO3. The major problem in the 

preparation of bismuth ferrite (BiFeO3) is the presence of impurities, non-perovskite 

phases such as Bi25FeO39 (sillenite) and Bi2Fe4O9 (mullite) using solid-state reaction 

techniques (Muneeswaran et al., 2014). These secondary phases (impurities) occur 

due to volatility and the dynamics phase formation. BiFeO3 also has high leakage 

current because of oxygen vacancies and the oxidation status of Fe (ions) is 

fluctuation that appears (Fe
2+

, Fe
3+

) inside the perovskite matrix (Adhlakha et al., 

2013). In addition, BiFeO3 also exhibits weak ferromagnetic (FM) properties due to 

the deformation of structure of spin spiral with G-type antiferromagnetism (Pradhan 

et al., 2005; Godara et al., 2015). 

 

 

To overcome these difficulties, a modification has been employed, which is the 

substitution of B-site of BFO with rare-earth and transitional element, yttrium (Y
3+

) 

and Indium (In
3+

) using solid state reaction method. This is due to their larger ionic 

radius than iron, which can alter the crystal structure and improve their electrical and 

magnetic properties. Moreover, this will result in the reduction of high leakage 

current as well as remove the impurities. The following questions may arise for 

further research from the above-mentioned phenomenon: 

 

1. At which percentage of substitution can one have an excellent reduction of 

leakage current? 

2. At which specific phase formation of samples is a better substitution? 

3. Will the influence of substitution increase/decrease the magnetic and 

electric properties of the materials? 

 

 

1.7 Objectives of the study 

 

 

General objective 
 

The aim of this research is to study the influence of substitution of yttrium (Y
3+

) and 

indium (In
3+

) at the Fe-site of BiFeO3 ceramics prepared via conventional solid-state 

reaction method. The effects of various concentrations on the structural, electrical 

and magnetic properties are investigated. 
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Specific objectives 

 

The specific objectives are as follow 

 

1. To synthesize BiFe1-xMxO3 (M = Y
3+

 and In
3+

) where (0.0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.8 and 1). 

2. To study the phase formation of samples due to Y
3+

 and In
3+

 substitution. 

3. To investigate the effect of substitution of Y
3+

, with ionic radius of (1.04 

Å) and In
3+

, with ionic radius of (0.94 Å) on magnetic and electric 

properties of BiFeO3. 

 

 

1.8 Importance of the study 

 

 

Multiferroics including BiFeO3 are materials with high attractive interest subjects 

that have been deeply investigated in the field of material science research, due to 

their physical-chemical properties and numerous applications such as information 

storage devices, disk read/write heads, spin valves that are used in magnetic sensors 

and microelectronic devices. The material usually produces an enormous 

magnetoelectric coupling response above the room temperature. Moreover, it grants 

basic control of the electric polarization with a magnetic field or controlling charge 

by an electric field, which makes them valuable in the area of technological 

applications (Nan et al., 2008). These applications include spintronics, data storage, 

sensors and microelectronic devices (Arnold et al., 2010). The magnetoelectric (ME) 

influence is relatively significant for data storage applications that would allow 

magnetic information to be composed electrically and for the magnetic utility later 

(Smolenskiĭ and Chupis, 1982; Eerenstein et al., 2006; Bibes and Barthélémy, 2008). 

BiFeO3 is a possible candidate for magnetoelectric and spintronic application. In 

spintroncs devices, information is written electrically and read magnetically (Chen et 

al., 2006). BiFeO3 is found to be essential as a tunneling barrier layer, where the 

magnetic field can control the ferroelectric states, while the tunneling resistance 

controls the direction of polarization as well (Yin et al., 2015). 

 

 

Given these evidences, multiferroics are currently being employed in several 

commercial applications, such as magnetic memory systems, sensor, spintronics 

(Béa et al., 2005; Gajek et al., 2005) and tunable microwave devices (Kadomtseva et 

al., 2006): thus rendering the potential to revolutionize electromagnetic material’s 

applications. 

 

 

In this research study, the result obtained from yttrium and indium substituted BFO 

have added new contribution that can be adapted in many devices as mentioned 

above. Moreover, these new result can be considered new acknowledgments for 

researchers working in this field of research. In addition, the work conducted here 

using Y
3+

 and In
3+

 substitution on Fe-site of BFO has not been conducted by any 

other researcher and are not available in the literature. 
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1.9 Thesis outline 

 

 

Synthesis and characterization of BiFe1-xMxO3 (M = Y
3+

, In
3+

) by conventional solid-

state reaction is the main feature of evaluation in this research. Summary of 

multiferroic materials and bismuth ferrite in addition to the problem statement, 

importance and objectives of the study were presented in Chapter 1. A brief 

discussion on the general background of multiferroic materials, perovskite structure, 

magnetic and electrical properties of BiFeO3, methods followed to synthesize 

BiFeO3 and the effect of substitution on BiFeO3 are presented in Chapter 2. Chapter 

3 explains multiferroics, ferromagnetism, hysteresis loop, ferroelectrics, leakage 

current and dielectric properties. Information on the clarification of the procedures 

involved in the synthesis of BiFe1-xMxO3 ceramics by solid-state synthesis technique 

were described in Chapter 4. The results and discussion of all the characterizations 

scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray 

diffraction (XRD), vibrating sample magnetometer (VSM), Impedance Analysis and 

Keithley source measure unit were explained in Chapter 5. Summary of all-

important results presented in the dissertation with recommendations for future 

research were presented in Chapter 6. Finally, Chapter 6 was followed by list of 

references, appendices, list of publications (research articles, conferences 

papers/posters by the author) and bio-data of the student. 
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