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Multiferroic materials demonstrate the simultaneous presence of ferromagnetic,
ferroelectric, or ferroelastic orderings. BiFeOs; (BFO) is one of the significant
multiferroic materials with high T¢ ~ 1103 K and Ty ~ 643 K at room temperature.
BFO suffers high leakage current and weak ferromagnetic and ferroelectric
properties. This study was aimed to synthesize BiFe1.xMO3 (M = Y**, In*") samples;
where x =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0, investigate their phase formation
due to Y*" and In** substitution as well as their magnetic and electrical properties.
Solid-state technique was used to synthesize BiFeixM,Os, (M = Y**, In®*") using
Bi,03, Fe;03, Y203 and In,O3 as raw materials. XRD, SEM and EDX were used to
determine the crystal structure, morphology of the grain size and elemental
compositions respectively. Their leakage current, dielectric and magnetic properties
were quantified by Keithley source measure unit, Impedance analyzer and VSM
respectively.

XRD revealed the hexagonal single phase of pure BFO. The phase changed to cubic
with Y** substitution and BFO remains the primary phase until x = 0.2. Substitution
of In®* promotes the growth of BixsFeOuo, and BFO remains the primary phase until
x = 0.4. For SEM results, the average grain size of pure BFO decreased from 2.04 to
0.29 pm with Y** substitution, while it decreases to 0.32 um for In** substitution.
EDX revealed no impurities in the pure and substituted samples. From magnetic
analysis, pure BFO shows antiferromagnetic behavior. A maximum M;s value of 2.9
emu/g and M, of 0.09 were observed with Y** substitution at x = 0.2. The magnetic
properties showed nonlinear dependent on In** substitution. The highest M; value of
0.0405 emu/g and M, of 6.22 x 10™ emu/g was achieved at x = 0.3. The dielectric
measurement showed that the €', of the samples increased from 26.5 at x = 0 to 105
at x = 0.4, with Y*" substitution. The values also improved with In** substitution and
reached an optimum value of 372 at x = 0.6. The J-E measurement revealed that the
leakage current density, J of x = 1.0 (4.6 x 10® A/cm?) substituted with Y3* is
decreased significantly by about four order of magnitude compared to that of x = 0



(9.24 x 10 A/lcm?). Moreover, the J of x = 1.0 (1.51x 10°® A/cm?) substituted with
In** is decreased significantly by about three order of magnitude compared to that of
x = 0(9.24 x 10 Alcm?).

In conclusion, substituted BFO ceramics possess improved dielectric, magnetic
properties and has reduced the leakage current. The prepared ceramics could be
employed for several applications such as disk read/write heads and ceramic pressure
sensor.
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Bahan multiferoik menunjukkan kehadiran serentak sifat feromagnet, feroelektrik,
dan feroelastik. Salah satu bahan multiferoik yang mempunyai suhu curie, Tc
~1103K dan suhu Neel, Ty ~643 K yang tinggi pada keadaan suhu bilik ialah
BiFeO; (BFO). Walaubagaimanapun, limitasi BFO ialah kebocoran arus yang tinggi
di samping mempunyai sifat feromagnetik dan feroelektrik yang lemah. Oleh itu,
kajian ini bertujuan untuk mensintesis selain mengkaji sifat magnet serta elektrik
bagi bahan multiferoik BiFe;M,Os (M = Y**, In®*) dengan penggantian Y** dan
In®* berdasarkan perubahan pembentukan fasa (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8
dan 1.0).

Teknik keadaan pepejal konvensional telah digunakan untuk mensintesis BiFe;.
M,03, (M = Y* In®) dengan menggunakan Bi,Os, Fe,0s, Y,03 dan In,05 sebagai
bahan mentah. XRD, SEM dan EDX telah digunakan untuk mengenal pasti struktur
kristal, morfologi saiz butiran dan komposisi elemen. Manakala sifat dielektrik, sifat
magnet dan kebocoran arus bahan telah diukur menggunakan penganalisis impedans
VSM dan unit ukuran sumber Keithley.

Analisis XRD menunjukkan fasa tunggal heksagon bagi BFO tulen.
Walaubagaimanapun, fasa tersebut berubah kepada kubik dengan penggantian Y**
namun BFO kekal sebagai fasa primer sehingga x = 0.2. Manakala, penggantian In**
menggalakan pertumbuhan BixsFeO4o namun BFO turut kekal sebagai fasa primer
sehingga x = 0.4. Keputusan kajian SEM menunjukkan nilai purata saiz butiran BFO
tulen menurun daripada 2.04 kepada 0.29 pm dengan penggantian Y>*. Berbeza
dengan penggantian In®* yang menurun sehingga 0.32 pm. Selain itu, analisis EDX
mengesahkan tiada bendasing terdapat dalam sampel tulen mahupun sampel yang
telah didopkan. Tambahan pula, BFO tulen mempunyai sifat antiferomagnetik
dengan nilai maksimum M; ialah 2.9 emu/g dan M, ialah 0.09 emu/g apabila Y**
digantikan pada x = 0.2. Sifat-sifat magnet menunjukkan kebergantungan tidak linear
ke atas penggantian In**. Nilai tertinggi M; ialah 0.0405 emu/g dan M, ialah 6.22 x



10" emu/g, masing-masing dicapai pada x = 0.3. Ukuran diaelektrik membuktikan
bahawa &' sampel meningkat daripada 26.5 pada x = 0 kepada 105 pada x = 0.4,
dengan penggantian Y*". Nilai tersebut juga semakin bertambah baik dengan
penggantian In** sehingga mencapai nilai optimum iaitu 372 pada x = 0.6.
Pengukuran J-E mendapati bahawa kebocoran ketumpatan arus, J ialah 4.6 x 10®
Alcm? pada x = 1.0 dengan penggantian Y** telah menurun dengan ketara kira-kira
sebanyak emfat turutan magnitud berbanding dengan keadaan pada x = 0 iaitu 9.24
x 10™ Alem* Tambahan itu, nilai J pada x = 1.0 ialah 1.51x 10° A/cm? dengan
penggantian In®* telah menurun dengan ketara kira-kira sebanyak tiga turutan
magnitud berbanding dengan keadaan pada x = 0 iaitu 9.24 x 10 A/cm?.

Kesimpulannya, pendopan seramik BFO dapat menambah baik sifat dielektrik, sifat
magnet selain dapat mengurangkan kebocoran arus turut dapat kepada nilai yang
agak rendah. Seramik yang telah disintesis boleh digunakan untuk beberapa aplikasi
seperti cakera membaca/menulis atau sensor tekanan seramik.
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CHAPTER 1

INTRODUCTION

1.1 Background of multiferroic

In the current age of device miniaturization, multiferroics are technologically
significant. It involves the coexistence of two or more ferroic order parameters viz.
ferroelectricity, ferromagnetism and ferroelasticity in a single phase (Schmid, 1994).
As a logical definition to the term multiferroic, it is any material presenting two of
these three ferroic properties. However, the most interesting combination was
thought to be materials presenting ferroelectricity and ferromagnetism
simultaneously. Nevertheless, the most significant is to involve a strong coupling
interaction between these two-ferroic orders. In multiferroic materials, the coupling
interaction between the different order parameters can yield additional
functionalities, such as a magnetoelectric (ME) effect (Ma et al., 2011).
Magnetoelectric effect gives place to extra degrees of freedom, which may permit
magnetization to be switched by an electric field and polarization to be switched by a
magnetic field (Yatom and Englman, 1969; Eerenstein et al., 2006; Chu et al., 2007).

Although there are multiferroic materials that are not magnetoelectric and vice versa,
for fundamental reasons, the magnetoelectric coupling in single-phase materials is
largest in multiferroic materials. For this reason, the development of these classes of
materials is intimately related. Ferroelectric and ferromagnetic materials are
characterized by their spontaneous polarization (electric or magnetic, respectively).

However, most materials do not exhibit a spontaneous order, but they do interact
with applied fields. An electric field (E) produces an electric dipole moment and
hence electric polarization (P) in the material. Conversely, a magnetic field (H)
produces magnetization (M) and stress (s) produces stain (¢) (Velev et al., 2011).

Multiferroism is observed in very few naturally available single-phase multiferroic
systems. Moreover, commercial device engineering considerations impose further
restrictions on the materials to exhibit ferroelectric/magnetic ordering at room
temperature (RT) or close to RT. Boracites were possibly the first multiferroics
materials identified (Khomskii, 2006), while others were soon to be found in nature,
or synthesized artificially. Initially, most of the focus was on materials such as
BiFeO3, which have ferroelectric and magnetic transition temperatures close to or
above RT (Roy et al., 2012).



1.2 Multiferroic materials

Complex oxide materials display a varied range of properties especially due to
various interactions that occur among the electronic degrees of freedom, structural
and magnetic properties. H. Schmidt initially invented the expression “multiferroic”
in 1994 to define multiferroic as a single phase material that has either two or three
order parameters of ferroic which coexistence at the same phase, such ferroic are
ferroelectricity, ferromagnetism, ferroelasticity and ferrotoroidic order which shows
a strong coupling between the two ferroic orders (Schmid, 1994; Fiebig, 2005).
Specifically, ferroelectric and ferromagnetic are materials with high technological
relevance, and can be used in magneto-electric sensors driven magnetic data storage
and recording devices (Spaldin and Fiebig, 2005).

Considering materials performing multiferroic properties, a coupling interaction that
arises between ferroic parameters which yield additional characteristics, include
magnetoelectric (ME) effect (Ma et al., 2011). The incidence of ferromagnetic and
ferroelectric orders in a material with a single-phase crystal structure is based on
three conditions namely:

i Symmetry conditions.

ii. The existence of sufficient structural building blocks which allows off-
center ion displacement, related to the ferroelectric spontaneous
polarization or other different mechanism for ferroelectricity lone pair:
BiFeO3, BiMnO3 or geometric thwarting e.g.YMnO3 (Hill, 2000).

iii. Magnetic-interaction pathways for the magnetic order, more commonly of
super-exchange type (Gheorghiu et al., 2013).

The expression “magnetoelectric”, has lately become widespread, this term consists
of not only ferroelctromagnets, but also with the materials upon which any two
ferroic parameters coexist such as ferroelectric materials, antiferroelectric materials,
ferromagnetic materials, antiferromagnetic materials, ferrimagnetic materials,
ferroelastic materials and ferrotoroidic materials (Eerenstein et al., 2006).

1.3 Types of multiferroics

To comprehend all fundamental phenomena in the multiferroic field, it is important
to classify multiferroics according to the different basic mechanisms into two types.
Recently, multiferroic materials have been categorized into two sorts: Type | and
Type 1l (Khomskii, 2009). The magnetism and ferroelectricity in Type | resulted
from different sources and the influence independent of each other, but unfortunately
the degree of coupling between the magnetism and ferroelectricity, is often weak.
The spontaneous polarization (P) of such materials is usually large of the order (10 -
100 pC/cm®?) and the best example of such materials is bismuth ferrite (BiFeOs) (Tc
~ 1103K, Tn = 643 K, P ~ 88 - 100 pC/cm?) (Xie et al., 2014), Yttrium manganite
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(YMnO3) (Tec = 914 K, Ty = 76 K, P ~ 6 pC/em?). In type 11 multiferroic materials
such as TbMnOj, Ni3V,0s and MnWOQOg, magnetism causes coexistence of
ferroelectricity, which implies a strong coupling between the two. A much smaller
polarization (10 pC/em?), is displayed in the presence of its magnetized state
(Kimura et al., 2003).

1.4 Multiferroic bismuth ferrite

Bismuth ferrite (BiFeO3;: BFO) is a prototype multiferroic among all the novel
multiferroic materials that are currently in use. BiFeO3 has been widely considered
in the form of ceramics, thin films and nano-powders (Simdes et al., 2011).
Generally, BiFeOg is denoted by BFO in the field of materials science. BFO consists
of bismuth (Bi), iron (Fe) and oxygen (O) which is considered an inorganic
compound. BFO displays multiferroic properties especially at room temperatures. In
addition, BFO also shows high transition temperature (1103 K) and in particular, a
single crystal of BFO displays high electric polarization (~ 100 pC/cm?) when
compared to other ferroelectric materials. It is often a great challenge to produce a
single phase BFO. Previously, the difficulties of preparing single phases of BFO has
been reported elsewhere (Xie et al., 2014), where the characteristic single phase of
BFO with ferroelectric Curie temperature (T¢) of 1103 K and Neel temperature (Tn)
of 653 K has been reported (Xie et al., 2014). The special arrangement of R3c group
in the crystal lattice of BFO, which has rhombohedrally distorted perovskite
structure, allows spontaneous ferroelectric polarization that can be either any of the
eight diagonal [111] directions as revealed in Figure 1.1. Usually BFO polarization
comes from A-site which is mainly due to the lone pair of Bi ions (6s” orbital), in the
same manner the magnetization result from Fe®* at B-site.

> ,4
P 4 T

Figure 1.1. Representative image of the atomic structure of BiFeO3; and the
direction of the polarization along [111]. Source: Adapted from (Velev et al.,
2011).



1.5 Phase diagram of BiFeO3

Figure 1.2 shows the phase diagram of bismuth oxide (Bi,Os)/iron oxide (Fe;Os3)
(Morozov et al., 2003; Palai et al., 2008). The preparation of bismuth ferrite
(BiFeOs3) is always from the equal mixtures of raw materials i.e., Bi,O3 + Fe;Os
(1:1), at high temperatures, the mixture has the tendency to decompose back to its
starting (raw) materials based on the following equation (1.1).

Bi,O,+ Fe,0, - 2BiFe0, (1.1)
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Figure 1.2: Phase diagram of BiFeOs. Source: Adapted from (Catalan and Scott,
2009).

BFO is likely to show parasitic phases in which they nucleate together in the form of
impurities at grain boundaries (Valant et al., 2007). Previously, BFO has been
reported to be truly metastable in atmospheric air, especially due to its optically
visible impurity that are commonly found well below the melting point (Catalan and
Scott, 2009). The remnant magnetization artificially improves due to the impurities
and oxygen vacancies (Bea et al., 2005; Lou et al., 2007). When 200 kV/cm of
electric field are applied, the BFO decomposes to produce a by-product FezOq4
(magnetite) at room temperature (Leontsev and Eitel, 2009) as shown in the equation
(1.2) below:



6BiFe0, —» 2Fe,0, + 3Bi,0,+ O (1.2)

The phase Bi,O3; was possibly undetectable due to its known glass-forming
compound, or because of its vaporizing capability within thermal decomposition. In
addition, Bi,O3 reaches a melting point at temperature above 800 °C (Palai et al.,
2008).

1.6 Problem statement

There are some problems associated with BiFeOs. The major problem in the
preparation of bismuth ferrite (BiFeO3) is the presence of impurities, non-perovskite
phases such as BixsFeOgq (sillenite) and BioFe,O9 (mullite) using solid-state reaction
techniques (Muneeswaran et al., 2014). These secondary phases (impurities) occur
due to volatility and the dynamics phase formation. BiFeO3 also has high leakage
current because of oxygen vacancies and the oxidation status of Fe (ions) is
fluctuation that appears (Fe**, Fe**) inside the perovskite matrix (Adhlakha et al.,
2013). In addition, BiFeO3 also exhibits weak ferromagnetic (FM) properties due to
the deformation of structure of spin spiral with G-type antiferromagnetism (Pradhan
et al., 2005; Godara et al., 2015).

To overcome these difficulties, a modification has been employed, which is the
substitution of B-site of BFO with rare-earth and transitional element, yttrium (Y**)
and Indium (In®") using solid state reaction method. This is due to their larger ionic
radius than iron, which can alter the crystal structure and improve their electrical and
magnetic properties. Moreover, this will result in the reduction of high leakage
current as well as remove the impurities. The following questions may arise for
further research from the above-mentioned phenomenon:

1.  Atwhich percentage of substitution can one have an excellent reduction of
leakage current?

2. At which specific phase formation of samples is a better substitution?

3. Will the influence of substitution increase/decrease the magnetic and
electric properties of the materials?

1.7 Objectives of the study

General objective

The aim of this research is to study the influence of substitution of yttrium (Y**) and
indium (In®") at the Fe-site of BiFeO3 ceramics prepared via conventional solid-state
reaction method. The effects of various concentrations on the structural, electrical
and magnetic properties are investigated.



Specific objectives
The specific objectives are as follow

1.  To synthesize BiFeixMO3 (M = Y** and In**) where (0.0, 0.1, 0.2, 0.3,
0.4,0.5,0.6,0.8 and 1).

2. To study the phase formation of samples due to Y** and In®* substitution.

3. To investigate the effect of substitution of Y**, with ionic radius of (1.04
A) and In**, with ionic radius of (0.94 A) on magnetic and electric
properties of BiFeOs.

1.8 Importance of the study

Multiferroics including BiFeO3 are materials with high attractive interest subjects
that have been deeply investigated in the field of material science research, due to
their physical-chemical properties and numerous applications such as information
storage devices, disk read/write heads, spin valves that are used in magnetic sensors
and microelectronic devices. The material usually produces an enormous
magnetoelectric coupling response above the room temperature. Moreover, it grants
basic control of the electric polarization with a magnetic field or controlling charge
by an electric field, which makes them valuable in the area of technological
applications (Nan et al., 2008). These applications include spintronics, data storage,
sensors and microelectronic devices (Arnold et al., 2010). The magnetoelectric (ME)
influence is relatively significant for data storage applications that would allow
magnetic information to be composed electrically and for the magnetic utility later
(Smolenskii and Chupis, 1982; Eerenstein et al., 2006; Bibes and Barthélémy, 2008).
BiFeO3 is a possible candidate for magnetoelectric and spintronic application. In
spintroncs devices, information is written electrically and read magnetically (Chen et
al., 2006). BiFeOs is found to be essential as a tunneling barrier layer, where the
magnetic field can control the ferroelectric states, while the tunneling resistance
controls the direction of polarization as well (Yin et al., 2015).

Given these evidences, multiferroics are currently being employed in several
commercial applications, such as magnetic memory systems, sensor, spintronics
(Béa et al., 2005; Gajek et al., 2005) and tunable microwave devices (Kadomtseva et
al., 2006): thus rendering the potential to revolutionize electromagnetic material’s
applications.

In this research study, the result obtained from yttrium and indium substituted BFO
have added new contribution that can be adapted in many devices as mentioned
above. Moreover, these new result can be considered new acknowledgments for
researchers working in this field of research. In addition, the work conducted here
using Y** and In®* substitution on Fe-site of BFO has not been conducted by any
other researcher and are not available in the literature.



1.9 Thesis outline

Synthesis and characterization of BiFe;.xMO3; (M = Y3*, In**) by conventional solid-
state reaction is the main feature of evaluation in this research. Summary of
multiferroic materials and bismuth ferrite in addition to the problem statement,
importance and objectives of the study were presented in Chapter 1. A brief
discussion on the general background of multiferroic materials, perovskite structure,
magnetic and electrical properties of BiFeOs;, methods followed to synthesize
BiFeO3 and the effect of substitution on BiFeOj3 are presented in Chapter 2. Chapter
3 explains multiferroics, ferromagnetism, hysteresis loop, ferroelectrics, leakage
current and dielectric properties. Information on the clarification of the procedures
involved in the synthesis of BiFe;.xM,O3 ceramics by solid-state synthesis technique
were described in Chapter 4. The results and discussion of all the characterizations
scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray
diffraction (XRD), vibrating sample magnetometer (VSM), Impedance Analysis and
Keithley source measure unit were explained in Chapter 5. Summary of all-
important results presented in the dissertation with recommendations for future
research were presented in Chapter 6. Finally, Chapter 6 was followed by list of
references, appendices, list of publications (research articles, conferences
papers/posters by the author) and bio-data of the student.
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