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Mercury (Hg) is a contaminant is many natural products including hydrocarbon fuels.
The presence of mercury can cause problems with downstream processing units as well
as safety of workers and environmental issues. Such concern provides incentive to
remove the mercury from petroleum oil. Therefore, improvise sorbents is still essential
to be further investigates. In recent years, molecularly imprinted polymers (MIPs) have
attracted the attention of several researches due to their capability for molecular
recognition, easiness of preparation, stability and cost-effective production. By taking
advantage of these facts, Hg(ll) imprinted polymer and non-imprinted polymer (NIP)
were synthesized by bulk polymerization method where cysteine complex (or L-
cysteine alone) was polymerized with mercury nitrate (or without it) as a template.
Then, methacrylic acid (MAA), 2-hydroxylethyl methacrylate (HEMA), ethylene
glycol dimethacrylate (EGDMA) and methanol were added as monomer, co-monomer,
cross-linker and solvent respectively. The obtained MIPs were crushed and sieved. The
total weight of yield of MIP increased with increasing ratio of monomer, cysteine
complex and cross-linker. The temperature used during polymerization was
standardized to 70.0°C. The best ratio of monomer to cross-linker is 1:5 while the
amount of cysteine complex is 2.0 mmol.

FTIR results displayed the presence of S-H in the cysteine complex but there is no peak
of S-H observed in MIP-CC spectrum which conclude the interaction between S-H and
Hg(Il) has occurred. FESEM shows that MIP possess spherical and densely packed
particles with rough surface compared with NIP for both cysteine complex (CC) and L-
cysteine(LC). Through BET result, the surface area and pore volume of MIP-CC is
larger than NIP-CC while for MIP-LC and NIP-LC is vice versa. From TGA result,
monomer MAA fully decomposed at lower temperature (197.0°C) compared with MIP-
CC, NIP-CC, MIP-LC and NIP-LC.



The optimum sorption capacity during pH studies was achieved at pH 7 for both MIP-
CC and MIP-LC. Besides, the sorption of Hg(ll) increased by increasing the dosage of
MIP. Both MIP-CC and MIP-LC followed Freundlich isotherm with R?=0.9551 and R?
=0.9505 respectively. Meanwhile, the sorption of Hg(Il) by MIP is fast within a few
second and it is well fitted with pseudo second order reaction. The selectivity result
shows that MIP-CC exhibit high selectivity and affinity towards Hg(ll) in the presence
of competitor ions; Pb(11), Zn(11) and Cd(Il) compared with MIP-LC. The reusability of
the MIP-CC particles was tested for four times and no significant loss in sorption
capacity was observed. From the real samples analysis, the sorption capacities obtained
were 93.8% for sludge sample and 29.8% for crude petroleum oil sample with initial
Hg(I1) concentration of 74.6 ug/L and 1.78ug/L respectively

A new type of Hg(ll) imprinted polymer as a sorbents for removal of mercury from
petroleum oil was successfully synthesized. Prepared MIP-CC showed several
characteristic such as high thermal stability, fast sorption Kinetic and proper selectivity
of Hg(ll). Thus, MIP-CC can be potentially used as a sorbents for the removal of
mercury petroleum oil.
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Merkuri (Hg) adalah bahan cemar di dalam banyak produk semulajadi termasuk
minyak hidrokarbon. Kehadiran merkuri boleh menyebabkan banyak masalah dengan
unit pemprosesan hiliran serta keselamatan perkerja dan isu-isu alam sekitar.
Kebimbangan sedemikian menyediakan insentif untuk menyingkirkan merkuri
daripada minyak petroleum. Oleh itu, menambah baik penjerap masih penting untuk
kajian lanjut. Dalam beberapa tahun kebelakangan ini, polimer cetakan molekul (MIP)
telah menarik perhatian oleh beberapa pengkaji disebabkan oleh keupayaan ia untuk
mengenalpasti molekul, kemudahan semasa penyediaan, kestabilan dan kos
pengeluaran yang efektif Dengan mengambil kesempatan daripada fakta-fakta ini,
cetakan polimer Hg(ll) dan polimer bukan cetakan molekul (NIP) telah disintesis
melalui kaedah pempolimeran pukal dimana kompleks sistin (atau L-sistin sahaja)
dipolimerkan bersama merkuri nitrat (atau tanpanya) sebagai acuan. Selepas itu, asid
metakrilik (MAA), 2-hidrosietil metakrilat (HEMA), etilena gliko dimetilenakrilat
(EGDMA) dan metanol ditambahkan sebagai monomer, monomer bersama,
penggabung dan pelarut bagi setiap masing-masing. MIP yang diperolehi dengan itu
dihancurkan dan ditapis. Jumlah berat hasil MIP bertambah dengan peningkatan nisbah
monomer, sistin-kompleks dan penggabung. Suhu yang digunakan semasa polimeran
diselaraskan pada suhu 70.0°C. Nisbah yang terbaik bagi monomer dan penggabung
ialah 1:5 manakala jumlah sistin kompleks ialah 2.0 mmol.

Hasil FTIR yang diperolehi menunjukkan kehadiran S-H dalam spektrum sistin
kompleks tetapi tidak ada puncak S-H diperhatikan dalam spektrum MIP-CC.
Kesimpulannya, interaksi antara S-H dan Hg(ll) telah berlaku. FESEM menunjukkan
bahawa MIP mempunyai zarah sfera dan padat dengan permukaan kasar berbanding
dengan NIP bagi kedua-dua sistin kompleks (CC) dan L-sistin (LC). Melalui hasil
BET, jumlah luas permukaan dan isipadu liang MIP-CC lebih besar berbanding NIP-
CC sementara bagi MIP-LC dan NIP-LC adalah sebaliknya. Daripada hasil TGA,
monomer MAA terurai sepenuhnya pada suhu yang rendah (197.0°C) berbanding
dengan MIP-CC, NIP-CC, MIP-LC dan NIP-LC.



Kapasiti penjerapan optimum semasa ujian pH telah dicapai pada pH 7 bagi kedua-dua
MIP-CC dan MIP-LC. Selain itu, penjerapan Hg(ll) meningkat dengan peningkatan dos
MIP. Kedua-dua MIP-CC dan MIP-LC mengikut isoterma Freundlich dengan R? =
0.9551 dan R? = 0.9505 bagi setiap masing-masing. Sementara itu, penjerapan Hg(ll)
oleh MIP adalah pantas dalam masa beberapa saat dan ianya sesuai dengan tindak balas
tertib kedua. Hasil selektiviti menunjukkan bahawa MIP-CC mempunyai selektiviti
yang tinggi dan tertarik kepada Hg(ll) dengan kehadiran ion pesaing ; Pb(lIl), Zn(ll)
dan Cd(Il) berbanding dengan MIP-LC. Kebolehgunaan semula zarah MIP-CC telah
diuji sebanyak empat kali dan tiada penurunan ketara pada kapasiti penjerapan yang
diperhatikan. Daripada analisis sampel yang sebenar, kapasiti penjerapan diperolehi
ialah 93.8% bagi sampel mendapan dan 29.8% bagi sampel minyak petroleum mentah
dengan bacaan awal kepekatan Hg(ll) adalah 74.6 ug/L dan 1.78ug/L masing-masing.

Hg(Il) cetakan polimer yang baharu sebagai penjerap untuk penyingkiran merkuri
daripada minyak petroleum telah berjaya disintesis. MIP-CC yang disedia menujukkan
ciri-ciri seperti kestabilan haba yang tinggi, kinetic penjerapan pantas dan selektiviti
terhadap Hg(ll). Oleh itu, MIP-CC berpotensi digunakan sebagai penjerap untuk
penyingkiran minyak daripada minyak petroleum.
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CHAPTER 1

INTRODUCTION

11 Background of Research

Mercury is one of the hazardous heavy metals both to human and ecosystem because it
is highly toxic to central nervous system and tends to bio-accumulate in the human
body. This will lead to a variety of adverse health effects including neurological, renal,
respiratory, immune, dermatologic and reproductive and developmental neurotoxicity
(Poulin, Priss-ustiin, & Gibb, 2008). Mercury exists in various forms which are
elemental mercury, inorganic mercury and organic mercury. All these forms have
different toxicities and implication for health. According to World Health Organization,
WHO guideline values, the limitation of mercury inside water is 1ug/L for total
mercury, 1ug/m® mercury in air. In addition, WHO estimated a tolerable concentration
of 0.2 pg/m® for long-term inhalation exposure to elemental mercury vapor and a
tolerable intake of total mercury of 2 ug/kg body weight per day (WHO, 2007).

The major sources of mercury emission are from natural, anthropogenic and re-emitted
sources, whereas the most crucial anthropogenic sources are urban discharges,
agriculture discharge, mining and combustion and industrial discharge. Combusted
hydrocarbon fuels originates from petroleum and coal was also included as one of the
major anthropogenic sources of mercury emissions to US according to US EPA 1997
(Diseases, 2008). Relatively, light hydrocarbon liquids which are crude oil, condensate,
natural gas and the like produced from wells and exhaust combustion gas sometime
contain mercury or mercury compound. Thus, this will contribute to several negative
impacts on gas processing operation such as equipment degradation, toxic waste
generation, increase risk to the health and safety of workers and poisoning of catalyst
(Wilhelm & Bloom, 2000)

Mercury removal sorbent beds are used to scavenge the mercury from gas and liquid
hydrocarbon streams. Several commercial processes are available for removing
mercury and mercury compound from hydrocarbon but selection of the most effective
system must be predicated since some of the mercury removal systems are targeted at
gas phase treatment and some are targeted at liquids. Gas phase treatment systems
primarily consist of sulfur impregnated carbon (U.S. Patent 8,598,072 B2), metal
sulfide on carbon or alumina and regenerative molecular sieve. As for hydrocarbon
liquid streams, the systems consist of iodide-impregnated carbon, metal sulfide on
carbon or alumina, a mol sieve amalgam system and a two-step processing consisting
of a hydrogenation conversion catalyst followed by metal sulfide reaction with
elemental mercury. All the commercialized methods have both advantages and
disadvantages that depend on feed composition and stream location.

In recent years, molecular imprinting has attracted considerable interest in many areas
of chemistry, biochemistry and biotechnology owing to their high degree of selectivity
and affinity towards the target molecule. Molecular imprinted polymers (MIPs)



applications including biosensor and chemosensor, microreactor, solid phase extraction
(SPE), affinity chromatography and catalysis. The latest development in the technique
of molecular imprinting have made an available polymers that can be used in the
detection of drugs, toxins, pesticides, food components and other molecules that would
be difficult to isolate otherwise.

MIPs were described as artificial synthesized macromolecular materials with
prearrangement of structure and specific molecular recognition ability. This unique
ability can recognize the template molecule used in the imprinting process even in the
presence of compounds that having similar structure and functionality to the template.
The MIPs tend to be simple and inexpensive to prepare and are generally rather robust
in nature. MIPs also offer several advantages including the ability to tolerate high
pressures, organic solvents, pH extremes and elevated temperature. Due to high degree
cross-linking of MIPs, it provides distinctive chemical, mechanical and thermal long
stability compared with their biological counterparts (Koesdjojo et al., 2007).

MIPs are generally prepared by involving the complexation in solution of a template
molecule with functional monomers through covalent bonds followed by
polymerization of these monomers around the template with the help of a cross-linker
in the presence of an initiator. After the polymerization process, the template molecule
are removed by extensive washing steps to disrupt the interactions between the
template and the monomers thus leaving the cavities of binding sites that are
complementary to the template in size, shape and position of the functional group
(Pichon & Chapuis-Hugon, 2008). Hence, the obtained cavities can work as selective
binding sites for the template molecule.

MIPs can be synthesized by three different imprinting approaches which are covalent,
non-covalent and semi-covalent. Non-covalent approach become the most applied
technique compared to the other approaches due to its generality and simplicity during
the process of template removal and the resulting greater numbers of higher affinity
sites. As for covalent route, it lack of general applicability due to difficulty in finding a
suitable monomer to conjugate to the template. Non-covalent imprinting involving self-
assembly of the template with functional monomer prior to polymerization, free radical
polymerization with the cross-linking monomer and then template extraction followed
by rebinding via non-covalent interaction such as hydrogen bonds, ion pairs, dipole-
dipole interaction and Van der Walls forces (Caro et al., 2002).

1.2 Statement of Problem

The toxic effects of mercury have been observed for centuries. Mercury has been
classified as one of the top ten hazardous heavy metals according to World Health
Organization (WHO). This is because of its reactivity, extreme volatility and its relative
solubility in water and living tissues. The detection of mercury has long held the
intention of analytical community and as such, a large number of protocols have arisen.
One of the major anthropogenic sources is from combusted hydrocarbon that originates
from petroleum oil. The concentration of mercury in crude oil and natural gas is highly
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dependent on geologic location and varies between approximately 0.01 ppb and 10
ppm. Although the total amount of mercury and mercury compound is considered low,
but it give detrimental impacts on petroleum process. In addition, water streams that are
by-products of equipment cleaning and water condensed from glycol regeneration can
contain high concentrations of mercury that will cause aquatic contamination if severe
treatment does not take place.

Various commercial methods are available in industries for mercury removal systems
for hydrocarbon streams such as sulfur-impregnated carbon, metal sulfide on carbon or
alumina, zeolite, activated carbon and so on. However, there are several disadvantages
of this commercialized method for examples mol-sieve amalgamation sorbents do not
operate at high efficiencies if organic forms of mercury are present in significant
concentration. Other than that, sulfur-impregnated carbons are soluble in liquid
hydrocarbon and cannot be used in process locations. For these reason, the sorbents
that have ability to tolerate high pressures, organic solvents and provide high chemical
and mechanical stability is still essential to be further investigates.

The aim of this research is to prepare molecular imprinted polymer (MIP) which can be
used for the selective removal of mercury in mercury removal system. In this research,
the method of initiation use will be free radical or chain growth polymerization. It is the
most important method available today for the conversion of monomer into polymer
and is exploited widely in industries. The parameter studies including pH studies,
dosage studies, sorption kinetics, sorption isotherms, selectivity and reusability studies.
Considering the versatility and high level selectivity and recognition that can be
achieved, the future use of MIPs as a sorbents in mercury removal system is very
promising.

1.3 Objectives:

The objectives of this study are:

1. To synthesize molecularly imprinted polymer (MIP) for the removal of
mercury(1l) ions.

2. To distinguish the MIP and NIP by spectroscopy analysis, morphological
characterization, thermal studies and surface area and porosity analysis.

3. To study the binding capacity of mercury(ll) ions toward MIP based on pH,
kinetic, isotherm, selectivity and reusability.

4. To investigate the removal of mercury(Il) ions from actual samples; crude oil
and condensate.
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