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Mercury (Hg) is a contaminant is many natural products including hydrocarbon fuels. 

The presence of mercury can cause problems with downstream processing units as well 

as safety of workers and environmental issues. Such concern provides incentive to 

remove the mercury from petroleum oil. Therefore, improvise sorbents is still essential 

to be further investigates. In recent years, molecularly imprinted polymers (MIPs) have 

attracted the attention of several researches due to their capability for molecular 

recognition, easiness of preparation, stability and cost-effective production. By taking 

advantage of these facts, Hg(II) imprinted polymer and non-imprinted polymer (NIP) 

were synthesized by bulk polymerization method where cysteine complex (or L-

cysteine alone) was polymerized with mercury nitrate (or without it) as a template. 

Then, methacrylic acid (MAA), 2-hydroxylethyl methacrylate (HEMA), ethylene 

glycol dimethacrylate (EGDMA) and methanol were added as monomer, co-monomer, 

cross-linker and solvent respectively. The obtained MIPs were crushed and sieved. The 

total weight of yield of MIP increased with increasing ratio of monomer, cysteine 

complex and cross-linker. The temperature used during polymerization was 

standardized to 70.0°C. The best ratio of monomer to cross-linker is 1:5 while the 

amount of cysteine complex is 2.0 mmol.  

 

 

FTIR results displayed the presence of S-H in the cysteine complex but there is no peak 

of S-H observed in MIP-CC spectrum which conclude the interaction between S-H and 

Hg(II) has occurred. FESEM shows that MIP possess spherical and densely packed 

particles with rough surface compared with NIP for both cysteine complex (CC) and L-

cysteine(LC). Through BET result, the surface area and pore volume of MIP-CC is 

larger than NIP-CC while for MIP-LC and NIP-LC is vice versa. From TGA result, 

monomer MAA fully decomposed at lower temperature (197.0°C) compared with MIP-

CC, NIP-CC, MIP-LC and NIP-LC. 
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The optimum sorption capacity during pH studies was achieved at pH 7 for both MIP-

CC and MIP-LC. Besides, the sorption of Hg(II) increased by increasing the dosage of 

MIP. Both MIP-CC and MIP-LC followed Freundlich isotherm with R
2
=0.9551 and R

2
 

=0.9505 respectively. Meanwhile, the sorption of Hg(II) by MIP is fast within a few 

second and it is well fitted with pseudo second order reaction. The selectivity result 

shows that MIP-CC exhibit high selectivity and affinity towards Hg(II) in the presence 

of competitor ions; Pb(II), Zn(II) and Cd(II) compared with MIP-LC. The reusability of 

the MIP-CC particles was tested for four times and no significant loss in sorption 

capacity was observed. From the real samples analysis, the sorption capacities obtained 

were 93.8% for sludge sample and 29.8% for crude petroleum oil sample with initial 

Hg(II) concentration of 74.6 µg/L and 1.78µg/L respectively 

 

 

A new type of Hg(II) imprinted polymer as a sorbents for removal of mercury from 

petroleum oil was successfully synthesized. Prepared MIP-CC showed several 

characteristic such as high thermal stability, fast sorption kinetic and proper selectivity 

of Hg(II). Thus, MIP-CC can be potentially used as a sorbents for the removal of 

mercury petroleum oil. 
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Merkuri (Hg) adalah bahan cemar di dalam banyak produk semulajadi termasuk 

minyak hidrokarbon. Kehadiran merkuri boleh menyebabkan banyak masalah dengan 

unit pemprosesan hiliran serta keselamatan perkerja dan isu-isu alam sekitar.  

Kebimbangan sedemikian menyediakan insentif untuk menyingkirkan merkuri 

daripada minyak petroleum. Oleh itu, menambah baik penjerap masih penting untuk 

kajian lanjut. Dalam beberapa tahun kebelakangan ini, polimer cetakan molekul (MIP) 

telah menarik perhatian oleh beberapa pengkaji disebabkan oleh keupayaan ia untuk 

mengenalpasti molekul, kemudahan semasa penyediaan, kestabilan dan kos 

pengeluaran yang efektif  Dengan mengambil kesempatan daripada fakta-fakta ini, 

cetakan polimer Hg(II) dan polimer bukan cetakan molekul (NIP) telah disintesis 

melalui kaedah pempolimeran pukal dimana kompleks sistin (atau L-sistin sahaja) 

dipolimerkan bersama merkuri nitrat (atau tanpanya) sebagai acuan. Selepas itu, asid 

metakrilik (MAA), 2-hidrosietil metakrilat (HEMA), etilena gliko dimetilenakrilat 

(EGDMA) dan metanol ditambahkan sebagai monomer, monomer bersama, 

penggabung dan pelarut bagi setiap masing-masing. MIP yang diperolehi dengan itu 

dihancurkan dan ditapis. Jumlah berat hasil MIP bertambah dengan peningkatan nisbah 

monomer, sistin-kompleks dan penggabung. Suhu yang digunakan semasa polimeran 

diselaraskan pada suhu 70.0°C. Nisbah yang terbaik bagi monomer dan penggabung 

ialah 1:5 manakala jumlah sistin kompleks ialah 2.0 mmol.  

 

 

Hasil FTIR yang diperolehi menunjukkan kehadiran S-H dalam spektrum sistin 

kompleks tetapi tidak ada puncak S-H diperhatikan dalam spektrum MIP-CC.  

Kesimpulannya, interaksi antara S-H dan Hg(II) telah berlaku. FESEM menunjukkan 

bahawa MIP mempunyai zarah sfera dan padat dengan permukaan kasar berbanding 

dengan NIP  bagi kedua-dua sistin kompleks (CC) dan L-sistin (LC).  Melalui hasil 

BET, jumlah luas permukaan dan isipadu liang MIP-CC lebih besar berbanding NIP-

CC sementara bagi MIP-LC dan NIP-LC adalah sebaliknya. Daripada hasil TGA, 

monomer MAA terurai sepenuhnya pada suhu yang rendah (197.0°C) berbanding 

dengan MIP-CC, NIP-CC, MIP-LC dan NIP-LC. 
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Kapasiti penjerapan optimum semasa ujian pH telah dicapai pada pH 7 bagi kedua-dua 

MIP-CC dan MIP-LC. Selain itu, penjerapan Hg(II) meningkat dengan peningkatan dos 

MIP. Kedua-dua MIP-CC dan MIP-LC mengikut isoterma Freundlich dengan R
2
 = 

0.9551 dan R
2
 = 0.9505 bagi setiap masing-masing. Sementara itu, penjerapan Hg(II) 

oleh MIP adalah pantas dalam masa beberapa saat dan ianya sesuai dengan tindak balas 

tertib kedua. Hasil selektiviti menunjukkan bahawa MIP-CC mempunyai selektiviti 

yang tinggi dan tertarik kepada Hg(II) dengan kehadiran ion pesaing ; Pb(II), Zn(II) 

dan Cd(II) berbanding dengan MIP-LC. Kebolehgunaan semula zarah MIP-CC telah 

diuji sebanyak empat kali dan tiada penurunan ketara pada kapasiti penjerapan yang 

diperhatikan. Daripada analisis sampel yang sebenar, kapasiti penjerapan diperolehi 

ialah 93.8% bagi sampel mendapan dan 29.8% bagi sampel minyak petroleum mentah 

dengan bacaan awal kepekatan Hg(II) adalah 74.6 µg/L dan 1.78µg/L masing-masing.  

 

 

Hg(II) cetakan polimer yang baharu sebagai penjerap untuk penyingkiran merkuri 

daripada minyak petroleum telah berjaya disintesis. MIP-CC yang disedia menujukkan 

ciri-ciri seperti kestabilan haba yang tinggi, kinetic penjerapan pantas dan selektiviti 

terhadap Hg(II). Oleh itu, MIP-CC berpotensi digunakan sebagai penjerap untuk 

penyingkiran minyak daripada minyak petroleum. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of Research 

 

 

Mercury is one of the hazardous heavy metals both to human and ecosystem because it 

is highly toxic to central nervous system and tends to bio-accumulate in the human 

body. This will lead to a variety of adverse health effects including neurological, renal, 

respiratory, immune, dermatologic and reproductive and developmental neurotoxicity 

(Poulin, Prüss-üstün, & Gibb, 2008). Mercury exists in various forms which are 

elemental mercury, inorganic mercury and organic mercury. All these forms have 

different toxicities and implication for health. According to World Health Organization, 

WHO guideline values, the limitation of mercury inside water is 1µg/L for total 

mercury, 1µg/m
3
 mercury in air. In addition, WHO estimated a tolerable concentration 

of 0.2 µg/m
3 

for long-term inhalation exposure to elemental mercury vapor and a 

tolerable intake of total mercury of 2 µg/kg body weight per day (WHO, 2007). 

 

 

The major sources of mercury emission are from natural, anthropogenic and re-emitted 

sources, whereas the most crucial anthropogenic sources are urban discharges, 

agriculture discharge, mining and combustion and industrial discharge. Combusted 

hydrocarbon fuels originates from petroleum and coal was also included as one of the 

major anthropogenic sources of mercury emissions to US according to US EPA 1997 

(Diseases, 2008). Relatively, light hydrocarbon liquids which are crude oil, condensate, 

natural gas and the like produced from wells and exhaust combustion gas sometime 

contain mercury or mercury compound. Thus, this will contribute to several negative 

impacts on gas processing operation such as equipment degradation, toxic waste 

generation, increase risk to the health and safety of workers and poisoning of catalyst 

(Wilhelm & Bloom, 2000) 

 

 

Mercury removal sorbent beds are used to scavenge the mercury from gas and liquid 

hydrocarbon streams. Several commercial processes are available for removing 

mercury and mercury compound from hydrocarbon but selection of the most effective 

system must be predicated since some of the mercury removal systems are targeted at 

gas phase treatment and some are targeted at liquids. Gas phase treatment systems 

primarily consist of sulfur impregnated carbon (U.S. Patent 8,598,072 B2), metal 

sulfide on carbon or alumina and regenerative molecular sieve. As for hydrocarbon 

liquid streams, the systems consist of iodide-impregnated carbon, metal sulfide on 

carbon or alumina, a mol sieve amalgam system and a two-step processing consisting 

of a hydrogenation conversion catalyst followed by metal sulfide reaction with 

elemental mercury. All the commercialized methods have both advantages and 

disadvantages that depend on feed composition and stream location.  

In recent years, molecular imprinting has attracted considerable interest in many areas 

of chemistry, biochemistry and biotechnology owing to their high degree of selectivity 

and affinity towards the target molecule. Molecular imprinted polymers (MIPs) 
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applications including biosensor and chemosensor, microreactor, solid phase extraction 

(SPE), affinity chromatography and catalysis. The latest development in the technique 

of molecular imprinting have made an available polymers that can be used in the 

detection of drugs, toxins, pesticides, food components and other molecules that would 

be difficult to isolate otherwise. 

 

 

MIPs were described as artificial synthesized macromolecular materials with 

prearrangement of structure and specific molecular recognition ability. This unique 

ability can recognize the template molecule used in the imprinting process even in the 

presence of compounds that having similar structure and functionality to the template. 

The MIPs tend to be simple and inexpensive to prepare and are generally rather robust 

in nature. MIPs also offer several advantages including the ability to tolerate high 

pressures, organic solvents, pH extremes and elevated temperature. Due to high degree 

cross-linking of MIPs, it provides distinctive chemical, mechanical and thermal long 

stability compared with their biological counterparts (Koesdjojo et al., 2007). 

 

 

MIPs are generally prepared by involving the complexation in solution of a template 

molecule with functional monomers through covalent bonds followed by 

polymerization of these monomers around the template with the help of a cross-linker 

in the presence of an initiator. After the polymerization process, the template molecule 

are removed by extensive washing steps to disrupt the interactions between the 

template and the monomers thus leaving the cavities of binding sites that are 

complementary to the template in size, shape and position of the functional group 

(Pichon & Chapuis-Hugon, 2008). Hence, the obtained cavities can work as selective 

binding sites for the template molecule. 

 

 

MIPs can be synthesized by three different imprinting approaches which are covalent, 

non-covalent and semi-covalent. Non-covalent approach become the most applied 

technique compared to the other approaches due to its generality and simplicity during 

the process of template removal and the resulting greater numbers of higher affinity 

sites. As for covalent route, it lack of general applicability due to difficulty in finding a 

suitable monomer to conjugate to the template. Non-covalent imprinting involving self-

assembly of the template with functional monomer prior to polymerization, free radical 

polymerization with the cross-linking monomer and then template extraction followed 

by rebinding via non-covalent interaction such as hydrogen bonds, ion pairs, dipole-

dipole interaction and Van der Walls forces (Caro et al., 2002). 

 

 

1.2 Statement of Problem 

 

 

The toxic effects of mercury have been observed for centuries. Mercury has been 

classified as one of the top ten hazardous heavy metals according to World Health 

Organization (WHO). This is because of its reactivity, extreme volatility and its relative 

solubility in water and living tissues. The detection of mercury has long held the 

intention of analytical community and as such, a large number of protocols have arisen. 

One of the major anthropogenic sources is from combusted hydrocarbon that originates 

from petroleum oil. The concentration of mercury in crude oil and natural gas is highly 
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dependent on geologic location and varies between approximately 0.01 ppb and 10 

ppm. Although the total amount of mercury and mercury compound is considered low, 

but it give detrimental impacts on petroleum process. In addition, water streams that are 

by-products of equipment cleaning and water condensed from glycol regeneration can 

contain high concentrations of mercury that will cause aquatic contamination if severe 

treatment does not take place. 

 

 

Various commercial methods are available in industries for mercury removal systems 

for hydrocarbon streams such as sulfur-impregnated carbon, metal sulfide on carbon or 

alumina, zeolite, activated carbon and so on. However, there are several disadvantages 

of this commercialized method for examples mol-sieve amalgamation sorbents do not 

operate at high efficiencies if organic forms of mercury are present in significant 

concentration. Other than that, sulfur-impregnated carbons are soluble in liquid 

hydrocarbon and cannot be used in process locations. For these reason, the sorbents 

that have ability to tolerate high pressures, organic solvents and provide high chemical 

and mechanical stability is still essential to be further investigates. 

 

 

The aim of this research is to prepare molecular imprinted polymer (MIP) which can be 

used for the selective removal of mercury in mercury removal system. In this research, 

the method of initiation use will be free radical or chain growth polymerization. It is the 

most important method available today for the conversion of monomer into polymer 

and is exploited widely in industries. The parameter studies including pH studies, 

dosage studies, sorption kinetics, sorption isotherms, selectivity and reusability studies. 

Considering the versatility and high level selectivity and recognition that can be 

achieved, the future use of MIPs as a sorbents in mercury removal system is very 

promising. 

 

 

1.3 Objectives: 

 

 

The objectives of this study are: 

1. To synthesize molecularly imprinted polymer (MIP) for the removal of 

mercury(II) ions. 

2. To distinguish the MIP and NIP by spectroscopy analysis, morphological 

characterization, thermal studies and surface area and porosity analysis. 

3. To study the binding capacity of mercury(II) ions toward MIP based on pH, 

kinetic, isotherm, selectivity and reusability. 

4. To investigate the removal of mercury(II) ions from actual samples; crude oil 

and condensate. 
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