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EFFECT OF V,05 AND SB,0; DOPING ON THE MICROSTRUCTURE,
ELECTRICAL PROPERTIES AND DC DEGRADATION BEHAVIOR OF
Zn0-Bi,03-MnO, LOW VOLTAGE VARISTOR CERAMICS

By
DAHIRU UMAR

May 2016

Chairman : Professor Azmi Bin Zakaria, PhD
Faculty . Science

There is a need to enhance the nonlinear coefficient (a) of low varistor ceramic by
substituting V,Os instead of the usual Bi,O3 as a liquid sintering aid and improve the
stability against DC-thermal stress. Therefore in this study, the first aim to study the
effect of small intervals of sintering temperatures on the microstructure and electrical
properties of V,05 doped ZnO-Bi,03-Sh,03-MnO, varistor ceramics and secondly, to
evaluate the stability of ZnO-Bi,Os-MnO, varistor ceramics doped with V,0s and
Sh,O; against DC-thermal stress. To achieve these objectives the materials were
divided into three systems System 1 (98.3 — X) ZnO, xV,0s, 0.7Bi,03, 0.3Sb,0s3,
0.7MnO,; for x = 0 mol%, system 2 (98.3 — x) ZnO, xV,0s, 0.7Bi,03, 0.3Sh,05, 0.7
MnO,; for x = 0.08 to 0.4 mol%, and system 3 (98.4 — y) ZnO, 0.2V,0s, ySh,03,
0.7Bi,03, 0.7Mn0O,; for y = 0 to 1 mol%. The constituent raw powders were weighed
according to their weight proportion and then process via solid state reaction technique.
The J-E characteristics of the sintered ceramics were measured at a room temperature
by means of a source measure unit. The morphology of varistor ceramic samples was
investigated via XRD SEM and EDX. The stability was investigated by subjecting the
samples at 120 °C and DC thermal stress for a period of 18 hours.

The XRD analysis shows the presence of two main phases of ZnO and MnO; in system
1 and 2, another phase, including spinel and polymorphs secondary phase is related to
V, Bi, Sb and Mn species. The SEM and EDX results show the microstructure and the
presence of all the elements used. It was found that V,Os improved the varistor
ceramic microstructure through densification and grain boundary enhancement. In
system 1, the density decreased with the increase in sintering temperature (from 1200
to 1300°C) for ZBSM varistor ceramics. When doping 0.2 mol% V,Os the varistor
ceramic had the optimum o and the grain boundary enhances (system 2). However, at a
fixed 0.2 V,05 and varying Sh,03 on ZVBM varistor ceramics. The average grain size
increase with the increase in sintering temperature, this was also observed for samples
containing an x mol % Sb,0; (system 3).



In DC and thermal stress experiment (system 3), the undoped ceramics sintered
between 1200-1300 °C are found to have low stability with Kt value 8.82x10° mAh™?
and o decreases after the stress test. Subsequently, the stability of the doped samples
containing Sh,0; improves to Kt value of 5.8x10” mAh™2 for sample with 0.6 mol%
Sh,05. The Kt improves further to 2.02x107 mAh™ with the increase of Sb,0Os
content up to 1 mol% which shows a high stability. Thus, in this study the V,05 doping
improved the varistor ceramic o which proves the hypothesis. However, 1 mol% of
Sh,0; content shows that after the DC and thermal stress varistor ceramic stability can
be improved.
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Terdapat keperluan untuk menambahbaik pekali ketaklinearan (o) seramik varistor
dengan menggantikan Bi,O; dengan V,0Os sebagai pensinter cecair semasa fabrikasi
telah diperbaiki menggunakan Sh,0;. Objektif kajian ini adalah pertamanya untuk
mengkaji kesan sela kecil suhu pensinteran terhadap sifat-sifat keelektrikan dan
mikrostruktur seramik varistor berasaskan ZnO-Bi,Os-Sbh,05-MnO, yang didopkan
dengan V,0s, dan keduanya untuk menilai kestabilan seramik varistor berasaskan
Zn0-Bi,05-MnO, yang didopkan dengan V,Os dan Sh,O; terhadap tegasan AT dan
terma. Untuk mencapai sasaran ini, bahan-bahan dibahagikan kepada 3. Sistem 1 (98.3
— X) Zn0O, xV,0s, 0.7Bi,03, 0.3Sh,03, 0.7MnO,; for x = 0 mol%, sistem 2 (98.3 — X)
Zn0, xV,0s, 0.7Bi,03, 0.3Sh,03, 0.7 MnO,; for x = 0.08 to 0.4 mol%, dan sistem 3
(98.4 — y) Zn0O, 0.2V,0s, ySh,05, 0.7Bi,03, 0.7MnO,; for y = 0 to 1 mol%. Bahan
serbuk mentah ditimbang berdasarkan bahagian jisim, kemudian melalui teknik tindak-
balas keadaan pepejal. Ciri-ciri J-E bagi seramik yang disinter diukur pada suhu bilik
menggunakan unit ukur punca. Kestabilan diselidiki dengan mendedahkan sampel
pada suhu 120 °C dan tegasan terma AT selama 18 jam. Fasa dan mikrostruktur
seramik varistor disiasat menggunakan XRD, SEM dan EDX.

Analisis XRD menunjukkan kewujudan dua fasa utama ZnO dan MnO, bagi bahan
dalam sistem 2 dan sistem 3, manakala fasa-fasa sekunder lain yang berkaitan dengan
V, Bi, Sb dan Mn juga dikesan. Keputusan SEM dan EDX menunjukkan mikrostruktur
dan kehadiran semua unsur-unsur yang diguna dalam sistem ini. Adalah didapati
bahawa V,05 memperbaiki struktur seramik varistor menerusi pensinteran fasa cecair.
Dalam sistem 1, secara umumnya ketumpatan menurun dengan peningkatan suhu
pensinteran (dari 1200 hingga 1300 °C) untuk varistor seramik ZBSM apabila didop
dengan 0.2 mol% V,0s adalah didapati bahawa seramik varistor mempunyai nilai o
yang optimum dan mempunyai pembaikan sempadan butiran(sistem 2). Dalam sistem
3, dengan 0.2 V,0;5 tetap, dan dengan mengubah kandungan pendop Sb,O3; dalam
seramik varistor ZBSM dalam seramik varistor, pembesaran butiran ditunjukan apabila
suhu pensinteran bertambah.



Dalam eksperimen kestabilan AT dan tegasan terma (sistem 3), bagi sampel tidak
didop disinter pada suhu diantara 1200-1300 °C, didapati mempunyai nilai kestabilan
rendah dengan nilai Kt 8.82x10® mAh™? dan nilai o menurun selepas ujian tegasan
Seterusnya bagi sampel yang mengandungi Sb,0; didapati bartambah baik kepada nilai
Kt 5.8x107 mAh™* bagi sampel yang didop dengan 0.6 mol% Sb,0; Kt terus
bertambah baik kepada 2.02x107 mAh™“?dengan pertambahan kandungan Sb,O;
sehingga 1 mol% yang menunjukkan kestabilan yang tinggi. Seterusnya, dalam kajian
ini didapati bahawa pendop V,0s meningkatkan nilai o seramik varistor yang
membuktikan hipotesis. Walau bagaimanapun, kestabilan bagi kandungan 1 mol%
Sh,0O; menunjukkan selepas tegasan AT dan terma bagi seramik varistor boleh
diperbaiki.
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CHAPTER 1

INTRODUCTION

1.1  Research Background

The development of an alternative way for improving the electrical and microstructural
properties of ZnO low voltage varistor ceramics in regards to the experimental
conditions has been the main focus of this thesis. The ZnO varistor ceramics
fabrication is relatively challenging especially for the appropriate selection of sintering
temperature and additives to be use as doping material for varistor ceramic
improvement. Due to these challenges there is need for small amounts of metal oxides,
such as V,0s, Sh,03, to be added in ZnO, Bi,03;, MnO,, and to ascertain if varistor
performance will improve in terms of electrical nonlinear coefficient (o) and
microstructure properties of the varistor ceramics. It is difficult to control the formation
of Bi,O3 due to the multiplicity of different polymorphic phases which varies strongly
with the sintering conditions and the type of formulation. Also V,0Os is enhancing the
varistor ceramic sintering aid through liquid phase sintering compared to Bi,Os.
However, addition of V,05 on ZnO varistor ceramic can improved the densification
even at a lower sintering temperature which is parallel to the Bi,Os-doped ZnO
materials (Izoulet et al., 2014). The addition of V,0s-species in this work will modify
the varistor ceramics through liquid phase sintering and improving the nonlinear
behavior. Furthermore, ZnO varistor ceramics are bounded to electrical deterioration
caused by various factors after subjecting the varistor ceramics to DC thermal stress,
this depend on the sintering temperature and the quantity of Sb,05 added. The material
(Sh,05) is extensively used as ZnO varistors stabilizer with positive effect. The
conventional technique as a way of mixing V,0s, Sb,03 doped ZnO - Bi,Os - MnO,
was chosen for investigating the effect of sintering temperature, composition and
varistor DC thermal degradation.

1.2 Zinc oxide varistor

Zinc oxide (ZnO) is a white inorganic compound that exists in hexagonal crystals. The
compound has been identified for a long period of time, due to its unique properties, as
a semiconductor material. (Leon, 1960). However, in line with a deep research, it was
found that ZnO material has an excellent wide band gap around (3.37.eV) and allows
electron mobility with applied thermal energy. ZnO is soluble in acids and alkalis with
a density of 5.61 g/cm® and melting point of 1975 °C. Furthermore, ZnO is found to be
in the groups Il — VI semiconductor of the periodic table (Nahm, 2011). Pure ZnO
without any impurities or dopants is a non-stoichiometry n-type semiconductor which
originates from oxygen vacancies or zinc interstitials. Therefore, the material can be
used for varistor ceramic fabrication. The popularly known ZnO varistors are called by
many names, such as independent resistors, surge suppressors, quick transient
responders, voltage limiters or stabilizers, nonlinear resistors etc. ZnO varistor
ceramics have found acceptance for many years because they can protect the excess
incoming high voltage pulse transmitted into electrical system. The transmitted surge is
absorbed by the varistor to prevent damage of the electrical system. The first ZnO



varistor was invented by Matsuoka and co-workers at Matsushita Electric (Japan) in
1968, and has been available in the market since 1972. Since then a number of efforts
have been made in an attempt to fully understand the influence of metal oxides on the
microstructure and nonlinear electrical properties of ZnO-based varistor ceramics
(Peiteado, et. al., 2005). The role of the metal oxide additives was discovered and the
processing conditions were optimized over the years ago. The microstructures and the
physical properties of the grain boundaries were gradually identified, and found a rapid
applications in protecting electrical circuits and electronic components, such as
transistors and ICs, against voltage surges (Wong, 1980). The sintered polycrystalline
ceramics are excellent in exhibiting nonlinear current-voltage (I-V) characteristics and
having the capability of energy absorption. Semiconductor devices were protected
against transient voltage a surge, which was achieved by using ZnO varistors, for
example, electronic equipment such as ovens, television sets etc. ZnO varistors were
later extensively used as surge absorbers in industrial heavy machines, lately, the
technological development of ZnO varistors have become the most important fields of
competition. Since it is a useful to protect electrical devices against the dangerous of
voltage transient. Similar to that of the Zener diode, their current-voltage (I-V)
characteristic is nonlinear. Varistors are capable of limiting overvoltage equally in both
polarities, which cannot be accomplished in a diode, thus this gives rise to the I-V
characteristic which is analogous to a back-to-back diode. ZnO varistors are useful in
the field of; (1) direct or alternating currents, (2) voltage range, from a few volts to
maximum volts and (3) currents range from microamperes (pA) to miliamperes (mA).
Currently, their functions make them to become valuable in both the scientific and
technological research (Hove, 2006; Eda, 1989). The protection offered by the
varistors is not only to guard the expensive and voltage sensitive equipment from
physical damage but also to improve the functional reliability of the components that
can encounter temporary upset due to transient voltages of lower amplitudes.

The development of an alternative way for improving the electrical and microstructural
properties of ZnO low voltage varistor ceramics in regards to the experimental
conditions has been the main focus of this thesis. The ZnO varistor ceramics
fabrication is relatively challenging especially for the appropriate selection of sintering
temperature and additives to be used as doping material for varistor ceramic
improvement. Due to these challenges there is need for small amounts of metal oxides,
such as V,0s, Sh,03, to be added in ZnO, Bi,O3;, MnO,, and to ascertain if varistor
performance will improve in terms of electrical nonlinear coefficient (o) and
microstructure properties of the varistor ceramics. It is difficult to control the formation
of Bi,O3 due to the multiplicity of different polymorphic phases which varies strongly
with the sintering conditions and the type of formulation. Also V,0s is enhancing the
varistor ceramic sintering aid through liquid phase sintering compared to Bi,Os.
However, addition of V,05 on ZnO varistor ceramic can improved the densification
even at a lower sintering temperature which is parallel to the Bi,Os-doped ZnO
materials (Izoulet et al., 2014). The addition of V,0s-species in this work will modify
the varistor ceramics through liquid phase sintering and improving the nonlinear
behavior. Furthermore, ZnO varistor ceramics are bounded to electrical deterioration
caused by various factors after subjecting the varistor ceramics to DC thermal stress,
this depend on the sintering temperature and the quantity of Sb,03 added. The material
(Sh,05) is extensively used as ZnO varistors stabilizer with positive effect. The
conventional technique as a way of mixing V,0s, Sh,05 doped ZnO - Bi,Os; - MnO,



was chosen for investigating the effect of sintering temperature, composition and
varistor DC thermal degradation.

\)/ oxygen atom zinc atom

Figure 1.1. Schematic image of ZnO wurtzite crystal structure (EIf wing &
Olsson, 2002)

1.3 ZnO Varistor Characteristics (1-V)

The region between the threshold voltage and a current of 100 Acm™ is considered as
the most important part of the varistor action. The region where the varistor voltage
remains approximately constant for a large change in current is it switching curve. The
varistor characteristics of this region can be described by the equation (1.1) (Jinliang et
al., 2004).

| KV* 11

where | is a current which flows through the varistor. V is the voltage of both varistor
terminals with a constant K and o is the degree of nonlinearity and it is the significant
parameter for the varistor action. The o calculated from the formula:

_ (ogJa-log/s) 1.2
(log E;—logE1)

where, E; and E, are the electric field correspond to the current density J; and J,
(Aguilar et al., 2013).



The I-V characteristics of the ZnO varistor can be observed in three regions: the
leakage region is considered to be the low current curve at which the I-V approaches
the ohmic region, and the varistor resistance is high in this region which behaves like
an open circuit (Figure 1.2). In the middle or non-ohmicity region, the varistor
characteristics obey equation 1.1 above. The Final varistor curve departs from the
nonlinear region and approaches the material bulk resistance. This region is called an
upturn at which the varistor becomes nearly a short circuit (“GE Transient Voltage
Suppression Manual, 1976.pdf,” 1976)
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Figure 1.2. Typical I-V characteristics of ZnO varistors ceramic (Newnham, 1989)

1.4  Low Voltage Varistor

Low voltage varistor is a varistor whose exhibit high nonlinear-current voltage
characteristics below it nominal voltage (Wang et al., 2008). Low voltage varistors can
be achieved by increasing the size of ZnO grains, since the varistor breakdown voltage
is proportional to the number of ZnO grains in series between the electrodes (Yao and
Zhang, 2008). Therefore, in this work low voltage varistors can be achieved by
introducing an important additive of V,05 and Sb,0O; differently to on ZnO- Bi,O;-
MnO, which are greatly improves the ZnO grain growth. Accordingly, the current-
voltage nonlinear (1-V) behavior of the varistor ceramics’ response is related to thin
insulating layers around the ZnO grains. Generally, the microstructure of the thin
insulating layers around the ZnO grains are related to a bismuth-rich phase along the
grain boundary of ZnO homojunctions (Xu et al., 2009). In the present days, electrical
devices require varistors for a better functions with a relatively low breakdown
electrical field intensity. There are three classes of dopants (Ahmad et al., 2012);



1) Those that contribute to the formation microstructure of the ZnO varistors;
Bi,0; is one such dopants

2 Those used in certifying the non-linearity of the varistor ceramic stimulate the
creation of deep charge carrier traps (Co3;04 and MnQ) and are the root of the
surface potential formation of the grains

3) Those used as stabilizers, e.g. Sb,0Os, the dopant that stabilizes the ZnO
varistor inter-granular layers under electrical stress and external factors, such
as temperature and humidity, this raises the stability of the electrical
characteristics and reliability of the varistors.

To achieve these, new varistor materials, such as Bi,O3;, CO,05, SrTiO;, TiO3, Sb,03,
Sn0,, V,0s, etc., were required. The SrTiOs-based varistor ceramic is capable of high
energy-absorption (Gao et al.,, 2008). TiO, is a spinel-forming dopant which is
commonly used as a grain growth enhancing additive in the production of low-voltage
Zn0O-based varistor ceramics (Dorraj et al., 2014). It is commonly used as an
enhancing additive in Bi,O5;-doped ZnO varistors. However, its addition causes a large
spread in grain size with grain boundary voltage greater than that of Bi,Os-doped ZnO
varistors, V,0s-doped ZnO varistors are potentially useful for the manufacture of low-
voltage varistors ( Hng and Knowles, 2000). In short, each of the dopants and sintering
temperatures plays an important role in ZnO varistor ceramic microstructure. When
subjecting the mixture via conventional method, the ceramic forms a good
microstructures with several grain-boundaries as the root cause of nonlinear I-V
characteristic’s behavior (Nahm, 2011). Moreover, a growing attention to ZnO
varistors has resulted from the fact that their nonlinear characteristic provides circuit
protection; this enables them to replace “SiC- based devices”, the most popular
nonlinear resistor prior to the advent of the ZnO varistor (Eda 1989a).

At low currents and voltages, varistors have a high resistance; but, at higher voltages
and currents, the resistance drops dramatically (Jiang et al., 2013). ZnO grains form
diodes with the surrounding matrix, creating a complex array of parallel and anti-
parallel diodes. At low voltage, each miniature diode between the grain boundaries has
a very low voltage across it and very little current flows. The resistance drops
dramatically at higher voltage and the varistor become highly conductive. Other factors
such as grain size, the nature of the matrix material between the grains and the
thickness of the ceramic (disk) determine the properties of the varistor.

To obtain a low voltage “turn on” and improve conductivity, most metal oxide
varistors (MOV) are made as a multi-layer structure. MOVs are always bidirectional
devices but are manufactured with a very wide range of current and voltage capacities
for applications ranging from surge protection for high voltage transmission lines to
small surface mounted devices. Therefore, varistors have a limited application in the
protection of high speed signal lines against electrostatic discharge (ESD) threat
(Atsumi, 2010).



15 Microstructure of ZnO Varistor

ZnO varistors are polycrystalline ceramics composed of semiconducting ZnO grains
with the presence of grain boundaries and have a resistivity of 0.1 to 1 Q-cm. ZnO
grain boundaries are highly resistive with a non-ohmic property. The breakdown
voltage of the sintered varistor is proportional to the number of grain boundaries
between the two electrodes. Meaning, the breakdown voltage is proportional to the
inverse of the ZnO grain size. However, material composition, sintering time, sintering
temperature, and heating/cooling rates usually determine the sizes of the ZnO grains.
Addition of Sh,0; in ZnO varistor ceramics forms Zn,Sh,0,, spinel-phase near the
grain boundaries (Eda, 1989a). The precipitation of Zn,Sh,O,, at the grain boundaries
contribute to the ion migration. This suppresses the ZnO grain growth. Large
breakdown voltage usually results from small grain sizes. During sintering, Bi,Ozacts
as a liquid phase sintered and it changes to a - or B — phase. When cooling, the Bi,O;
rich intergranular layers (Figure 1.3). Silicon dioxide also suppresses grain growth. On
the other hand, higher temperatures and longer sintering times are also attributed to
large ZnO grains. This indicates significantly that the ZnO grain size depends on two
parameters, sintering temperature and the sintering time; any increase in these two
parameters will contribute well to an increase in grain size and fewer grain boundaries.
In the same manner, some average grain sizes are obviously larger and this is mostly
observed from the samples sintered at higher temperatures and for a longer time
(Houabes et al., 2005). There is also a report on Ti/Sb oxide with a ratio of the two on
ZnO where the average grain size was found to be 20 um (Zhang et al., 2002). Some
ZnO grains have a single twin, which is characterized by one straight line grain
boundary. Secondary phases are seen mostly distributed near the grain—boundary.
Gupta 1992 reported five phenomena related to grain boundaries:

1) The grain boundary is a muddled layer like a dislocated core, existing
between two crystalline grains. The grain boundary has an open structure and
can be given a distinctive width for easier accommodation of external atoms
due to zinc vacancy and for the relaxation of the structure upon doping.

(2) The grain boundary offers a rapid diffusion path, particularly for the anions.
This arises from the need to transport both ionic species during the processing
of ceramics, such as sintering. Secondly, many post sintering treatments, such
as annealing in the varistor and the heat treatment in magnetic spinel ferrite,
are known to require rapid diffusion of oxygen through the grain boundary.

3 The ability of the grain boundary is to segregate charges during the process of
cooling by the ceramic. An appropriate segregation of charges will allow
formation of a potential at the grain boundary to provide a barrier to the
majority carrier flow.

4) The grain boundary can act as an infinite source and sink for neutral
vacancies. This arises from the need to conserve mass and to make defect
reactions occur at the grain boundary, as is shown for the annealing of the
ZnO varistor. Note that, only the neutral vacancies can be generated or
annihilated at the grain boundary at will.

(5) The ease of vacancies and interstitials formation is larger and they have faster
migrations within the grain boundaries than in the grain. The ease of
formation of vacancies and interstitials is greater and their migrations are
faster in the grain boundary than in the grain. Tsai and Wu (1996) reported
three different features related to V,0O5 doped specimens:
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(1)  Presence of large grains dispersed in a matrix composed of small grains
(2)  There is a faster growth for large grains than small grains
(3) The large grains contain an oblong shape

Therefore, ZnO grain growth is typically used to determine the behavior of ZnO
varistor ceramics performance. It generally happens when the normal grain is enhanced
by the presence of a secondary phase during sintering (see Figure 1.3). The ZnO
microstructure contains the basic compounds that include spinel, pyrochlore and
several Bismuth rich phases. This usually occurs from the reaction of the ZnO and the
additives during the sintering process, forming pyrochlore and spinel phases as an
intermediate compound. Meanwhile, the pyrochlore phase forms at a low temperature;
while, the spinel phase is due to a high temperature. Furthermore, a commercial ZnO
varistor has a typical grain size between 15-20 pum (Karim, 1996). The ZnO grains act
as doped semiconductors. Moreover, the grain boundary regions provide barriers to
electrical conduction, and Bi-rich phases are predominantly localized at triple junctions
and form a continuous network throughout the varistors. ZnO varistors typically
include two conduction paths. Firstly, a combination of ZnO grains and grain boundary
related barriers are responsible for the varistor effect. Secondly, Bi-rich phases form at
the triple junctions of ZnO grains and along the microstructure. Although, the
varistor’s microstructure exhibits a considerable variation depending on the nature of
the fabrication, they all exhibit the characteristics of a typical ceramic prepared by
liquid-phase sintering, comprising big grains with a varistor former-rich secondary
phase at the nodal points (triple junctions) and intergranular layer regions (Figure 1.4).

UARISTOR

Figure 1.3. Microstructure of multiphase ZBS showing spinel phase
surrounded by Bismuth (Greuter, 1995)

In the present day, the growing demand for ZnO varistor have received wide
acceptance to meet the present day transient voltage suppression on electrical systems.



1.6 Application of the ZnO Varistor
ZnO varistor can be used for the purpose of:

(1) Voltage stabilization in TV sets,

(2) Telephone and other communication lines,
(3) Electronic equipment protection,

4) Radio communication equipment,

(5) Power supply protection, etc.

4 G B = Bi-rich phase
Current Flow G =ZnO grain
GB = grain boundary
D = area where potential

barriers are set up

Figure 1.4. ZnO-based varistor microstructure formation (Hove, 2006)



1.7 Problem Statement

The interest of using vanadium oxide (V,Os)addition, instead of the usual bismuth
oxide Bi,Os in fabrication of low voltage ZnO based varistor arises due to its many
advantages. The V,0s act as a varistor former and improves the densification in the
form of liquid sintering process similar but liquefied at a lower temperature than that of
Bi,O3.Secondly, it is expected that a good varistor ceramics stability would be
provided by using antimony oxide (Sh,0O3) compared to previous praseodymium oxide
(PrsO41) in the ZnO based varistor ceramics which was reported to have low stability
and thermal runway (Nahm, 2013).The varistor ceramic stability could be studied
under the influence of DC and thermal stress simultaneously and observe the
direct changes in the electrical properties. Therefore, by varying the V,0s, and
Sh,O; contents at various sintering temperature, it is expected that the optimum
microstructure that contribute to reasonably high nonlinear electrical properties as well
as improving the stability could be obtained.

1.8  Objectives

The objectives of this work were essentially based on the efforts made to improve the
capability of ZnO low voltage varistor ceramics. Much of this work was devoted to
probe the effects of sintering temperature and the dopants. Some other related
processing characteristics were also calculated to identify the donating factors that
affect the performance of the ZnO varistor.

The objectives of this work were as follows:

@ To study the effect of a small interval sintering temperature on the electrical
and microstructural properties of V,05 doped ZnO-Bi,03-Sh,03-MnO, low
voltage varistor ceramics.

(2) To evaluate the stability of V,05 and Sh,03 0on ZnO-Bi,O3-MnO, low voltage
varistor ceramics against DC and thermal stresses and compare which of the
dopant contribute a good stability of the varistor ceramics.

1.9 Significance of the Study

This research was required because the J-E characteristic of a ZnO-based varistor
advances substantially due to the type of material oxide used as dopants and also the
sintering temperature. However, this work will contribute to the deviation of the
microstructure, which determines the electrical behavior, typically, the J-E
characteristic of ZnO low voltage varistor ceramics. The J-E characteristic deviation is
in three areas: the ohmic region, the nonlinear region and the up-turn region (see
Figure 1.2). Deviation in the leakage area of the J-E characteristic means that when the
ZnO-based varistor has a higher leakage current it may eventually lead to the
degradation of the J-E characteristic.



In the breakdown region, the responsible feature for the uncertainty in the active region
is largely thermal in nature with a finite gradient of the J-E characteristic of this region.
Thermal-based breakdown also supports degradation of the J-E characteristic of
varistor ceramics.

The Upturn region of the J-E characteristic indicates that if the current flow is greater
than the eventual, the varistor no longer compromises the required protection since the
varistor switches form highly conductive to highly resistive, which is not desirable.

1.10 Scope of the Study
This research work has been limited to the preparation of ZnO-Bi,05-MnO, varistor
ceramics by doping two different ionic oxides (V,0s and Sh,03) via a conventional

technique. The effect doping and sintering temperature on microstructure, electrical
properties and DC degradation behavior were investigated.

1.11 Hypothesis

The hypothesis used in this experiment is to fine the relations between sintering
temperature and doping. The hypothesis of this research include the following:

@ Through optimizing the sintering temperature and composition of V,0s the
nonlinear electrical properties would improve.
2 Varistor would have good stability after subjecting the ceramics to DC

electrical and thermal stresses.
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