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EFFECT OF V2O5 AND SB2O3 DOPING ON THE MICROSTRUCTURE, 

ELECTRICAL PROPERTIES AND DC DEGRADATION BEHAVIOR OF 

ZnO-Bi2O3-MnO2 LOW VOLTAGE VARISTOR CERAMICS  

 

 

By 

 

DAHIRU UMAR 

 

May 2016 

 

 

Chairman :  Professor Azmi Bin Zakaria, PhD 

Faculty : Science 

 

 

There is a need to enhance the nonlinear coefficient (α) of low varistor ceramic by 

substituting V2O5 instead of the usual Bi2O3 as a liquid sintering aid and improve the 

stability against DC-thermal stress. Therefore in this study, the first aim to study the 

effect of small intervals of sintering temperatures on the microstructure and electrical 

properties of V2O5 doped ZnO-Bi2O3-Sb2O3-MnO2 varistor ceramics and secondly, to 

evaluate the stability of ZnO-Bi2O3-MnO2 varistor ceramics doped with V2O5 and 

Sb2O3 against DC-thermal stress. To achieve these objectives the materials were 

divided into three systems System 1 (98.3 – x) ZnO, xV2O5, 0.7Bi2O3, 0.3Sb2O3, 

0.7MnO2; for x = 0 mol%, system 2 (98.3 – x) ZnO, xV2O5, 0.7Bi2O3, 0.3Sb2O3, 0.7 

MnO2; for x = 0.08 to 0.4 mol%, and system 3 (98.4 – y) ZnO, 0.2V2O5, ySb2O3, 

0.7Bi2O3, 0.7MnO2; for y = 0 to 1 mol%. The constituent raw powders were weighed 

according to their weight proportion and then process via solid state reaction technique. 

The J-E characteristics of the sintered ceramics were measured at a room temperature 

by means of a source measure unit. The morphology of varistor ceramic samples was 

investigated via XRD SEM and EDX. The stability was investigated by subjecting the 

samples at 120 °C and DC thermal stress for a period of 18 hours. 

 

 

The XRD analysis shows the presence of two main phases of ZnO and MnO2 in system 

1 and 2, another phase, including spinel and polymorphs secondary phase is related to 

V, Bi, Sb and Mn species. The SEM and EDX results show the microstructure and the 

presence of all the elements used. It was found that V2O5 improved the varistor 

ceramic microstructure through densification and grain boundary enhancement. In 

system 1, the density decreased with the increase in sintering temperature (from 1200 

to 1300°C) for ZBSM varistor ceramics. When doping 0.2 mol% V2O5 the varistor 

ceramic had the optimum α and the grain boundary enhances (system 2). However, at a 

fixed 0.2 V2O5 and varying Sb2O3 on ZVBM varistor ceramics. The average grain size 

increase with the increase in sintering temperature, this was also observed for samples 

containing an x mol % Sb2O3 (system 3). 
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In DC and thermal stress experiment (system 3), the undoped ceramics sintered 

between 1200-1300 °C are found to have low stability with Kt value 8.82×10
-6

 mAh
-1/2

 

and α decreases after the stress test. Subsequently, the stability of the doped samples 

containing Sb2O3 improves to Kt value of 5.8×10
-7

 mAh
-1/2

 for sample with 0.6 mol% 

Sb2O3. The Kt improves further to 2.02×10
-7

 mAh
-1/2

 with the increase of Sb2O3 

content up to 1 mol% which shows a high stability. Thus, in this study the V2O5 doping 

improved the varistor ceramic α which proves the hypothesis. However, 1 mol% of 

Sb2O3 content shows that after the DC and thermal stress varistor ceramic stability can 

be improved. 
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Abstrak tesis ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains  

 

 

KESAN PENDOPAN V2O5 DAN SB2O3 KEATAS MIKROSTUKTUR, CIRI-

CIRI ELECTRIC DAN SIFAT DEGRADACI DC PADA SERAMIK VARISTOR 

BERVOLTAN RENDAH ZNO-BI2O3-MNO2 

 

 

Oleh 

 

DAHIRU UMAR 

 

Mei 2016 

 

 

Pengerusi : Profesor Azmi Bin Zakaria, PhD 

Fakulti : Sains 

 

 

Terdapat keperluan untuk menambahbaik pekali ketaklinearan (α) seramik varistor 

dengan menggantikan Bi2O3 dengan V2O5 sebagai pensinter cecair semasa fabrikasi 

telah diperbaiki menggunakan Sb2O3. Objektif kajian ini adalah pertamanya untuk 

mengkaji kesan sela kecil suhu pensinteran terhadap sifat-sifat keelektrikan dan 

mikrostruktur seramik varistor berasaskan ZnO-Bi2O3-Sb2O3-MnO2 yang didopkan 

dengan V2O5, dan keduanya untuk menilai kestabilan seramik varistor berasaskan 

ZnO-Bi2O3-MnO2 yang didopkan dengan V2O5 dan Sb2O3 terhadap tegasan AT dan 

terma. Untuk mencapai sasaran ini, bahan-bahan dibahagikan kepada 3. Sistem 1 (98.3 

– x) ZnO, xV2O5, 0.7Bi2O3, 0.3Sb2O3, 0.7MnO2; for x = 0 mol%, sistem 2 (98.3 – x) 

ZnO, xV2O5, 0.7Bi2O3, 0.3Sb2O3, 0.7 MnO2; for x = 0.08 to 0.4 mol%, dan sistem 3 

(98.4 – y) ZnO, 0.2V2O5, ySb2O3, 0.7Bi2O3, 0.7MnO2; for y = 0 to 1 mol%. Bahan 

serbuk mentah ditimbang berdasarkan bahagian jisim, kemudian melalui teknik tindak-

balas keadaan pepejal. Ciri-ciri J-E bagi seramik yang disinter diukur pada suhu bilik 

menggunakan unit ukur punca. Kestabilan diselidiki dengan mendedahkan sampel 

pada suhu 120 °C dan tegasan terma AT selama 18 jam. Fasa dan mikrostruktur 

seramik varistor disiasat menggunakan XRD, SEM dan EDX. 

 

 

Analisis XRD menunjukkan kewujudan dua fasa utama ZnO dan MnO2 bagi bahan 

dalam sistem 2 dan sistem 3, manakala fasa-fasa sekunder lain yang berkaitan dengan 

V, Bi, Sb dan Mn juga dikesan. Keputusan SEM dan EDX menunjukkan mikrostruktur 

dan kehadiran semua unsur-unsur yang diguna dalam sistem ini. Adalah didapati 

bahawa V2O5 memperbaiki struktur seramik varistor menerusi pensinteran fasa cecair. 

Dalam sistem 1, secara umumnya ketumpatan menurun dengan peningkatan suhu 

pensinteran (dari 1200 hingga 1300 °C) untuk varistor seramik ZBSM apabila didop 

dengan 0.2 mol% V2O5 adalah didapati bahawa seramik varistor mempunyai nilai α 

yang optimum dan mempunyai pembaikan sempadan butiran(sistem 2). Dalam sistem 

3, dengan 0.2 V2O5 tetap, dan dengan mengubah kandungan pendop Sb2O3 dalam 

seramik varistor ZBSM dalam seramik varistor, pembesaran butiran ditunjukan apabila 

suhu pensinteran bertambah.  
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Dalam eksperimen kestabilan AT dan tegasan terma (sistem 3), bagi sampel tidak 

didop disinter pada suhu diantara 1200-1300 °C, didapati mempunyai nilai kestabilan 

rendah dengan nilai Kt 8.82×10
-6

 mAh
-1/2

 dan nilai α menurun selepas ujian tegasan 

Seterusnya bagi sampel yang mengandungi Sb2O3 didapati bartambah baik kepada nilai 

Kt 5.8×10
-7

 mAh
-1/2

 bagi sampel yang didop dengan 0.6 mol% Sb2O3. Kt terus 

bertambah baik kepada 2.02×10
-7

 mAh
-1/2

dengan pertambahan kandungan Sb2O3 

sehingga 1 mol% yang menunjukkan kestabilan yang tinggi. Seterusnya, dalam kajian 

ini didapati bahawa pendop V2O5 meningkatkan nilai α seramik varistor yang 

membuktikan hipotesis. Walau bagaimanapun, kestabilan bagi kandungan 1 mol% 

Sb2O3 menunjukkan selepas tegasan AT dan terma bagi seramik varistor boleh 

diperbaiki.  
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Research Background 

 

The development of an alternative way for improving the electrical and microstructural 

properties of ZnO low voltage varistor ceramics in regards to the experimental 

conditions has been the main focus of this thesis. The ZnO varistor ceramics 

fabrication is relatively challenging especially for the appropriate selection of sintering 

temperature and additives to be use as doping material for varistor ceramic 

improvement. Due to these challenges there is need for small amounts of metal oxides, 

such as V2O5, Sb2O3, to be added in ZnO, Bi2O3, MnO2, and to ascertain if varistor 

performance will improve in terms of electrical nonlinear coefficient (α) and 

microstructure properties of the varistor ceramics. It is difficult to control the formation 

of Bi2O3 due to the multiplicity of different polymorphic phases which varies strongly 

with the sintering conditions and the type of formulation. Also V2O5 is enhancing the 

varistor ceramic sintering aid through liquid phase sintering compared to Bi2O3. 

However, addition of V2O5 on ZnO varistor ceramic can improved the densification 

even at a lower sintering temperature which is parallel to the Bi2O3-doped ZnO 

materials (Izoulet et al., 2014). The addition of V2O5-species in this work will modify 

the varistor ceramics through liquid phase sintering and improving the nonlinear 

behavior. Furthermore, ZnO varistor ceramics are bounded to electrical deterioration 

caused by various factors after subjecting the varistor ceramics to DC thermal stress, 

this depend on the sintering temperature and the quantity of Sb2O3 added. The material 

(Sb2O3) is extensively used as ZnO varistors stabilizer with positive effect. The 

conventional technique as a way of mixing V2O5, Sb2O3 doped ZnO - Bi2O3 - MnO2 

was chosen for investigating the effect of sintering temperature, composition and 

varistor DC thermal degradation. 

 

 

1.2 Zinc oxide varistor 

 

Zinc oxide (ZnO) is a white inorganic compound that exists in hexagonal crystals. The 

compound has been identified for a long period of time, due to its unique properties, as 

a semiconductor material. (Leon, 1960). However, in line with a deep research, it was 

found that ZnO material has an excellent wide band gap around (3.37.eV) and allows 

electron mobility with applied thermal energy. ZnO is soluble in acids and alkalis with 

a density of 5.61 g/cm
3
 and melting point of 1975 °C. Furthermore, ZnO is found to be 

in the groups II – VI semiconductor of the periodic table (Nahm, 2011). Pure ZnO 

without any impurities or dopants is a non-stoichiometry n-type semiconductor which 

originates from oxygen vacancies or zinc interstitials. Therefore, the material can be 

used for varistor ceramic fabrication. The popularly known ZnO varistors are called by 

many names, such as independent resistors, surge suppressors, quick transient 

responders, voltage limiters or stabilizers, nonlinear resistors etc. ZnO varistor 

ceramics have found acceptance for many years because they can protect the excess 

incoming high voltage pulse transmitted into electrical system. The transmitted surge is 

absorbed by the varistor to prevent damage of the electrical system. The first ZnO 
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varistor was invented by Matsuoka and co-workers at Matsushita Electric (Japan) in 

1968, and has been available in the market since 1972. Since then
 
a number of efforts 

have been made in an attempt to fully understand the influence of metal oxides on the 

microstructure and nonlinear electrical properties of ZnO-based varistor ceramics 

(Peiteado, et. al., 2005). The role of the metal oxide additives was discovered and the 

processing conditions were optimized over the years ago. The microstructures and the 

physical properties of the grain boundaries were gradually identified, and found a rapid 

applications in protecting electrical circuits and electronic components, such as 

transistors and ICs, against voltage surges (Wong, 1980). The sintered polycrystalline 

ceramics are excellent in exhibiting nonlinear current-voltage (I-V) characteristics and 

having the capability of energy absorption. Semiconductor devices were protected 

against transient voltage a surge, which was achieved by using ZnO varistors, for 

example, electronic equipment such as ovens, television sets etc. ZnO varistors were 

later extensively used as surge absorbers in industrial heavy machines, lately, the 

technological development of ZnO varistors have become the most important fields of 

competition. Since it is a useful to protect electrical devices against the dangerous of 

voltage transient. Similar to that of the Zener diode, their current-voltage (I-V) 

characteristic is nonlinear. Varistors are capable of limiting overvoltage equally in both 

polarities, which cannot be accomplished in a diode, thus this gives rise to the I-V 

characteristic which is analogous to a back-to-back diode. ZnO varistors are useful in 

the field of; (1) direct or alternating currents, (2) voltage range, from a few volts to 

maximum volts and (3) currents range from microamperes (  ) to miliamperes (mA). 

Currently, their functions make them to become valuable in both the scientific and 

technological research (Hove, 2006; Eda, 1989). The protection offered by the 

varistors is not only to guard the expensive and voltage sensitive equipment from 

physical damage but also to improve the functional reliability of the components that 

can encounter temporary upset due to transient voltages of lower amplitudes. 

 

 

The development of an alternative way for improving the electrical and microstructural 

properties of ZnO low voltage varistor ceramics in regards to the experimental 

conditions has been the main focus of this thesis. The ZnO varistor ceramics 

fabrication is relatively challenging especially for the appropriate selection of sintering 

temperature and additives to be used as doping material for varistor ceramic 

improvement. Due to these challenges there is need for small amounts of metal oxides, 

such as V2O5, Sb2O3, to be added in ZnO, Bi2O3, MnO2, and to ascertain if varistor 

performance will improve in terms of electrical nonlinear coefficient (α) and 

microstructure properties of the varistor ceramics. It is difficult to control the formation 

of Bi2O3 due to the multiplicity of different polymorphic phases which varies strongly 

with the sintering conditions and the type of formulation. Also V2O5 is enhancing the 

varistor ceramic sintering aid through liquid phase sintering compared to Bi2O3. 

However, addition of V2O5 on ZnO varistor ceramic can improved the densification 

even at a lower sintering temperature which is parallel to the Bi2O3-doped ZnO 

materials (Izoulet et al., 2014). The addition of V2O5-species in this work will modify 

the varistor ceramics through liquid phase sintering and improving the nonlinear 

behavior. Furthermore, ZnO varistor ceramics are bounded to electrical deterioration 

caused by various factors after subjecting the varistor ceramics to DC thermal stress, 

this depend on the sintering temperature and the quantity of Sb2O3 added. The material 

(Sb2O3) is extensively used as ZnO varistors stabilizer with positive effect. The 

conventional technique as a way of mixing V2O5, Sb2O3 doped ZnO - Bi2O3 - MnO2 
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was chosen for investigating the effect of sintering temperature, composition and 

varistor DC thermal degradation. 

 

 

 

Figure 1.1. Schematic image of ZnO wurtzite crystal structure (Elf wing & 

Olsson, 2002) 

 

 

1.3 ZnO Varistor Characteristics (I-V) 

 

The region between the threshold voltage and a current of 100 Acm
-2

 is considered as 

the most important part of the varistor action. The region where the varistor voltage 

remains approximately constant for a large change in current is it switching curve. The 

varistor characteristics of this region can be described by the equation (1.1) (Jinliang et 

al., 2004). 

I                                                                                                      1.1 

where I is a current which flows through the varistor. V is the voltage of both varistor 

terminals with a constant K and α is the degree of nonlinearity and it is the significant 

parameter for the varistor action. The α calculated from the formula: 

  
(           )

(           )
                                                                      1.2 

where, E1 and E2 are the electric field correspond to the current density J1 and J2 

(Aguilar et al., 2013). 
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The I-V characteristics of the ZnO varistor can be observed in three regions: the 

leakage region is considered to be the low current curve at which the I-V approaches 

the ohmic region, and the varistor resistance is high in this region which behaves like 

an open circuit (Figure 1.2). In the middle or non-ohmicity region, the varistor 

characteristics obey equation 1.1 above. The Final varistor curve departs from the 

nonlinear region and approaches the material bulk resistance. This region is called an 

upturn at which the varistor becomes nearly a short circuit (“GE Transient Voltage 

Suppression Manual, 1976.pdf,” 1976) 

 

Figure 1.2. Typical I-V characteristics of ZnO varistors ceramic (Newnham, 1989) 

 

 

1.4 Low Voltage Varistor 

 

Low voltage varistor is a varistor whose exhibit high nonlinear-current voltage 

characteristics below it nominal voltage (Wang et al., 2008). Low voltage varistors can 

be achieved by increasing the size of ZnO grains, since the varistor breakdown voltage 

is proportional to the number of ZnO grains in series between the electrodes (Yao and 

Zhang, 2008). Therefore, in this work low voltage varistors can be achieved by 

introducing an important additive of V2O5 and Sb2O3 differently to on ZnO- Bi2O3- 

MnO2 which are greatly improves the ZnO grain growth. Accordingly, the current-

voltage nonlinear (I-V) behavior of the varistor ceramics’ response is related to thin 

insulating layers around the ZnO grains. Generally, the microstructure of the thin 

insulating layers around the ZnO grains are related to a bismuth-rich phase along the 

grain boundary of ZnO homojunctions (Xu et al., 2009). In the present days, electrical 

devices require varistors for a better functions with a relatively low breakdown 

electrical field intensity. There are three classes of dopants (Ahmad et al., 2012); 
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(1)  Those that contribute to the formation microstructure of the ZnO varistors; 

Bi2O3 is one such dopants  

(2)  Those used in certifying the non-linearity of the varistor ceramic stimulate the 

creation of deep charge carrier traps (Co3O4 and MnO) and are the root of the 

surface potential formation of the grains  

(3)  Those used as stabilizers, e.g. Sb2O3, the dopant that stabilizes the ZnO 

varistor inter-granular layers under electrical stress and external factors, such 

as temperature and humidity, this raises the stability of the electrical 

characteristics and reliability of the varistors. 

To achieve these, new varistor materials, such as Bi2O3, CO2O3, SrTiO3, TiO3, Sb2O3, 

SnO2, V2O5, etc., were required. The SrTiO3-based varistor ceramic is capable of high 

energy-absorption (Gao et al., 2008). TiO2 is a spinel-forming dopant which is 

commonly used as a grain growth enhancing additive in the production of low-voltage 

ZnO-based varistor ceramics (Dorraj et al., 2014). It is commonly used as an 

enhancing additive in Bi2O3-doped ZnO varistors. However, its addition causes a large 

spread in grain size with grain boundary voltage greater than that of Bi2O3-doped ZnO 

varistors, V2O5-doped ZnO varistors are potentially useful for the manufacture of low-

voltage varistors ( Hng and Knowles, 2000). In short, each of the dopants and sintering 

temperatures plays an important role in ZnO varistor ceramic microstructure. When 

subjecting the mixture via conventional method, the ceramic forms a good 

microstructures with several grain-boundaries as the root cause of nonlinear I-V 

characteristic’s behavior (Nahm, 2011). Moreover, a growing attention to ZnO 

varistors has resulted from the fact that their nonlinear characteristic provides circuit 

protection; this enables them to replace “SiC- based devices”, the most popular 

nonlinear resistor prior to the advent of the ZnO varistor (Eda 1989a). 

At low currents and voltages, varistors have a high resistance; but, at higher voltages 

and currents, the resistance drops dramatically (Jiang et al., 2013). ZnO grains form 

diodes with the surrounding matrix, creating a complex array of parallel and anti-

parallel diodes. At low voltage, each miniature diode between the grain boundaries has 

a very low voltage across it and very little current flows. The resistance drops 

dramatically at higher voltage and the varistor become highly conductive. Other factors 

such as grain size, the nature of the matrix material between the grains and the 

thickness of the ceramic (disk) determine the properties of the varistor. 

To obtain a low voltage “turn on” and improve conductivity, most metal oxide 

varistors (MOV) are made as a multi-layer structure. MOVs are always bidirectional 

devices but are manufactured with a very wide range of current and voltage capacities 

for applications ranging from surge protection for high voltage transmission lines to 

small surface mounted devices. Therefore, varistors have a limited application in the 

protection of high speed signal lines against electrostatic discharge (ESD) threat 

(Atsumi, 2010). 
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1.5 Microstructure of ZnO Varistor 

 

ZnO varistors are polycrystalline ceramics composed of semiconducting ZnO grains 

with the presence of grain boundaries and have a resistivity of 0.1 to 1 Ω-cm. ZnO 

grain boundaries are highly resistive with a non-ohmic property. The breakdown 

voltage of the sintered varistor is proportional to the number of grain boundaries 

between the two electrodes. Meaning, the breakdown voltage is proportional to the 

inverse of the ZnO grain size. However, material composition, sintering time, sintering 

temperature, and heating/cooling rates usually determine the sizes of the ZnO grains. 

Addition of Sb2O3 in ZnO varistor ceramics forms Zn7Sb2O12 spinel-phase near the 

grain boundaries (Eda, 1989a). The precipitation of Zn7Sb2O12 at the grain boundaries 

contribute to the ion migration. This suppresses the ZnO grain growth. Large 

breakdown voltage usually results from small grain sizes. During sintering, Bi2O3 acts 

as a liquid phase sintered and it changes to α - or β – phase. When cooling, the Bi2O3 

rich intergranular layers (Figure 1.3). Silicon dioxide also suppresses grain growth. On 

the other hand, higher temperatures and longer sintering times are also attributed to 

large ZnO grains. This indicates significantly that the ZnO grain size depends on two 

parameters, sintering temperature and the sintering time; any increase in these two 

parameters will contribute well to an increase in grain size and fewer grain boundaries. 

In the same manner, some average grain sizes are obviously larger and this is mostly 

observed from the samples sintered at higher temperatures and for a longer time 

(Houabes et al., 2005). There is also a report on Ti/Sb oxide with a ratio of the two on 

ZnO where the average grain size was found to be 20 µm (Zhang et al., 2002). Some 

ZnO grains have a single twin, which is characterized by one straight line grain 

boundary. Secondary phases are seen mostly distributed near the grain–boundary. 

Gupta 1992 reported five phenomena related to grain boundaries: 

(1)  The grain boundary is a muddled layer like a dislocated core, existing 

between two crystalline grains. The grain boundary has an open structure and 

can be given a distinctive width for easier accommodation of external atoms 

due to zinc vacancy and for the relaxation of the structure upon doping. 

(2)  The grain boundary offers a rapid diffusion path, particularly for the anions. 

This arises from the need to transport both ionic species during the processing 

of ceramics, such as sintering. Secondly, many post sintering treatments, such 

as annealing in the varistor and the heat treatment in magnetic spinel ferrite, 

are known to require rapid diffusion of oxygen through the grain boundary. 

(3)  The ability of the grain boundary is to segregate charges during the process of 

cooling by the ceramic. An appropriate segregation of charges will allow 

formation of a potential at the grain boundary to provide a barrier to the 

majority carrier flow. 

(4)  The grain boundary can act as an infinite source and sink for neutral 

vacancies. This arises from the need to conserve mass and to make defect 

reactions occur at the grain boundary, as is shown for the annealing of the 

ZnO varistor. Note that, only the neutral vacancies can be generated or 

annihilated at the grain boundary at will. 

(5)  The ease of vacancies and interstitials formation is larger and they have faster 

migrations within the grain boundaries than in the grain. The ease of 

formation of vacancies and interstitials is greater and their migrations are 

faster in the grain boundary than in the grain. Tsai and Wu (1996) reported 

three different features related to V2O5 doped specimens: 
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(1)  Presence of large grains dispersed in a matrix composed of small grains 

(2)  There is a faster growth for large grains than small grains 

(3)  The large grains contain an oblong shape 

 

 

Therefore, ZnO grain growth is typically used to determine the behavior of ZnO 

varistor ceramics performance. It generally happens when the normal grain is enhanced 

by the presence of a secondary phase during sintering (see Figure 1.3). The ZnO 

microstructure contains the basic compounds that include spinel, pyrochlore and 

several Bismuth rich phases. This usually occurs from the reaction of the ZnO and the 

additives during the sintering process, forming pyrochlore and spinel phases as an 

intermediate compound. Meanwhile, the pyrochlore phase forms at a low temperature; 

while, the spinel phase is due to a high temperature. Furthermore, a commercial ZnO 

varistor has a typical grain size between 15-20 µm (Karim, 1996). The ZnO grains act 

as doped semiconductors. Moreover, the grain boundary regions provide barriers to 

electrical conduction, and Bi-rich phases are predominantly localized at triple junctions 

and form a continuous network throughout the varistors. ZnO varistors typically 

include two conduction paths. Firstly, a combination of ZnO grains and grain boundary 

related barriers are responsible for the varistor effect. Secondly, Bi-rich phases form at 

the triple junctions of ZnO grains and along the microstructure. Although, the 

varistor’s microstructure exhibits a considerable variation depending on the nature of 

the fabrication, they all exhibit the characteristics of a typical ceramic prepared by 

liquid-phase sintering, comprising big grains with a varistor former-rich secondary 

phase at the nodal points (triple junctions) and intergranular layer regions (Figure 1.4). 

 

 

 

 

In the present day, the growing demand for ZnO varistor have received wide 

acceptance to meet the present day transient voltage suppression on electrical systems. 

 

 

Figure 1.3. Microstructure of multiphase ZBS showing spinel phase 

surrounded by Bismuth (Greuter, 1995) 

Spine 

Bi-reach phase 
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1.6 Application of the ZnO Varistor 

 

ZnO varistor can be used for the purpose of: 

 

(1) Voltage stabilization in TV sets, 

(2) Telephone and other communication lines, 

(3) Electronic equipment protection, 

(4) Radio communication equipment, 

(5) Power supply protection, etc. 

 

 

 

 

 

Figure 1.4. ZnO-based varistor microstructure formation (Hove, 2006) 
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1.7 Problem Statement 

 

The interest of using vanadium oxide (V2O5) addition, instead of the usual bismuth 

oxide Bi2O3 in fabrication of low voltage ZnO based varistor arises due to its many 

advantages. The V2O5 act as a varistor former and improves the densification in the 

form of liquid sintering process similar but liquefied at a lower temperature than that of 

Bi2O3.Secondly, it is expected that a good varistor ceramics stability would be 

provided by using antimony oxide (Sb2O3) compared to previous praseodymium oxide 

(Pr6O11) in the ZnO based varistor ceramics which was reported to have low stability 

and thermal runway (Nahm, 2013).The varistor ceramic stability could be studied 

under the influence of DC and thermal stress simultaneously and observe the 

direct changes in the electrical properties. Therefore, by varying the V2O5, and 

Sb2O3 contents at various sintering temperature, it is expected that the optimum 

microstructure that contribute to reasonably high nonlinear electrical properties as well 

as improving the stability could be obtained. 

 

 

1.8 Objectives 

 

The objectives of this work were essentially based on the efforts made to improve the 

capability of ZnO low voltage varistor ceramics. Much of this work was devoted to 

probe the effects of sintering temperature and the dopants. Some other related 

processing characteristics were also calculated to identify the donating factors that 

affect the performance of the ZnO varistor. 

The objectives of this work were as follows: 

(1)  To study the effect of a small interval sintering temperature on the electrical 

and microstructural properties of V2O5 doped ZnO-Bi2O3-Sb2O3-MnO2 low 

voltage varistor ceramics. 

(2)  To evaluate the stability of V2O5 and Sb2O3 on ZnO-Bi2O3-MnO2 low voltage 

varistor ceramics against DC and thermal stresses and compare which of the 

dopant contribute a good stability of the varistor ceramics. 

 

 

1.9 Significance of the Study 

 

This research was required because the J-E characteristic of a ZnO-based varistor 

advances substantially due to the type of material oxide used as dopants and also the 

sintering temperature. However, this work will contribute to the deviation of the 

microstructure, which determines the electrical behavior, typically, the J-E 

characteristic of ZnO low voltage varistor ceramics. The J-E characteristic deviation is 

in three areas: the ohmic region, the nonlinear region and the up-turn region (see 

Figure 1.2). Deviation in the leakage area of the J-E characteristic means that when the 

ZnO-based varistor has a higher leakage current it may eventually lead to the 

degradation of the J-E characteristic. 
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In the breakdown region, the responsible feature for the uncertainty in the active region 

is largely thermal in nature with a finite gradient of the J-E characteristic of this region. 

Thermal-based breakdown also supports degradation of the J-E characteristic of 

varistor ceramics. 

The Upturn region of the J-E characteristic indicates that if the current flow is greater 

than the eventual, the varistor no longer compromises the required protection since the 

varistor switches form highly conductive to highly resistive, which is not desirable. 

 

 

1.10 Scope of the Study 

 

This research work has been limited to the preparation of ZnO-Bi2O3-MnO2 varistor 

ceramics by doping two different ionic oxides (V2O5 and Sb2O3) via a conventional 

technique. The effect doping and sintering temperature on microstructure, electrical 

properties and DC degradation behavior were investigated. 

 

 

1.11 Hypothesis 

 

The hypothesis used in this experiment is to fine the relations between sintering 

temperature and doping. The hypothesis of this research include the following: 

(1)  Through optimizing the sintering temperature and composition of V2O5 the 

nonlinear electrical properties would improve. 

(2)  Varistor would have good stability after subjecting the ceramics to DC 

electrical and thermal stresses. 
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