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Symmetric block ciphers are the most widely utilized cryptographic primitives. In
most block ciphers, a master key of special length is manipulated to create round sub-
keys. This manipulation is known as the key schedule. A strong key schedule means
that a cipher will be more resistant to various forms of attacks especially in related-
key model attacks. These days, the most common block cipher is Rijndael which
adopted by the National Institute of Standards and Technology (NIST), USA in 2001
as an Advance Encryption Standard (AES). Some cryptanalysis studies have also
revealed a security weakness of Rijndael such as its vulnerability to related-key
differential attacks and the related-key boomerang attack. This is mainly due to the
lack of nonlinearity in the key schedule of Rijndael. Constructing a key schedule that
is both efficient and provably secure has been an open problem for a long time. This
research presents a method to improve the key schedule of Rijndael cipher in order to
make the cipher resist to related-key scenario attack in form of differential
cryptanalysis attacks and boomerang attack. Two statistical tests are used: the first is
a Frequency test that evaluates the bit confusion property and the second is the Strict
Avalanche Criterion (SAC) test that evaluates the bit diffusion property. To evaluate
the resistance of the proposed approach to the related-key differential attack and the
related-key boomerang attacks, the MILP-based approach is developed. This method
counts the minimum number of active S-boxes (finds the related-key differential
characteristic) in a given number of rounds for byte-oriented block cipher in the
related-key model. The results show that the proposed key expansion function of has
excellent statistical properties and agrees with the concept of Shannon's diffusion and
confusion bits. The proposed approach is also resistant against the latest related-key
differential attacks and related-key boomerang attack found in the original Rijndael.
Furthermore, the proposed approach has a software implementation speed
approximate to the original Rijndael even in some applications where the key master
frequently changes for each processed data block. These results prove that proposed



approach performs better than the original Rijndael 128-bit key expansion function
and that of previous research.
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MENAMBAH BAIK KESELAMATAN FUNGSI PENGEMBANGAN KUNCI
RIJNDAEL

Oleh

AL-ABADI HASSAN MANSUR HUSSIEN

Disember 2017
Pengerusi : Puan Zaiton Muda
Fakulti : Sains Komputer dan Teknologi Maklumat

Sifer blok simetrik merupakan primitif kriptografi yang paling meluas digunakan.
Dalam kebanyakan ciphers blok, kunci induk panjang khas dimanipulasi untuk
membuat sub-kunci pusingan. Manipulasi ini dikenali sebagai jadual utama. Jadual
utama yang kuat bermakna cipher akan lebih tahan terhadap pelbagai bentuk serangan
terutamanya dalam serangan model utama berkaitan. Sifer blok yang paling lazim
pada masa kini adalah Rijndael yang telah dipilih oleh Institut Kebangsaan dagi
Piawaian dan Teknologi (NIST), USA pada tahun 2001 sebagai Piawaian Penyulitan
Lanjutan (AES). Beberapa kajian kriptanalisis juga telah menemui kelemahan
keselamatan dalam Rijndael seperti kerentanannya terhadap serangan kebezaan
berkaitan kunci dan serangan boomerang berkaitan kunci. Ini adalah disebabkan oleh
kekurangan ketaklinearan dalam penjadualan kunci bagi Rijndael. Membina jadual
utama yang cekap dan aman adalah masalah terbuka untuk masa yang
lama.Penyelidikan ini membentangkan satu kaedah untuk meningkatkan jadual utama
cip Rijndael untuk menjadikan cipher itu menentang serangan senario utama berkaitan
dalam bentuk serangan cryptanalysis differential dan serangan boomerang. Bagi
menilai kerentanan pendekatan yang dicadangkan terhadap serangan kebezaan
berkaitan kunci dan serangan boomerang berkaitan kunci, pendekatan berasaskan
MILP digunakan. Pendekatan ini untuk mengira bilangan minimum kotak-S yang aktif
(mencari ciri-ciri kebezaan berkaitan kunci) dalam bilangan pusingan yang diberikan
untuk sifer dalam model berkaitan kunci. Selain itu. Keputusan telah menunjukkan
bahawa fungsi pengembangan kunci yang dicadangkan mempunyai ciri-ciri statistik
yang sangat baik berasaskan kepada konsep pengeliruan dan penyebaran bit oleh
Shannon. juga mempunyai daya tahan terhadap serangan kebezaan berkaitan kunci
dan serangan boomerang berkaitan kunci. Di samping itu, mempunyai kelajuan
implementasi perisian yang menghampiri kelajuan Rijndael 128-bit yang asal
walaupun dalam beberapa aplikasi di mana kunci utama sering berubah untuk setiap
blok data yang diproses. Semua keputusan membuktikan bahawa yang dicadangkan
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mempunyai prestasi yang lebih baik daripada fungsi pengembangan kunci Rijndael
128-bit dan juga berbanding dengan kajian yang terdahulu .
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CHAPTER 1

INTRODUCTION

1.1 Background

A secret key block cipher is crucial in primitive cryptography. One fundamental
motivation behind the use of a block cipher is to provide protection to information
transmitted in insecure communication environments. Block ciphers are applied as a
component in different security domains in which other secret key cryptographic
primitives may have to be constructed. This includes cryptographic pseudorandom
number generators, message authentication codes, and hash functions. Nowadays, the
most common block cipher is Rijndael, which is used as a standard for symmetric
encryption in many countries (Lu, 2015). It is also the most extensively applied and
significant symmetric block cipher algorithm in the computer security field.

The Rijndael algorithm encryption is a block cipher that was adopted by the National
Institute of Standards and Technology (NIST) as an Advanced Encryption Standard
(AES) in 2001 (Daemen & Rijmen, 2013). As a result, Rijndael became vastly utilized
for commercial and governmental purposes, where both hardware and software
implementation was targeted. Furthermore, it is an agile design with an extremely
effective and efficient performance cipher. A recent cryptanalysis unearthed certain
security weaknesses in the Rijndael. Further cryptanalysis on the security of Rijndael
was at most focused on either related-key scenario or secret-key scenario attacks. In
the secret-key scenario, attacks relied on the vulnerabilities of the state transformation
function of Rijndael (Nikoli¢, 2011; Tao & Wu, 2015) . Accordingly, some
cryptanalyses also found the security weakness of the Rijndael key expansion function
such as related-key differential attacks, related sub-key attacks, and related-key
boomerang attacks (Biryukov & Khovratovich, 2009; Biryukov et al., 2010;
Biryukov & Nikoli¢, 2010; Jean, 2013; Cui et al., 2015) . Nevertheless, these
attacks are ultimately hypothetical and hence need a higher computational complexity
potential, which is beyond our reach. To implement ideal resistance in the
cryptographic standards of Rijndael, a better solution must be determined through
changing or modifying the key schedule algorithm.

Consequently, an extremely important component of a block cipher is the key
schedule. In most ciphers, a master key of special length is manipulated to create round
sub-keys. This manipulation is known as the key schedule. A strong key schedule
means that a cipher will be more resistant to various forms of attacks especially in
related-key model attacks. Since the recent attacks are found to arise from the property
of the key expansion function for Rijndael, this research will tweak only the key part
of Rijndael, in which the state transformation rounds of the function will remain
unchanged.



1.2 Motivation

Security in Computing has become an essential domain in Information Technology
(IT). More importantly, IT security has introduced ways to shield serious documents
and communications from risk of exposure. The operation of hiding information,
Automated Teller Machine (ATM) credit and debit cards, web browsing, and transfer
of data from one point to another can be performed via cryptographic algorithms. The
most utilized cryptography algorithm is the Rijndael 128-bit. This is due to its elegant
design besides being an extremely securely and efficient cipher. Unfortunately, several
studies have found a theoretical attack that could exploit the weakness of the Rijndael
key expansion algorithm, which allows a significant reduction in the time required to
break the cipher, compared to brute force attack. Rijndael is the most trusted algorithm
that is widely used for security purposes. However, the new theoretical attacks such
as related-key attacks and related-key boomerang attacks could give rise to a more
practical technique based on this theoretical one. Dunkelman et al . (2014) present a
practical-time related-key attack on the KASUMI cryptosystem in Global System for
Mobile Communications (GSM) and 3-G telephony.

The redesign of the key expansion function of Rijndael has become a major challenge
for the cryptographer in which the issue is to determine a method to create a new key
schedule for Rijndael to ensure there is no leakage in each sub-key that would prevent
a theoretical related-key attack scenario from occurring. Besides that, the efficiency
of the encryption performance must also be taken into account so that the change in
the key expansion function does not adversely affect the performance of the whole
cipher and the results are obtained in a speed that is entirely the speed of the original
algorithm, especially when using a re-key for each block message in some application
modes. Most of the studies on the enhancement of the key expansion function have
not presented a formally proven security solution for the key expansion function or
even the whole block cipher after the change has been made. Therefore, in this
research, in addition to redesigning the key expansion function of Rijndael, an
automatic tool is also developed to evaluate the security of the symmetric block cipher
either in the secret-key model attacks or related-key model attacks using Mixed Integer
Linear Programming (MILP).

1.3 Problem Statement

The security analysis of Rijndael has been the objective of numerous cryptographic
papers. The designers of Rijndael adapted the security features of the block cipher by
looking at the property of the MixColumns transformation. However, further analysis
of the security of Rijndael is at most focused on either secret-key attacks or related-
key (or differential-key) attacks. The secret-key model attacks are established on the
exposure of the state transformation round of Rijndael and are not established on
vulnerabilities of the Rijndael key expansion function. Accordingly, the decreased
number of rounds for Rijndael is due to the omitted MixColumns from the last rounds.
This includes the Partial Sums Technique Attacks on six rounds (Tunstall, 2012) ,
Boomerang Technique Attacks on six rounds (Biryukov, 2005), and Impossible



Differential Technique Attacks on seven rounds of Rijndael 128-bit (Mala et al.,2010)
. Li & Jin (2016) introduced the Meet-in-the-middle Technique Attack on ten rounds
of Rijndael 256-bit. In addition, improving upon seven-, eight-, and twelve-round
attacks on the 128-bit, 192-bit, and 256-bit key variants, respectively, using the
Biclique cryptanalysis in the Meet-in-the-middle Technique Attack, was conducted on
Rijndael in light of the omitted MixColumns from the last rounds (Bogdanov et al.,
2011; Tao & Wu, 2015).

Recently, some of the cryptanalysts have found weaknesses in the Rijndael key
expansion function, such as related-key differential attacks and related-key
boomerang attacks (Biryukov & Khovratovich, 2009; Biryukov et al., 2010; Biryukov
& Nikoli¢, 2010; Jean, 2013; Cui et al., 2015). This is mainly due to the lack of
nonlinearity in the key schedule of the Rijndael, which has not enough active bytes
into each sub-key and has slow diffusion into the key expansion function. The main
reason for the slow diffusion into the key expansion function is because of a too linear
function existing in the structural constraints of the original algorithm. The related-
key model scenario attacks arises as a result of leaks into the key expansion function.
Confusion and diffusion are two properties of the operation of a secure cipher.
Therefore, these properties and substitution-permutation are applied just on the main-
part of the Rijndael algorithm, but there is no strong security for the key expansion
function. According to Cui et al., (2015), the diffusion in the key schedule is slow
enough that related-key attacks can track all the differences in the round keys for
which the lesser nonlinearity (too linear) into the Rijndael key expansion is not as
claimed by the Rijndael designer.

Specifically, this thesis addresses the following issues:

1. The related-key differential attack on the 10-round Rijndael 128-bit. The attacker
aims to recover the keys and to work only with the sub-keys of the Rijndael key
schedule. This is done by looking for the differences in the differential
characteristic (active S-boxes bytes) of the sub-keys bytes of the Rijndael key
schedule. Meanwhile, the attacker works only on the class of the sub-key, in which
the maximum differential propagation probability of an S-box in Rijndael is
4/2 56 which approximately equals 27¢. Hence, according to Gérault et al.
(2017) and Khoo el al. (2017) , the level of security regarding a valid
differential characteristic of Rijndael 128-bit is 27114, which is higher than
the wanted threshold of 27128 for a 128-bit block cipher. Thus, this is an open
problem of locating an exact minimum number of active S-boxes for the
Rijndael 128-bit in the related-key model attacks.



2. The related-key boomerang attacks aims to recover the keys, which will work
for all the keys in the Rijndael cipher. The attacker uses differential
characteristics on the smaller number of rounds to attack. This is because the
lower bound of active S-boxes bytes into the Rijndael 128-bit at all the
differential characteristics is 19 active S-boxes. Thus, Rijndael 128-bit has a
0 active S-box for the top characteristics for round 1 and 19 active S-boxes
for the bottom characteristic of round 9. The attacker has a 271* —probability,
which is higher than the valid probability of 27128, Hence, this would allow room
for a boomerang attack. This is because 22-19 = 3 active S-boxes remainder is
sufficient for an attack that could recover the key for 10 rounds.

14 Research Questions

This thesis proposes an enhancement to the security of the Rijndael 128-bit block
cipher by redesigning the key expansion function to be more secure to the related-key
differential attacks and related-key boomerang attack that exploit the weakness of the
original Rijndael key schedule. The proposed approach examines the following
questions:

1. Do diffusion and confusion statistical tests determine the weakness of the key
expansion function?

2. Does the Mixed Integer Linear Programming analysis prove the security of the
proposed approach in terms of the related-key model attacks?

3. Isthe analysis of software implementation enough to describe the efficiency of the
proposed approach?

1.5 Objectives of the Research

This research suggests a new technique for Rijndael, which only changes the cipher in
the key expansion function. However, the security of the proposed method is the major
focus of this research. Hence, as researchers, we would like to achieve an efficiency
implementation as well. There are Two main objectives for this research:

1. Propose a new key expansion function for the Rijndael 128-bit block cipher.
a. To make the Rijndael 128-bit be more resistant to related-key differential
attacks and related-key boomerang attacks.
b. To achieve a standardized speed in software implementation that is
approximate to the original algorithm

2. Propose an automatic tool based on Mixed Integer Linear Programing (MILP) to
analyze the security of the Rijndael 128-bit cipher regarding related-key model
attacks.



1.6 Scope of the Research

This research focuses on the Rijndael block cipher. In this block cipher, there are two
main parts: the round function, and the key scheduling transformation. The main
concern of this research is the key scheduling transformation where enhancement is
made by modifying the core function in the current key transformation to improve the
requirement of bit confusion and diffusion properties and through making the cipher
more resistant against related-key differential attacks and related-key boomerang
attacks.

In addition, the proposed approach should prove efficient with a speed that is
comparable to the speed of the original Rijndael algorithm. In most symmetric-key
ciphers, key agility is the main way to evaluate the symmetric block cipher speed.
Basically, the speed of a block cipher is measured in two directions. The first case is
where the master key is fixed and the sub-keys are expanded once and the same set of
keys to encrypt multiple blocks of data are used. The second case is when the master
key keeps changing consecutively in each of the encrypted blocks data and the sub-
keys have to re-key in each block of data, especially where the block cipher is utilized
as the cryptographic primitive constructions. Consequently, this research will
concentrate on testing the key agility of the proposed approach whereby the master
key keeps changing on each block data.

1.7 Research Contributions

The major contribution of this study is an improvement to the security of the Rijndael
128-bit cipher. In the proposed approach, the core function of the key schedule
algorithm is modified. By altering RotWord and adding additional SubBytes, the
Rijndael 128-bit is able to resist related-key scenario attacks in the form of differential
attacks and boomerang attacks. An automatic tool based on MILP is developed to
determine the lower bounds of the active bytes S-boxes corresponding to the
characteristic of the Rijndael 128-bit cipher (including the round function and key
parts), by adopting the methods of Mouha et al., (2012) and Sun et al., (2014).

The following are the contributions of this study:

1. The proposed approach has excellent statistical properties using the concept of
Shannon's diffusion and confusion bits. This has led to the development of a new
cipher, which is named as SAES 128-bit, and more secure against related-key
differential attacks and related-key boomerang attacks.

2. The proposed SAES has a benchmark speed in software implementation
approximate to the original Rijndael or AES even in some applications where the
master key frequently changes for each processed data block.



3. A statistical method that can be used to prove the security of the cipher in related-
key model attacks based on the MILP-based approach is developed.

1.8 Organization of the Thesis

This section presents an outline of the entire thesis, which is organized as follows:

Chapter 1 presents the introduction and includes—among others—the background,
problem statement, objectives of the research, and questions and contributions of the
study.

Chapter 2 reviews related works of the subject matter, which include the Advanced
Encryption Standard (AES) Competition that choose Rijndael as a new AES, and the
description of the security of Rijndael regarding differential cryptanalysis along with
the efficiency of the cipher. Thus, the security issues of Rijndael in related-key
differential attacks and related-key boomerang attacks are described. The end of the
chapter discusses related works that are compared with the security and efficiency of
the alternative 128-bit Rijndael key expansion function in tabular format.

Chapter 3 provides a brief explanation of the research methodology adopted in this
research. The requirement analysis for this research is discussed as well as the design
of the new key expansion function. The implementation stages are shown in detail and
experimental evaluation in terms of security and efficiency and analysis of the
proposed key expansion function algorithm are also highlighted.

Chapter 4 describes the proposed key expansion function (SAES) along with
previously proposed approach on Rijndael 128-bit (TAES) and original Rijndael 128-
bit (AES) ciphers.

Chapter 5 presents the mechanism of the MILP-based approach in constructing the
SAES, TAES, and AES, so as to determine the lower bounds of the active S-boxes of
the bytes in related-key model attacks.

Chapter 6 provides an analysis of the results and a general discussion of the research
reviewed.

Chapter 7 summarizes the entire thesis and provides recommendation on possible
extensions or future work for this research.
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