

ONE-STEP BIOTRANSFORMATION OF FERULIC ACID INTO BIOVANILLIN USING RECOMBINANT Escherichia coli BL21 (DE3)

NUR AIN BINTI ZAMZURI

FBSB 2016 36

ONE-STEP BIOTRANSFORMATION OF FERULIC ACID INTO BIOVANILLIN USING RECOMBINANT Escherichia coli BL21 (DE3)

Ву

NUR AIN BINTI ZAMZURI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

ONE-STEP BIOTRANSFORMATION OF FERULIC ACID INTO BIOVANILLIN USING RECOMBINANT Escherichia coli BL21 (DE3)

By

NUR AIN BINTI ZAMZURI

December 2016

Chairman : Professor Suraini Abd Aziz, PhD

Faculty : Biotechnology and Biomolecular Sciences

Vanillin is one of the most important flavour compounds used in foods, beverages, perfumes and pharmaceuticals industry through isolation from vanilla pods of Vanilla planifolia or chemical synthesis. An alternative biotechnology-based approach for biovanillin production is searched for due to the high price of natural vanillin that isolated from vanilla pods and rising on demand for naturally produced foods. Vanillin production through biotechnology routes is focused on the microbial bioconversion from precursors like ferulic acid and eugenol. However, the common problem regarding biovanillin production is the oxidation pathway of vanillin into vanillic acid. Thus, low vanillin is detected as the desired product. The objective of this study includes the construction of recombinant Escherichia coli that can be further utilized for biotransformation of ferulic acid into biovanillin by one step fermentation without further oxidation of vanillin into vanillic acid. The desired genes involving in biovanillin production, enoyl-CoA hydratase (ech) and feruloyl-CoA synthetase (fcs) are screened and isolated from locally isolated bacteria, later named as Pseudomonas sp. AZ10 UPM. It showed the highest degradation of ferulic acid as carbon source with the yield, $Y_{p/s}$ and productivity, P_r obtained were 1.08 mg/mg and 53.1 mg/L/h, respectively. Oxidation of vanillin into vanillic acid was observed lead to low vanillin production after 48 hours of incubation. Therefore, this strain was selected as the potential vanillin producer due to accumulation of vanillic acid at the end of fermentation process with assumption that vanillin was oxidized into vanillic acid. Further study was conducted on the isolation of biovanillin producing gene from Pseudomonas sp. AZ10 UPM. By using DNA walking strategy, full length of both enoyl co-A hydratase (ech) and feruloyl co-A synthetase (fcs) were successfully isolated. Analysis of the nucleotide sequences revealed the presence of an open reading frame of 906 bp with protein encoded 302 amino acids and 1869 bp with protein encoded 623 amino acids of ech and fcs, respectively. The deduced amino acids for ech and fcs about 62% and 98% homology with Pseudomonas sp., respectively. The recognition of GTG (Guanine-Thymine-Guanine) for both genes ech and fcs as start codon was assisted by the presence of Shine-Dalgarno sequence, which located at 8 bp for ech and 7 bp for fcs upstream the initiation codon. The pRSFDuet-1/ech-fcs expression system has been constructed by cloning the full length of fcs and ech under the transcriptional control of T7 promoter of pRSFDuet-1 into an E. coli BL21 (DE3). In comparison to wild type, Pseudomonas sp. AZ10 UPM, this recombinant E. coli harbouring pRSFDuet-1/ech-fcs was able to produce vanillin in one step fermentation without further oxidation of vanillin into vanillic acid. In order to confirm the genes expression for vanillin production, fermentation was done in 2YT medium with supplementation of 0.1% (w/v) ferulic acid. From the observation, the recombinant Escherichia coli able to produce 165 mg/L vanillin by one step fermentation without further oxidation into vanillic acid. Furthermore, the recombinant shows the ability to convert agricultural waste containing ferulic acid into vanillin. It was able to convert 200 mg/L oil palm empty fruit bunches (OPEFB) alkaline hydrolysate into 27 mg/L vanillin with no vanillic acid detected as the oxidized product. In conclusion, this study was successfully developed a recombinant Escherichia coli BL21 (DE3) with plasmid harbouring key genes for biovanillin production which were ech and fcs. The recombinant was able to produce biovanillin in one step fermentation without further oxidation of vanillin into vanillic acid. In fact, it shows potential to utilize agricultural waste, OPEFB alkaline hyrdrolysate as natural source of ferulic acid for biovanillin production.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

BIOTRANSFORMASI ASID FERULIK MELALUI KAEDAH SATU LANGKAH KEPADA BIOVANILIN OLEH *Escherichia coli* BL21 (DE3) REKOMBINAN

Oleh

NUR AIN BINTI ZAMZURI

Disember 2016

Pengerusi : Profesor Suraini Abd Aziz, PhD Fakulti : Bioteknologi dan Sains Biomolekul

Vanilin merupakan salah satu diantara sebatian perisa yang digunakan di dalam industri makanan, minuman, minyak wangi dan farmasi melalui pemencilan daripada pod vanila tumbuhan Vanilla planifolia atau sintesis kimia. Penghasilan vanilin secara alternatif berasaskan bidang bioteknologi sedang meningkat naik kerana harga vanilin yang tinggi apabila diesktrak dari pokok vanila semulajadi dan permintaan yang meningkat terhadap makanan yang diproses secara semulajadi. Penghasilan vanilin melalui kaedah bioteknologi memberi fokus terhadap penukaran mikrob daripada prekursor asid ferulik dan eugenol. Walaubagaimanapun, masalah yang biasa terjadi dalam penghasilan biovanilin ialah pengoksidaan vanilin kepada asid vanilik. Seterusnya menyebabkan vanilin tidak dapat dikesan sebagai produk yang dikehendaki atau hasil yang diperolehi adalah sangat rendah. Oleh itu, objektif kajian ini ialah untuk menghasilkan E. coli rekombinan yang mampu menggunakan asid ferulik bagi tujuan transformasi kepada biovanilin melalui kaedah satu langkah tanpa pengoksidaan vanilin kepada asid vanilik. Kajian ini adalah untuk menyaring dan mengasingkan gen yang di kehendaki bagi tujuan penghasilan biovanilin iaitu enoyl-CoA hydratase (ech) dan feruloyl-CoA synthase (fcs) daripada bakteria yang telah diasingkan, dan diberi nama sebagai Pseudomonas sp. AZ10 UPM. Ia menunjukkan tahap degradasi asid ferulik tertinggi sebagai sumber karbon. Pengoksidaan vanilin kepada asid vanilik dicerapi dan menyebabkan penghasilan vanilin sebagai produk yang dikehendaki menjadi rendah. Hasil degradasi asid ferulik, Y_{p/s} dan produktiviti, P_r yang diperolehi masing-masing adalah 1.08 mg/mg and 53.1 mg/L/h. Hasil perolehan yang lebih tinggi berbanding kajian terdahulu berkaitan penukaran asid ferulik kepada asid vanilik dicerapi. Pengoksidaan vanilin kepada asid vanilik turut dilaporkan selepas tempoh 48 jam. Strain ini telah dipilih atas potensi penghasilan vanillin dengan andaian asid vanilik yang terkumpul adalah hasil daripada pengoksidaan vanilin. Kajian seterusnya melibatkan pemencilan gen daripada *Pseudomonas* sp. AZ10 UPM untuk penghasilan biovanilin. Dengan menggunakan strategi perjalanan DNA, ia telah berjaya mendapatkan jujukan lengkap bagi kedua dua gen iaitu enoyl co-A hydratase (ech) and feruloyl co-A synthetase (fcs). Analisis terhadap jujukan nukleotida menunjukkan kehadiran satu rangka terbuka sepanjang 906 bp dengan jujukan peptide masingmasing sebanyak 302 asid amino dan 1869 bp berserta jujukan peptida sebanyak 623 asid amino untuk ech dan fcs. Asid amino ech dan fcs dapat disimpulkan mempunyai persamaan masing-masing sebanyak 62% dan 98% dengan Pseudomonas sp. Pengesanan GTG (Guanin-Thiamin-Guanin) sebagai fungsi pemula gen ech dan fcs adalah dibantu melalui kehadiran jujukan Shine-Dalgarno yang terletak di kedudukan 8 bp untuk gen ech and 7 bp bagi gen fcs di bahagian atas jujukan daripada fungsi pemula. Sistem ekspresi pRSFDuet-1/ech-fcs telah dibina melalui pengklonan jujukan lengkap fcs dan ech dibawah kawalan transkripsi pemula T7 yang terletak pada pRSFDuet-1 kepada E. coli BL21 (DE3). Jika dibandingkan dengan strain liar Pseudomonas sp. AZ10 UPM, E. coli rekombinan yang mengandungi pRSFDuet-1/ech-fcs ini mampu menghasilkan vanilin dalam satu langkah tanpa pengoksidaan vanilin kepada asid vanilik. Bagi tujuan pengesahan maklumat tentang ekspresi gen bagi penghasilan vanilin, proses fermentasi telah dijalankan di dalam media 2YT dengan tambahan 0.1% (w/v) asid ferulik. Berdasarkan pemerhatian, E. coli rekombinan mampu menghasilkan vanilin sebanyak 165 mg/L melalui kaedah satu langkah fermentasi tanpa berlaku pengoksidaan vanilin kepada asid vanilik. Malahan, rekombinan ini juga menunjukkan kebolehan menggunakan sisa pertanian kepada penghasilan vanilin. Ia mampu menukarkan 200 mg/L asid ferulik yang terkandung di dalam hidrolisat alkali buah tandan kosong kelapa sawit kepada 27 mg/L vanilin. Asid vanilik juga tidak dikesan sebagai produk pengoksidaan. Kesimpulannya, kajian ini berjaya menghasilkan E. coli rekombinan yang mempunyai plasmid berserta gen-gen penghasil biovanillin iaitu ech dan fcs. Rekombinan ini juga mampu menghasilkan biovanilin dalam satu langkah tanpa berlaku pengoksidaan vanilin kepada asid vanilik. Malahan, kajian menunjukkan rekombinan berpotensi untuk menggunakan sisa pertanian, hidrolisat alkali buah tandan kosong kelapa sawit sebagai sumber semulajadi asid ferulik untuk penghasilan biovanilin.

ACKNOWLEDGEMENTS

In the name of Allah, the most merciful and compassionate. My deepest gratitude and praise to Allah for his blessing throughout my research and studies journey.

Million thanks dedicated to my supportive supervisory committee chairman, Prof. Dr. Suraini Abd Aziz, who is kind, encouraging and provide guidance throughout my study. Appreciation is extended to all my co supervisors, Prof. Dr. Raha Abdul Rahim, Assoc. Prof. Dr. Noorjahan Banu Alitheen, Assoc. Prof. Dr. Phang Lai Yee.

I am thankful to the staffs of Faculty of Biotechnology for the advice and help in the laboratory. I do appreciate the knowledge from Assoc. Prof. Dr. Toshinari Maeda and all the lecturers, staffs and students in Kyushu Institute of Technology, Japan for the good hospitality and support during the JASSO program. Special thanks dedicated to lecturers and members in Environmental Biotechnology group for all the strong and kind support along the way of my PhD journey.

Thank you so much to my beloved husband, parents, parents in law and all my family members who have strongly motivated me, provide endless support and encouragement for the completion of my research work. Lastly, thanks to myBrain15 from the Ministry of Higher Education (MOHE) for sponsoring my PhD study.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Suraini Abd. Aziz, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Raha Abdul Rahim, PhD

Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Noorjahan Banu Alitheen, PhD

Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Phang Lai Yee, PhD

Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:		Date:	
Name and Matric 1	No.:		

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	Signature:
Name of	Name of
Chairman of	Member of
Supervisory	Supervisory
Committee:	Committee:
Signature:	Signature:
Name of	Name of
Member of	Member of
Supervisory	Supervisory
Committee:	Committee:

TABLE OF CONTENTS

ABSTI	RACT				Page i
ABSTI	RAK				iii
ACKN	OWL	EDGEN	IENTS		v
APPRO	OVAL	ı			vi
DECL	ARAT	ION			viii
LIST (OF TA	BLES			xiv
LIST (OF FIG	GURES			xv
LIST (OF AB	BREVI	ATIONS		xviii
СНАР					
1		RODUC			
	1.1		round of st		1
	1.2		m statemer	ıt	2
	1.3	Object	ives		3
2			JRE REVI		
	2.1		action to va		4
	2.2	Compa biovan		een natural vanillin, synthetic vanillin and	6
		2.2.1	Natural v	anillin	7
		2.2.2			9
		2.2.3	Biovanill		11
	2.3			al precursor and bioconversion process	12
		2.3.1		•	12
			Vanillic a		14
	2.4			iction through fermentation approach	15
		2.4.1		in producing microorganism	15
			2.4.1.1	Bacteria producing biovanillin from ferulic	17
			2.4.1.2	acid Filamentous fungi for bioconversion of	17
			2.4.1.2	ferulic acid	17
			2.4.1.3	Recombinant E. coli for vanillin production	18
	2.5	Biosyn		way for biovanillin production	19
		2.5.1		e pathways of ferulic acid	19
		2.5.2		ent of gene of interest in biovanillin	22
				on by recombinant E. coli	
		2.5.3		co-A synthetase, fcs	23
		2.5.4		A hydratase, ech	23
		2.5.5		hia coli expression system	24
	2.6		in applicati		25
		2.6.1	Food flav		26
		2.6.2	Medicine		27
		2.6.3	Pharmace		28
	2.7			stential substrate for biovanillin production	28
		2.7.1	Palm oil		29
		2.7.2	Cereal br		30
		2.7.3	Sugar bed	et pulp	30

2.0	2.7.4	Rice bran		31 31	
2.8	Concluding remarks				
MA	TERIA	LS AND N	METHODS		
3.1	Chemi	cal reagent	ts	32	
3.2	Media			32 32	
	3.2.1	()			
	3.2.2		rtani-kanamycin broth and agar	32	
3.3			ng and identification of potential biovanillin	32	
	-	cing bacteri		22	
	3.3.1		isolation and culture condition	32 33	
	3.3.2		etric rapid screening to isolate potential ferulic rading bacteria for biovanillin production	33	
	3.3.3		ogical characterization	34	
	3.3.3		Gram staining	34	
	3.3.4		16S ribosomal RNA (rRNA) identification	34	
		3.3.4.1	Polymerase chain reaction (PCR)	34	
			amplification of 16S rRNA gene		
		3.3.4.2	DNA sequencing of 16S rRNA gene	35	
		3.3.4.3	Sequence analysis of 16S rRNA gene	35	
	3.3.5		formation of ferulic acid into vanillic acid and	35	
			by a growing culture		
	3.3.6		antitative analysis of phenolic metabolites	36	
3.4			millin producing genes using DNA walking	36	
			ruction of biovanillin expression system using		
Escherichia coli 3.4.1 General DNA techniques					
	3.4.1	3.4.1.1	Genomic DNA extraction	36 36	
		3.4.1.2	Agarose gel preparation	36	
		3.4.1.3	DNA quantification	36	
		3.4.1.4	Plasmid purification	37	
		3.4.1.5	Gel slice and PCR product purification	37	
	3.4.2	Isolation	of biovanillin producing genes, enoylcoA	37	
		hydratase	e (ech) and feruloylcoAsynthetase (fcs)		
		3.4.2.1	Isolation of known sequence of ech and fcs	37	
			from <i>Pseudomonas</i> sp. AZ10 UPM		
		3.4.2.2	Isolation of full length of <i>ech</i> and <i>fcs</i> genes	38	
		2 4 2 2	from <i>Pseudomonas</i> sp. AZ10 UPM	41	
		3.4.2.3	Isolation of native ribosome binding site	41	
		3.4.2.4	(rbs) sequence and transcriptional terminator Nucelotide sequence determination and	43	
		3.4.2.4	analysis	43	
	3.4.3	Construc	tion of biovanillin expression system with	43	
	3.1.5	Escheric		13	
	3.4.4		tion of biovanillin expression system under the	43	
			f T7 promoter		
	3.4.5	Ligation	*	46	
	3.4.6	Transfor	mation into Escherichia coli BL21 (DE3)	46	
	3.4.7		ntion of insert	46	
		3.4.7.1	Antibiotic plate screening	46	
		3.4.7.2	Restriction enzyme digestion	47	

3

			3.4.7.3	Colony PCR	47
			3.4.7.4	DNA sequence determination and analysis	48
	3.5			ovanillin from ferulic acid by recombinant	48
			ichia coli		
				inant bacterial strains and storage of cultures	48
		3.5.2		ion medium	48
			3.5.2.1	2YT medium	48
		3.5.3		nal expression of the <i>ech</i> and <i>fcs</i> genes in	48
				chia coli BL21 (DE3)	4.0
			3.5.3.1	Inoculum preparation	48
			3.5.3.2		49
				by recombinant <i>Escherichia coli</i> BL21 (DE3)	
		251	E	harbouring pRSFDuet-1/ech-fcs	10
		3.5.4		that affect vanillin production	49
			3.5.4.1	Effects of ferulic acid concentration on	49
			3.5.4.2	vanillin production Effects of IPTG induction level on vanillin	49
			3.3.4.2	production	49
			3.5.4.3	Effects of media on vanillin production	49
		3.5.5		tion of natural substrate, oil palm empty fruit	50
		3.3.3		(OPEFB) alkaline hydrolysate	50
			3.5.5.1	OPEFB alkaline hydrolysate production	50
			3.5.5.2		50
			3.5.5.3		50
				alkaline hydrolysate by recombinant	
				Escherichia coli BL21 (DE3) harbouring	
				pRSFDuet-1/ech-fcs	
		3.5.6	Analytic	al methods	51
4	RES			CUSSION	
	4.1	Isolation	on, screeni	ing and identification of potential biovanillin	52
		produc	ing bacter		
		4.1.1		etric rapid screening to isolate potential ferulic	52
				rading bacteria for biovanillin production	
		4.1.2	Morphol	ogical characterization	54
		4.1.3	Molecula	ar identification of the local isolate	55
			4.1.3.1	Bacterial 16S ribosomal RNA (rRNA)	55
				Identification	
			4.1.3.2	Sequencing and analysis of 16S rRNA PCR	56
		111	Dietmane	amplified fragment	57
		4.1.4		formation of ferulic acid into vanillic acid and by potential local isolate	57
	4.2	Icolatio		anillin producing genes using DNA walking	59
	4.2			truction of biovanillin expression system using	39
		U	y 101 cons ichia coli	duction of biovainini expression system using	
		4.2.1		of known sequence of <i>ech</i> and <i>fcs</i> genes from	59
		⊤.∠.1		nonas sp. AZ10 UPM	3)
		4.2.2		of full length of <i>ech</i> and <i>fcs</i> genes from	62
				agnas en $\Delta 710$ HPM	02

		4.2.3	Construction of biovanillin expression system in	67
			Escherichia coli under the control of T7 promoter	
		4.2.4	Transformation and screening of the transformants	73
		4.2.5	Amino acid sequence analysis with other ech and fcs	76
			genes	
	4.3	One ste	ep biovanillin production from Escherichia coli BL21	80
		(DE3) l	harbouring pRSFDuet-1/ech-fcs	
		4.3.1	Escherichia coli BL21 (DE3) harbouring pRSFDuet-	80
			1/ech-fcs for one step biovanillin production	
		4.3.2	Effect of ferulic acid concentration on vanillin	83
			production	
		4.3.3	Effect of IPTG induction level on vanillin production	85
		4.3.4	Effect of production media on vanillin production	86
		4.3.5	Production of biovanillin from OPEFB alkaline	88
			hydrolysate by recombinant Escherichia coli BL21	
			(DE3) harbouring pRSFDuet-1/ech-fcs	
5			, CONCLUSIONS AND RECOMMENDATIONS	
			RE WORKS	
	5.1	Summa		91
	5.2	Conclu		93
	5.3	Recom	mendations for future work	94
REFER				95
APPEN			NEW 1971	119
BIODA				138
LIST O	F PUI	BLICAT	TIONS	139

LIST OF TABLES

Table		Page
2.1	Physico-chemical properties of vanillin	7
2.2	List of microorganisms that were used to produced vanillic acid from ferulic acid	16
3.1	Source of soil samples used for the isolation and screening of potential ferulic acid degrading bacteria for production of biovanillin and vanillic acid.	33
3.2	Universal primer used for PCR amplification of 16S rRNA gene.	35
3.3	Degenerate primers used for PCR amplification of <i>ech</i> and <i>fcs</i>	37
3.4	Primers with specific restriction enzyme sites for PCR amplification of full length of <i>ech</i> and <i>fcs</i> genes.	44
3.5	Double digestion reaction of <i>ech</i> gene template and vector pRSFDuet-1.	45
3.6	Double digestion reaction of fcs gene template and vector pRSFDuet-1/ech	45
3.7	DNA ligation reaction mixtures	46
4.1	The comparison between AZ10 and other strains related to yield and productivity for vanillic acid (VA) production based on ferulic acid (FA) reduced.	59
4.2	Sequence similarites of <i>ech</i> gene of <i>Pseudomonas</i> sp. AZ10 UPM in compared to other related strains	. 77
4.3	Sequence similarites of <i>fcs</i> gene of <i>Pseudomonas</i> sp. AZ10 UPM in compared to other strains	78
4.4	The unoptimized production of biovanillin from ferulic acid by recombinant <i>E. coli</i>	82
4.5	The optimized studies of biovanillin production from ferulic acid by recombinant <i>E. coli</i>	83
4.6	The difference of cultivation medium used for biovanillin production from ferulic acid	: 88

LIST OF FIGURES

Figure		Page
2.1	Top main world vanilla producers (FAO-STAT, 2014)	5
2.2	Vanillin structure.	6
2.3	Vanilla plant at flowering stage and by-hand pollination.	9
2.4	Valorisation of Kraft lignin by a biorefinery concept: integration of producing vanillin and biopolymers	10
2.5	Two-step process of vanillin production from the petrochemical guaiacol	11
2.6	Ferulic acid structure	13
2.7	Vanillic acid structure	14
2.8	Coenzyme-A-independent (A) and coenzyme-A-dependent deacetylation (B) of ferulic acid to yield vanillin	21
2.9	The organization of structural genes involved in ferulic acid catabolism from different bacteria	22
2.10	The pathway for biovanillin from ferulic acid.	24
3.1	Designed TSPs for the amplification of full length of <i>ech</i> gene based on the known sequence of <i>ech</i> gene obtained from <i>Pseudomonas</i> sp. AZ10 UPM	39
3.2	Designed TSPs for the amplification of full length of fcs gene based on the known sequence of ech gene obtained from Pseudomonas sp. AZ10 UPM.	40
3.3	Designed TSPs for amplification of full length of <i>ech</i> gene.	41
3.4	Designed TSPs for amplification of full length of fcs gene.	43
4.1	Colour changes observed on the screening plate for ferulic acid-degrading bacteria that has potential to produce vanillin and vanillic acid.	53
4.2	pH comparison between VP medium supplemented with and without ferulic acid.	54
4.3	Amplified 1.5 kb PCR band on agarose gel.	56
4.4	The 16S rRNA gene of <i>Pseudomonas</i> sp. AZ10 UPM.	57

4.5	The relationship between microbial growth, ferulic acid consumption and vanillic acid production throughout the fermentation process.	58
4.6	Amplified 530 bp PCR band on agarose gel. Lane 1: GeneRuler™ 1 Kb DNA Ladder	60
4.7	Amplified 900 bp PCR band on agarose gel. Lane 1: GeneRuler™ 1 Kb DNA Ladder	61
4.8	Partial fragment of <i>Pseudomonas</i> sp. AZ10 UPM <i>ech</i> gene consisting of 530 bp size product.	61
4.9	Partial fragment of <i>Pseudomonas</i> sp. AZ10 UPM <i>fcs</i> gene consisting of 827 bp size product	62
4.10	Nucleotide sequence of <i>ech</i> gene from <i>Pseudomonas</i> sp. AZ10 UPM.	63
4.11	Nucleotide sequence of fcs gene from Pseudomonas sp. AZ10 UPM.	65
4.12	Nucleotide sequences of the predicted translational stop codon of <i>ech</i> gene.	66
4.13	Nucleotide sequences of the predicted translational stop codon of fcs gene.	67
4.14	Amplified 915 bp <i>ech</i> PCR band on agarose gel. Lane 1: 1 Kb DNALadder.	68
4.15	Amplified 3829 bp pRSFDuet-1 band on agarose gel.	69
4.16	Schematic representation of the pRSFDuet-1/ech expression system.	70
4.17	Amplified 1917 bp fcs PCR band on agarose gel.	71
4.18	Purified digested pRSFDuet-1 and pRSFDuet-1/ech vectors.	72
4.19	Schematic representation of the pRSFDuet-1/ <i>ech-fcs</i> expression system.	73
4.20	Screening of the positive transformants using colony PCR (ech).	74
4.21	Screening of the positive transformants using colony PCR (fcs).	75
4.22	Restriction enzyme (BamHI) digestion of the extracted plasmid.	76
4.25	Ferulic acid degradation and vanillin production of the recombinant <i>E. coli</i> harbouring pRSFDuet-1/ech-fcs.	81

4.26	Effect of ferulic acid concentration on vanillin production from the <i>E. coli</i> harboring pRSFDuet-1/ <i>ech-fcs</i> in 2YT medium.	84
4.27	Effect of IPTG concentration as an inducer on vanillin production from the <i>E. coli</i> harboring pRSFDuet-1/ <i>ech-fcs</i> in 2YT medium containing 0.1% (w/v) ferulic acid.	86
4.28	Effects of media on vanillin production of the <i>E. coli</i> harboring pRSFDuet-1/ <i>ech-fcs</i> . Ferulic acid was added 0.1% (w/v).	87
4.29	Vanillin production from OPEFB alkaline hydrolysate by recombinant <i>E. coli</i> BL 21 (DE3) harboring pRSFDuet-1/ech-fcs	89

LIST OF ABBREVIATIONS

% v/v percentage volume per volume % w/v percentage weight per volume

FA Ferulic acid VA Vanillic acid

Ech enoyl co-A hydratase Fcs feruloyl co-A synthetase

G Gram

 $\begin{array}{ll} g/L & gram \ per \ liter \\ mg/L & milligram \ per \ liter \end{array}$

HPLC High Performance Liquid Chromatography

KH₂PO₄ Potassium dihydrogen Phosphate

Liter

L

LB Luria-Bertani

M Molar Mg Milligram mL Milliliter

mL/min milliliter per minute

mM Millimolar NaCl sodium chloride

NCBI National Center for Biotechnology Information

ORF Open Reading Frame SD Shine-Dalgarno

PCR Polymerase Chain Reaction

Rpm rotation per minute rRNA ribosomal RNA VP Vanillin producing TB Terrific Broth

μL Microliter

μg/mL microgram per milliliter

μm micrometer

CHAPTER 1

INTRODUCTION

1.1 Background of study

Vanillin is known as a major component that provides the taste and aroma for natural vanilla. Vanilla has been known for many years and used widely as flavouring agents worldwide. South and Central America were the first used this flavour before Europeans arrived in the sixteenth century (Lubinsky et al., 2006). This spice was brought back to Europe by the Spanish explorers which then became very popular there for flavouring of foods. Since then, vanilla became a well known flavouring material. Vanillin is obtained through vanilla beans extraction from Vanilla orchid of *Vanilla planifolia*, *Vanilla tahitiensis* and *Vanilla pompona*.

Based on vanillin worldwide market, Priefert et al. (2001) reported that out of 10,000 tons of vanillin, only 0.5% of the vanillin is isolated from vanilla pods annually. Traditionally, the flavour of vanillin for vanilla ice cream, yoghurt and cakes was extracted from the tropical orchid pods. The strong demand and the fact that this flavouring compound is expensive move the trends towards alternative sources research. Li and Rosazza (2000) also mentioned that the estimated vanillin world consumption is 12,000 tonne per year. However, the extracted natural vanillin from vanilla pods is only 50 tons and the remaining supplies are fromlignin or guaiacol which is the chemically synthesized vanillin (Clark, 1990). Through a reaction with guaiacol and glyoxylate, the production of synthetic vanillin was accomplished. Besides that, Dignum et al. (2001) reported that cell culture of microorganism has been used in order to preserve a "natural" additive claim. The estimated synthetic vanillin production is about 13000 tons per year. Vanillin that is produced synthetically is usually produced from guaiacol which is a petrochemical product. Natural vanillin supplies only 2% of the vanillin market (Havkin-Frenkel and Belanger, 2008). Synthetic vanillin costs approximately USD \$11-15 per kg. However, natural vanillin has a significantly higher price where vanillin produced from microorganism has a price of about USD \$1,000 per kg (Korthou and Verpoorte, 2007; Converti et al., 2010).

Ander et al. (1980), Chatterjee et al. (1999) and Civolani et al. (2000) have been reported that in n order to produce vanillin in an environmental friendly way, microbial conversion has been proposed by using bacteria and fungi to utilize eugenol and ferulic acid as the substrates. Besides that, previous study has adding the knowledge regarding the coding genes of biovanillin producing enzymes from ferulic acid (Overhage et al., 1999; Narbad and Gasson, 1998; Venturi et al., 1998). The recombinant strains carrying target genes for vanillin production also created new opportunities for metabolic engineering routes to be developed. Okeke and Venturi (1999) mentioned that only a few literaturesreported on genetically engineered *E. coli* for the vanillin bioproduction and some of the reported work produced low amount of vanillin

(Achterholt et al., 2000). Previous study by Yoon et al. (2005a) has successfully inserted the *fcs* (feruloyl-CoA synthetase) and *ech* (enoyl-CoA hydratase/aldolase) genes from *Amycolatopsis* sp. strain HR104 and *Delftia acidovorans*. It further developed two recombinant *E. coli* strains under the control of the arabinose-inducible promoter P_{BAD} into the pBAD24 expression vector. The *E. coli* strain carrying the *Amycolatopsis* genes produced the highest vanillin production of 580 mg/L from 1 g/L ferulic acid under optimized growing-cell conditions. The recombinant *E. coli* was constructed by cloning the desired genes that responsible to convert ferulic acid into vanillin.

1.2 Problem statement

Recently, biovanillin production from biotechnology routes has been considered as a potential source of natural vanillin as certified by FDA. Thus, the increasing market request for natural bioflavours has created a great potential in exploring vanillin through biotechnological approaches. One of the approaches is the microbial production of vanillin from ferulic acid. It has been reported that ferulic acid is the attractive precursors for natural vanillin production by Rosazza et al. (1995).

The most available and promising substrates include, ferulic acid extracted from sugar beet pulp as reported by Lesage-Meessen et al. (1999), waste of rice bran oil processing (Zheng et al., 2007) glucose (Li and Frost, 1998; Hansen et al., 2013) and even lignin fragments (Havkin-Frenkel and Belanger, 2008). Separation technologies are maturing (Brazinha et al., 2011) and it is responsible for the industrial-scale production of vanillin from biotechnologies. These processes are still emerging technologies producing high-cost vanillin, which is suitable for the aroma and fragrances field for marketing reasons, but not for potential use in renewable resources-based polymers (Fache et al., 2015).

Furthermore, the increasing worldwide demand for natural vanillin is because of the increasing concerns regarding nutritional and health issue (Ashengroph et al., 2011; Zhao et al., 2006). In addition, there is greater preference for natural vanillin due to the presence of racemic mixtures in synthetic vanillin production (Rana et al., 2013). Therefore, biovanillin that regarded as natural and involved non-chemically process has been investigated by the researchers which can be further utilized in the next future.

Malaysia's economic growth is experiencing a strong development in new oil palm plantations and palm oil mills. Oil palm wastes are highly generated as this industry becomes bigger. It will later provide waste heavy loads thus create the problem of disposal difficulties and will increase the operation cost. Awalludin et al. (2015) describes that the oil palm waste has significant potential in various applications. Moreover, the waste utilization will help to minimize the impacts caused to the environment by recycling oil palm empty fruit bunch (OPEFB). This is due to the serious thought on sustainability of palm oil industry triggers ways on the alkaline treatment strategy for ferulic acid (FA) release from OPEFB fibres (Mohd Aanifah et

al., 2014). Therefore, the FA obtained from these fibers can be great potential to be utilized for vanillin production.

Pseudomonas sp. strains, has been described as the potential biovanillin producers as it has broad versatility in metabolic pathway. Apart from that, it has the ability to metabolize phenolic compound rapidly. Biotransformation of ferulic acid into vanillin has been reported in Pseudomonas putida. However, the major problem by using Pseudomonas sp. was the oxidation of vanillin into vanillic acid. Therefore, the amount of vanillin accumulated at the end of fermentation process was nearly undetectable (Mulheim and Lerch, 1999). As a result, it lowers vanillin production as the desired product. Moreover, Giraud et al. (2014) also described that the problem of ferulic acid conversion to vanillin is due to the vanillin degradation to vanillic acid and vanillyl alcohol and the low amount of vanillin detected is because of the oxidation or reduction process. Furthermore, the oxidation of vanillin was reported in the complex media (Panoutsopoulos and Beedham, 2005; Sachdev et al., 2008). Thus, a research is conducted in order to produce biovanillin through microbial fermentation without further oxidation of vanillin into vanillic acid.

1.3 Objectives

The general objective of this study was to develop recombinant *Escherichia coli* harbouring the biovanillin target genes for simple, faster and stable biovanillin production. This recombinant strain was then tested for its ability to utilize ferulic acid for production of biovanillin. In this work, the recombinant *E. coli* BL21 (DE3) strains transformed into pRSFDuet-1 vector with the insert of *ech* and *fcs* genes from locally isolated *Pseudomonas* sp. AZ10 UPM and named as *E. coli* BL2 (DE3)/ pRSFDuet-1/*ech-fcs*. This recombinant strain was later tested for gene expression and biovanillin production from synthetic ferulic acid and OPEFB alkaline hydrolysate.

The specific objectives of this study are:

- 1. To screen, isolate and identify local biovanillin producing bacteria
- 2. To isolate functional genes and construct recombinant *E. coli* for one step biotransformation of ferulic acid into biovanillin
- 3. To utilize OPEFB as an alternative substrate for biovanillin production using recombinant *E. coli*.

REFERENCES

- Abraham, B.G. and Berger, R.G. 1994. Higher fungi for generating aroma components through novel biotechnologies *Journal of Agricultural and Food Chemistry* 42: 2344–2348.
- Achterholt, S., Priefert, H. and Steinbüchel, A. 1998. Purification and characterization of the coniferyl aldehyde dehydrogenase from *Pseudomonas* sp. strain HR199 and molecular characterization of the gene. *Journal of Bacteriology* 180: 4387–4391.
- Achterholt, S., Priefert, H. and Steinbuchel, A. 2000. Identification of *Amycolatopsis* sp. strain HR167 genes involved in the bioconversion of ferulic acid to vanillin. *Applied Microbiology and Biotechnology* 54,799–807.
- Agrawal, R., Seetharam, Y.N., Kelamani, R.C. and Jyothishwaran, G. 2003. Biotransformation of ferulic acid to vanillin by locally isolated bacterial cultures. *Indian Journal of Biotechnology* 2:610–612.
- Amar, K.M., Misra, M. and Lawrence, T.D. 2005. In *Natural fibers, biopolymers, and biocomposites*, pp. 408-409. United Kingdom: CRC Press.
- Ander, P., Hatakka, A. and Eriksson, K.E. 1980. Vanillic acid metabolism by the white-rot fungus *Sporotrichum pulverulentum*. *Archives of Microbiology* 125:189–202.
- Andreoni, V. and Bestetti, G. 1988. Ferulic acid degradation encoded by a catabolic plasmid. *FEMS Microbiology Ecology* 53: 129–132.
- Andreoni, V., Bernasconi, S. and Bestetti, G. 1995. Biotransformation of ferulic acid and related compounds by mutant strains of *Pseudomonas fluorescens*. *Applied Microbiology and Biotechnology* 42:830–835.
- Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. and Momenbeik, F. 2011. A Novel Isolated Yeast Strain Capable of Transformation of Isoeugenol into Vanillin and Vanillic Acid. *Current Microbiology* 62(3): 990-998.
- Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. and Momenbeik, F. 2012. Conversion of Isoeugenol to Vanillin by *Psychrobacter* sp. Strain CSW4. *Applied Biochemistry and Biotechnology* 166: 1–12.

- Awalludin, M.F., Sulaiman, O., Hashim, R. and Wan Nadhari, W.N.A. 2015. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. *Renewable and Sustainable Energy Reviews* 50: 1469-1484.
- Baljinder, K. and Debkumar, C. 2013. Statistical media and process optimization for biotransformation of rice bran to vanillin using *Pediacoccus acidilactiti*. *Indian Journal of Experimental Biology* 51: 935-943.
- Baneyx, F. 1999. Recombinant protein expression in *Escherichia coli*. Current Opinion in Biotechnology 10: 411-421.
- Barbosa, E.S., Perone, D., Vendramini, A.L.A and Leite, F.G.S 2008. Vanillin production by *Phanerochaete chyrsosporium* grown on green coconut agro-industrial husk in solid state fermentation. *Bioresources* 3(4): 1042-1050.
- Barghini, P., Di Gioia, D., Fava, F. and Ruzzi, M. 2007. Vanillin production using metabolically engineered *Escherichia coli* under non growing conditions. *Microbial Cell Factories* 6: 13-23.
- Brazinha, C., Barbosa, D.S. and Crespo, J.G. 2011. Sustainable recovery of pure natural vanillin from fermentation media in a single pervaporation step. *Green Chemistry* 13(8): 2197–2203.
- Benedict, C.O. and Victorio, V. 1999. Constructions of recombinants *Pseudomonas* putida BO14 and *Escherichia coli* QEFCA8 for ferulic acid biotransformation to vanillin. *Journal of Bioscience Bioengineering* 88: 103–110.
- Betts, W.B. and Dart, R.K. 1988. Screening of fungi and bacteria for their ability to degrade insoluble lignin-related aromatic compounds. *Microbios* 55: 85-93.
- Bibb, M.J., Findlay, P.R. and Johnson, M.W. 1984. The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein coding sequences. *Gene* 30: 157-166.
- Bicas, J.L., Dionisio, A.P. and Pastore, G.M. 2009. Bio-oxidation of terpenes: an approach to Flavour industry. *Chemical Reviews* 109: 4518-4531.

- Bird, P.I., Pak, S.C., Worrall, D.M. and Bottomley, S.P. 2004. Production of recombinant serpin in *Escherichia coli*. *Methods* 32: 169-176.
- Bjorsvik, H.R., Liguori, L. and Minisci, F. 2000. High selectivity in the oxidation of mandelic acid derivates and in o-methylation of protocatechualdehyde: new process for synthesis of vanillin, iso-vanillin and heliotropin. *Organic Process Research and Development* 4: 534–543.
- Bonnin, E., Saulnier, L., Brunel, M., Marot, C., Lesage-Meessen, L., Asther, M. and Thibault, J.F. 2002. Release of ferulic acid from agroindustrial byproducts by the cell wall-degrading enzymes produced by *Aspergillus niger* I-1472. *Enzyme and Microbial Technology* 31: 1000–1005.
- Bornscheuer, U.T., Altenbuchner, J. and Meyer, H.H. 1999. Directed evolution of an esterase: Screening of enzyme libraries based on pH-indicators and growth assay. *Bioorganic and Medicinal Chemistry* 7: 2169–2173.
- Brunati, M., Marinelli, F., Bertolini, C., Gandolfi, R., Daffonchio, D. and Molinari, F. 2004. Biotransformations of cinnamic and ferulic acid with actinomycetes. *Enzyme and Microbial Technology* 34: 3-9.
- Burdsall, H. 1985. A contribution to the taxonomy of the genus *Phanerochaete* (Corticiaceae, Aphyllophorales). *Mycological Memoirs* 10. J. Cramer, Braunschweig, Germany.
- Burri, J., Graf, M., Lambelet, P. and Loiger, J. 1989. Vanillin: more than a flavouring agent a potent antioxidant. *Journal of the Science of Food and Agriculture* 48: 49–56.
- Bushell, M.E. 1988. Growth, product formation and fermentation technology. Actinomycetes in biotechnology. Edited by: Goodfellow M, Williams ST., Modarsky, Academic press, London, UK, pp. 185-217.
- Buswell, J.A. and Eriksson, K.E. 1979. Aromatic ring cleavage by the white-rot fungus *Sporotrichum pulverulentum. FEBS Letters* 104: 258-260.
- Calisti, C., Ficca, A.G., Barghini, P. and Ruzzi, M. 2008. Regulation of ferulic catabolic genes in *Pseudomonas fluorescens* BF13: involvement of a MarR family regulator. *Applied Microbiology and Biotechnology* 80: 475–483.

- Cerrutti, P. and Alzamora, S.M. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purees. *International Journal of Food Microbiology* 29: 379-386.
- Chakraborty, D., Gupta, G. and Kaur, B. 2016. Metabolic engineering of *E. coli* top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. *Protein Expression and Purification* 128: 123-133.
- Chatterjee, T., De, B.K. and Bhattacharyya, D.K. 1999. Microbial conversion of isoeugenol to vanillin by *Rhodococcus rhodochrous*. *Indian Journal of Chemistry* 38: 538–541.
- Chart, H., Smith, H.R., La Ragione, R.M. and Woodward, M.J. 2000. An investigation into the pathogenic properties of *Escherichia coli* strain BLR, BL21, DH5α and EQ1. *Journal of Applied Microbiology* 89: 1048-1058.
- Cheetham, P.S.J. 1997. Combining the technical push and the business pull for natural flavours. In: *Advances in Biochemical Engineering Biotechnology* ed. T. Scheper, pp. 1–49.
- Chen, P., Yan, L., Wu, Z., Li, S., Bai, Z., Yan, X., Wang, N., Liang, N. and Li, H. 2016. A microbial transformation using *Bacillus subtilis* B7-S to produce natural vanillin from ferulic acid. Scientific Reports 6: Article no 20400.
- Choi, J.H., Keum, K.C. and Lee, S.Y. 2006. Production of recombinant protein by high cell density culture of *Escherichia coli*. Chemical Engineering Science 61: 876-885.
- Choi, J.H. and Lee, S.Y. 2004. Secretory and extracellular production of recombinant protein using *Escherichia coli*. *Applied Microbiology and Biotechnology* 64: 625-635.
- Ciftci, C., Constantinides, A. and Wang, S.S. 1983. Optimization conditions of cell feeding procedures for alcohol fermentation. *Biotechnology and Bioengineering* 25: 2007-2023.
- Civolani, C., Barghini, P., Roncetti, A.R., Ruzzi, M. and Schiesser, A, 2000. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of *Pseudomonas fluorescens* strain BF13. *Applied and Environmental Microbiology* 66: 2311–2317.

- Clarridge, J.E. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. *Clinical Microbiology Reviews* 17 (4): 840–862.
- Clark, G.S. 1990. Vanillin Perfum. Flavour 15: 45–54.
- Converti, A., Perego, P., Del Borghi, M., Parisi, F. and Ferraiolo, G. 1986. Kinetic considerations about the study of alcoholic fermentations of starch hydrolysate. *Biotechnology and Bioengineering* 28:711-717.
- Converti, A., Aliakbarian, B., Domínguez, J.M., Vázquez, G. and Bustos Perego, P. 2010. Microbial production of biovanillin. *Brazillian Journal of Microbiology* 41(3): 519-530.
- Cruz, J.M., Dominguez, J.M., Dominguez, H. and Parajo, J.C. 2001. Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. *Journal of Agricultural and Food Chemistry* 49: 2459–2464.
- da Silvaa, E.A.B., Zabkovaa, M., Araújo, J.D., Cateto, C.A., Barreiro, C.A., Belgacem, M.N. and Rodrigues, A.E. 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. *Chemical Engineering Research and Design* 87: 1276–1292.
- Das, H. and Singh, S. 2004. Useful byproducts from cellulosic wastes of agriculture and food industry A critical appraisal. *Critical Reviews in Food Science and Nutrition* 44: 77-89.
- Davidson, P.M. and Naidu, A.S. 2000. Phyto-phenols. In *Natural food antimicrobial systems*, ed. A.S. Naidu. Boca Raton, London: CRC Press.
- De Andrade, H.H., Santos, J.H., Gimmler-Luz, M.C., Correa, M.J., Lehmann, M. and Reguly, M.L. 1992. Suppressing effects of vanillin on chromosome aberrations that occurs spontaneously or are induced by mitomycin C in the germ cell line of *Drosophila melanogaster*. *Mutatation Research* 279: 281–287.
- Degrassi, G., DeLaureto, P.P. and Bruschi, C.V. 1995. Purification and characterization of ferulate and p-coumarate decarboxylase from *Bacillus pumilus*. *Applied and Environmental Microbiology* 1: 326–332.

- Demirbas, A. 2008. Products from lignocellulosic materials via degradation processes. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 30: 27 37.
- Deraman, M. 1993. Carbon Pellets Prepared from Fibers of Oil Palm Empty Fruit Bunches: 1. A Quantitative X-ray Diffraction Analysis, PORIM. Palm Oil Research Institute Malaysia.
- deVries, R.P., Kester, H.C.M., Poulsen, C.H., Benen, J.A.E. and Visser, J. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. *Carbohydrate Research* 327: 401–410.
- Dignum, M.J.W., Kerler, J. and Verpoorte, R. 2001. Vanilla production: technological, chemical, and biosynthetic aspects. *Food Reviews International* 17: 199–219.
- Di Gioia, D., Fava, F., Luziatelli, F. and Ruzzi, M. 2011. Reference module in *Earth Systems and Environmental Sciences*. Comprehensive Biotechnology (Second Edition) pp. 661-667.
- Eggeling, L. and Sahm, H. 1980. Regulation of alcohol oxidase synthesis in *Hansenula polymorpha*: Oversynthesis during growth on mixed substrates and induction by methanol. *Archives of Microbiology* 127: 119–124.
- Esposito, L.J., Formanek, K., Kientz, G., Mauger, F., Maureaux, V., Robert, G. and Truchet, F. 1997. In *Kirk-Othmer Encyclopedia of Chemical Technology*, fourth ed. pp. 812–825. New York, USA: John Wiley Sons.
- European Commission, 2008. European Commission regulation no 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending regulation (EC) no 1601/91 of the Council, regulations (EC) no 2232/96 and (EC) no 110/2008 and directive 2000/13/EC.
- Exley, R. 2010. Vanilla production, processing and packaging. *International ISS Institute/DEEWR Trades Fellowship*, supported by the Department of Education, Employment and Workplace Relations, Australian Government.
- Fache, M., Boutevin, B. and Cailol, S. 2015. Vanillin, a key-intermediate of biobased polymers. *European Polymer Journal* 68: 488-502.

- FAO-STAT, Food and Agriculture Organization of The United Nations Statistical Database, 2014. Available at http://faostat.fao.org/ Retrieved 4 August 2014.
- Farnet, A.M., Criquet, S., Cigna, M., Gil, G. and Ferre, E. 2004. Purification of laccase from *Marasimus querchophilus* induced with ferulic acid. Reactivity towards xenobiotic and aromatic compounds. *Enzyme and Microbial Technology* 34: 549-554.
- Faulds, C.B., Mandatari, G., Lo Curto, R.B., Bisognan, G. and Waldron, K.W. 2004. Arabinoxylan and mono- and dimeric ferulic acid release from brewer's and wheat bran by feruloyl esterases and glycosyl hydrolases from *Humicolar insolens*. *Applied Microbiology and Biotechnology* 64: 644–650.
- Faulds, C.B., Mandalari, G., Lo Curto, R.B., Bisignano, G., Christakopoulos, P. and Waldron, K.W. 2005. Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acid from cereal arabinoxylan. *Applied Microbiology and Biotechnology* 43:1–8.
- Faveri, D., Torre, P., Aliabarian, B., Domingueuz, J.M., Perego, P. and Converti, A. 2007. Response surface modeling of vanillin production by *E. coli* JM109 pBB1. *Biochemical Engineering Journal* 36: 268-275.
- Fengel, D. and Wegener, G. 1989. Wood—Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.
- Finkle, B.J., Lewis, J.C., Corse, J.W. and Lundi, R.E. 1962. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by *Aerobacter*. *Journal of Biological Chemistry* 237: 2926–2931.
- Fleige, C., Hansen, G., Kroll, J. and Steinbuchel, A. 2013. Investigation of the *Amycolatopsis* sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin. *Applied Environmental Microbiology* (79): 81-90.
- Fleige, C. and Steinbuchel, A. 2014. Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete *Amycolatopsis* sp. ATCC 39116. *Applied Microbiology and Biotechnology* 98(14): 6387-6395.

- Fridge, 2004. Study into the establishment of an aroma and fragrance fine chemicals value chain in South Africa (Tender number T79/07/03).
- Foyle, T., Jennings, L. and Mulcahy, P. 2007. Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. *Bioresource Technology* 98: 3026-3036.
- Galbe, M. and Zacchi, G. 2007.Pretreatment of lignocellulosic materials for efficient bioethanol production. *Advances in Biochemical Engineering and Biotechnology* 108: 41-65.
- Gasson, M.J., Kitamura, Y., Mclauchlan, W.R., Narbad, A., Parr, A.J., Lindsay, E., Parson, H., Payne, J., Rhodes, M.J.C. and Walton, N.J. 1998. Metabolism of ferulic acid to vanillin a bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. *Journal of Biological Chemistry* 273: 4163–4170.
- Gellerstedt, G. and Lindfors, E.L. 1984. Lignin Separation from Kraft Black Liquor by Tangential Ultrafiltration. *Holzforchung*. 38(3): 151-158.
- Ghosh, S., Sachan, A., Mitra, A. 2006. Formation of vanillic acid from ferulic acid by *Paecilomyces variotii* MTCC 6581. *Current Science* 90: 825–829.
- Gibbons, B.H. and Edsall, J.T. 1963. Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25°C. *Journal of Biological Chemistry* 238: 3502.
- Giraud, W., Mirabel, M. and Comtat, M. 2014. Electroanalysis may be used in the Vanillin Biotechnological Production. 172(4): 1953-1963.
- González Baró, A.C., Parajón Costa, B.S., Franca, C.A. and Pis Diez, R. 2008. Theoretical and spectroscopic study of vanillic acid. *Journal of Molecular Structure* 889: 204-210.
- Goodenough, D.R. 1982. Vanilla, vanillin and vanillin derivatives. *Food and Beverage Mycology* 56: 8-10.
- Gould, G. 1996. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. *Journal of Food Protection, Supplement* 59: 82–86.

- Graf, E. 1992.Antioxidant potential of ferulic acid. Free Radicals Biology and Medicine 13: 435-448.
- Gram, H.C. 1884. Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten". Fortschritte der Medizin (in German) 2:185–189. English translation in: Brock, T.D. 1999. *Milestones in Microbiology* 1546–1940 (2 ed.). ASM Press. pp. 215–218.
- Grbic-Galic, D., Pat-Polasko, L.L. 1985. *Enterobacter cloacae* DG-6: a strain that transforms methoxylated aromatics under aerobic and anaerobic conditions. *Current Microbiology* 12: 321–324.
- Groot, B.D., Dam, J.E.G.V. and Riet, K.V. 1995. Simplified Kinetic Modeling of Alkaline Delignification of Hemp Woody Core. *Holzforchung* 332-342.
- Gunnarsson, N. and Palmqvist, E.A. 2006. Influence of pH and carbon source on the production of vanillin from ferulic acid by *Streptomyces setonii* ATCC 39116. *Develomentof Food Science* 43: 73-76.
- Gurujeyalakshmi, G. and Mahadevan, A. 1987. Dissimilation of ferulic acid by *Bacillus subtilis*. *Current Microbiology* 16: 69-73.
- Guzman, L.M., Belin, D., Carson, M.J. and Beckwith, J. 1995. Tight regulation, modulation, and high level of expression by vectors containing the arabinose PBAD promoter. *Journal of Bacteriology* 177(14): 4121-4130.
- Hagedorn, S. and Kaphammer, B. 1994. Microbial biocatalysis in the generation of flavour and fragrance chemicals. *Annual Review of Microbiology* 48: 773-800.
- Hansen, E.H., Moller, B.L., Kock, G.R., Bunner, C.M., Kristensen, C. and Jensen, O.R. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Applied Environmental and Microbiology 75(9): 2765–2774.
- Hansen, J., Hansen, E.H., Sompalli, H.P., Sheridan, J.M., Heal, J.R. and Hamilton, W.D.O. 2013. Compositions and methods for the biosynthesis of vanillin or vanillin beta-d-glucoside. WO2013022881A8.
- Harris, P.J. and Hartley, R.D. 1980. Phenolic constituents of the cell walls of monocotyledons. *Biochemical Systematics and Ecology* 8: 153-160.

- Hartley, R.D. and Harris, P.J. 1981. Phenolic constituents of the cell walls of dicotyledons. Biochemical Systematics and Ecology 9: 189-203.
- Havkin-Frenkel, D. and Belanger, F. 2008. Biotechnological Production of Vanillin. In *Biotechnology in Flavor Production*. Oxford: Blackwell Publishing Ltd, pp. 83-98.
- Henderson, M.E.K. 1961. Isolation, identification and growth of some soil hyphomycetes and yeast-like fungi which utilize aromatic compounds related to lignin. *Journal of General Microbiology* 26: 149-154.
- Higuchi, T. 1990. Lignin biochemistry: Biosynthesis and biodegradation. *Wood Science and Technology* 24: 23-63.
- Ho, K., Yazana, L.S., Ismail, N. and Ismail, M. 2009. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. *Cancer Epidermology* 33: 155-160.
- Hocking, M.B. 1997. Vanillin: Synthetic Flavouring from Spent Sulfite Liquor. Journal of Chemical Education 74: 1055- 1059.
- Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z.and Xu, P. 2007. Enhanced vanillin production from ferulic acid using adsorbent resin. *Applied Microbiology and Biotechnology* 74: 783-790.
- Huang, Z., Dostal, L. and Rosazza, J.P.N. 1993. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Applied and Environmental Microbiology 59: 2244–2250.
- Huang, Z.X., Dostal, L. and Rosazza, J.P.N. 1994. Purification and characterization of a ferulic acid decarboxylase from *Pseudomonas fluorescens*. *Journal of Bacteriology* 176: 5912–5918.
- Iekhsan, O., Jaya, V., Mustaffa, M.A. and Rais, M.M. 1998. 8th FAOBMB Congress: Antitoxin compounds from the plant extracts of Ipomea pes-caprae. Kuala Lumpur, Malaysia: pp. 20.
- Inouye, T., Sasaki, Y.F., Imanishi, H., Watanabe, M., Ohta, T. and Shirasu, Y. 1988. Suppression of mitomycin C-induced micronuclei in mouse marrow cells by post-treatment with vanillin. *Mutation Researth* 202: 93–95.

- Ishikawa, H., Schubert, W.J. and Nord, F.F. 1963. Investigations on lignin and lignification. XXVII. The enzymatic degradation of softwood lignin by white rot fungi. *Archives of Biochemistry and Biophysics* 100: 131–139.
- Jurkova, M. and Wurst, M. 1993.Biodegradation of aromatic carboxylic acids by *Pseudomonas mira. FEMS Microbiology Letters* 111: 245–250.
- Karmakar, B., Vohra, R.M., Nandanwar, H., Sharma, P., Gupta, K.G. and Sobti, R.C. 2000. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of *Bacillus coagulans*. *Journal of Biotechnology* 80: 195–202.
- Kaur, B. and Chakraborty, D. 2013. Biotechnological and Molecular Approaches for Vanillin Production: a Review. *Applied Biochemistry and Biotechnology* 169(4): 1353-1372.
- Kirk, T.K. 1971. Effects of microorganisms on lignin. *Annual Review of Phytopathology* 9: 185–210.
- Kolbert, C.P. and Persing, D.H. 1999. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. *Current Opinion in Microbiology* 2(3): 299–305.
- Kometani, T., Tanimoto, H., Nishimura, T. and Okada, S. 1993. Glucosylation of vanillin by cultured plant cells. *Bioscience*, *Biotechnology and Biochemistry* 57: 1290–1293.
- Korthou, H. and Verpoorte, R. 2007. Vanilla. In Berger, R. Flavours and Fragrances Chemistry. *Bioprocessing and Sustainability*, Berlin: Springer. pp. 203-217.
- Krings, U. and Berger, R.G. 1998. Biotechnological production of flavours and fragrances. *Applied Microbiology and Biotechnology* 49: 1-8.
- Krishna, A.G.G., Khatoon, S. and Shiela, P.M. 2001. Effect of refining of crude rice bran oil on the retention of oryzanol in the refined oil. *Journal of the American Oil Chemist's Society* 78: 127–131.
- Kurzin, A.V., Platonov, A., Yu Evstigneev, E.I. and Maiorova, E.D. 1997. Nucleophilicity and Basicity of Phenols in the Aminolysis of Corresponding Aryl Acetates with Piperidine. *Russian Journal of General Chemistry* 67: 1475.

- Labuda, I.M., Keon, K.A. and Goers, S.K. 1993. In: Schreier, P., Winterhalter, P. (Eds.), Progress in Flavour Percursor Studies: Analysis, Generation, Biotechnology (Proceedings of the International Conference, Würzburg). Allured Publishing Corp., Carol Stream, IL, pp. 477.
- Lee, E.G., Yoon, S.H., Das, A., Lee, S.H., Li, C., Kim, J.Y., Choi, M.S., Oh, D.K. and Kim, S.W. 2009. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant *Escherichia coli*. *Biotechnology and Bioengineering* 102(1): 200-208.
- Lesage-Meessen, L., Delattre, M., Haon, M., Thibault, J.F., Ceccaldi, B.C., Brunerie, P. and Asther, M. 1996. A two-step bioconversion process for vanillin production from ferulic acid combining *Aspergillus niger* and *Pycnoporus cinnabarinus*. *Journal of Biotechnology* 50: 107–113.
- Lesage-Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther. M., Moukha, S., Record, E., Sigoillot, J.C. and Asther, M. 1999. Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. *Journal of the Science of Food and Agriculture* 79: 487–490.
- Lesage-Meessen, L., Lomascolo, A., Bonnin, E., Thibault, J.F., Buleon, A., Roller, M., Asther, M., Record, E., Ceccaldi, B.C. and Asther, M. 2002. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. *Applied Biochemistry and Biotechnology* 102: 141-153.
- Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S. and Wang, S.I. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. *Science* 275: 1943–1947.
- Li, K. and Frost, J. 1998. Synthesis of vanillin from glucose. *Journal of the American Chemical Society* 120 (40): 10545–10546.
- Li, T. and Rosazza, J.P.N. 2000. Biocatalytic synthesis of vanillin. *Applied and Environmental Microbiology* 66: 684-687.
- Li, X., Yang, J., Li, X., Gu, W., Huang, J. and Zhang, K. 2008. The metabolism of ferulic acid via 4-vinylguaicol to vanillin by *Enterobacter* sp. PX6-4 isolated from vanilla root. *Process Biochemistry* 43: 1132-1137.

- Liese, A. and Villela, M.F. 1999. Production of fine chemicals using biocatalysis. *Current Opinion in Biotechnology* 10: 595-603.
- Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M.K., Saitoh, Y. and Aozuka, Y. 2005. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. *Journal of Pharmaceutical Science* 25: 57–65.
- Lomascolo, A., Stentelaire, C., Asther, M. and Lesage-Meessen, L. 1999. Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. *Trends in Biotechnology* 17: 282-289.
- Lopez-Malo, A., Alzamora, S.M. and Agraiz, A. 1995. Effect of natural vanillin on germination time and radial growth rate of moulds in fruit agar systems. *Food Microbiology* 12: 213–219.
- Lowry, O.H., Roberts, N.R., Wu, M.-L., Hixon, W.S. and Crawford, E.J. 1954. The quantitative histochemistry of brain II Enzyme measurements. *The Journal of Biological Chemistry* 207: 19–37.
- Lubinsky, P., Van Dam, M., Van Dam, A.2006. Pollination of *Vanilla* and evolution in Orchidaceae. *Lindleyana* 75: 926–929.
- Lun, O.K., Wai, T.B. and Ling, L. S. 2014. Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. *International Food Research Journal* 21(3): 953-958.
- Makkar, H.P.S. and Beeker, K. 1994. Isolation of tannins from leaves of some trees and shrubs and their properties. *Journal of Agriculture and Food Chemistry* 42: 731–734.
- Markus, P.H., Peters, A.L.J. and Roos, R. 1992. Process for the preparation of phenylaldehydes. European Patent. EP No 542348.
- Martínez-Cuesta, M.C., Gasson, M.J. and Narbad, A. 2005. Heterologous expression of the plant coumarate: CoA ligase in *Lactococcus lactis*. *Letters in Applied Microbiology* 40(1): 44–49.

- Masai, E., Harada, K., Peng, X., Kitayama, H., Katayama, Y. and Fukuda, M. 2002. Cloning and characterization of the ferulic acid catabolic genes of *Sphingomonas paucimobilis* SYK-6. *Applied Environmental and Microbiology* 68: 4416-4424.
- Mathew, S. and Abraham, T.E. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. *Critical Reviews in Biotechnology* 24: 59-83.
- Mathew, S. and Abraham, T.E. 2006. Bioconversion of ferulic acid, an hydroxycinnamic acid. *Critical Reviews in Microbiology* 32: 115-125.
- Mechichi, T., Labat, M., Garcia, J.L., Thomas, P. and Patel, B.K.C 1999. *Sporobacterium olearium* gen sp. a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester. *International Journal of Systematic Bacteriology* 49: 1741-1748.
- Micard, V., Renard, C.M.G.C. and Thibault, J.F. 1996. Enzymatic saccharification of sugar beet pulp. *Enzyme and Microbial Technology* 19: 162 170.
- Misra, S., Sachan, A. and Sachan, S.G. 2013. Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. *Journal of Indian Microbiology and Biotechnology* 40(6): 545-550.
- Mohamad Ibrahim, M.N., Nor Nadiah, M.Y. and Azian, H. 2006. Comparison Studies Between Soda Lignin and Soda-Anthraquinone Lignin in Terms of Physico-Chemical Properties and Structural Features. *Journal of Applied Sciences* 6(2): 292-296.
- Mohammad Ibrahim, M.N., Mohammad Yusuf, N.N, Mohd Salleh, N., Sipaut C.S and Sollehuddin, S. 2008. Separation of Vanillin from Oil Palm Empty Fruit Bunch Lignin. *Clean* 3: 287 291.
- Mohd Aanifah, F.J, Aziz, S, Phang, L.Y., Wasoh, H. 2014. Effect of different alkaline treatment on the release of ferulic acid from oil palm empty fruit bunch fibres. *Journal of Oil Palm Research* 26(4): 321-331.
- Mtui, G. and Nakamura, Y. 2005. Bioconversion of lignocellulosic waste from selected dumping sites in Dar es Salaam. *Tanzania Biodegradation* 16: 493-499.

- Mtui, G. 2007. Trends in industrial and environmental biotechnology research in Tanzania. *African Journal of Biotechnology* 6: 2860-2567.
- Muchuweti, M., Zenda, G., Ndhlala, A.R. and Kasiyamhuru, A. 2005. Sugars, organic acid and phenolic compounds of *Ziziphus mauritiana* fruit. *European Food Research and Technology* 221: 570-574.
- Muheim, A., Häusler, A., Schilling, B. and Lerch, K. 1997. Proceeding of a Conference: The impact of recombinant DNA-technology on the flavour and fragrance industry. In: *Flavours and Fragrances*, pp.11–20, Warwick. Cambridge: Royal Society of Chemistry.
- Mulheim, A. and Lerch, K. 1999. Towards a high yield bioconversion of ferulic acid to vanillin. *Applied Microbiology and Biotechnology* 51: 456–61.
- Muheim, A., Muller, B., Munch, T. and Wetli, M. 2001. Microbiological process for producing vanillin. US Patent No 6235507.
- Muller-Newen, G., Janssen, U. and Stoffel, W. 1995. Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue. *European Journal of Biochemistry* 228: 68–73.
- Muller, U., Steinberger, D. and Németh, A.H. 1998. Clinical and molecular genetics of primary dystonias. *Neurogenetics* 1: 165–177.
- Narbad, A. and Gasson, M.J. 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of *Pseudomonas fluorescens*. *Microbiology* 144: 1397–1405.
- Nazareth, S. and Mavinkurve, S. 1986. Degradation of ferulic acid via 4-vinylguaiacol by *Fusaritlm sofani* (Mart.) Sacc. *Canadian Journal of Microbiology* 32:494-497.
- Nicholas, J.W., Arjan, N., Craig, B.F. and Gary, W. 2000. Novel approaches to the biosynthesis of vanillin. *Current Opinion in Biotechnology* 11: 490–496.
- Novy, R., Yaeger, K., Held, D. and Mierendorf, R. 2002. Novagen Innovations News 15: 2–6.

- Oddou, J., Stentelaire, C., Lesage-Meessen, L., Asther, M. and Ceccaldi, B.C. 1999. Improvement of ferulic acid bioconversion into vanillin by use of high-density cultures of *Pycnoporus cinnabarinus*. *Applied Microbiology and Biot*echnology 53: 1–6.
- Odoux, E., Escoute, J., Verdeil, J.L. and Brillouet, J.M. 2003. Localization of β- D-glucosidase activity and glucovanillin in vanilla bean (*Vanilla planifolia* Andrews). *Annals of Botany* 92: 437–444.
- Okeke, B. and Venturi, V. 1999. Construction of recombinants *Pseudomonas putida* B014 and *E. coli* QEFCA8 for ferulic acid biotransformation to vanillin. *Journal of Bioscience and Bioengineering* 88: 103-106.
- Ou, S. and Kwok, K.C. 2004. Ferulic acid: pharmaceutical functions, preparation and applications in foods. *Journal of the Science of Food and Agriculture* 84: 1261-1269.
- Ou, S., Luo, Y., Xue, F., Huang, C., Zhang, N. and Liu, Z. 2007. Separation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. *Journal of Food Engineering* 78:1298–1304.
- Overhage, J., Priefert, H. and Steinbuchel, A. 1999.Biochemical and genetic analyses of ferulic acid catabolism in *Pseudomonas* sp. HR199. *Applied Environmental and Microbiology* 65: 4837–4847.
- Overhage, J., Steinbüchel, A. and Priefert, H. 2003. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of *Escherichia coli*. Applied *Environmental Microbiology* 69: 6569–6576.
- Overhage, J., Steinbüchel, A. and Priefert, H. 2006. Harnessing eugenol as a substrate for production of aromatic compounds with a recombinant strains of *Amycolatopsis* sp. HR167. *Journal of Biotechnology* 125: 369–376.
- Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R. and Roussos, S. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. *Biochemical Engineering Journal* 6: 53-162.
- Panoutsopoulos, G. I. and Beedham, C. 2005. Enzymatic Oxidation of Vanillin, Isovanillin and Protocatechuic Aldehyde with Freshly Prepared Guinea Pig Liver Slices. *Cellular Physiology and Biochemistry*. *15*:89–98.

- Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santi ago, J., Rodrigues, A. and Chow, T.F. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. *Science* 324: 1068–1071.
- Patel, J.B. 2001.16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. *Molecular Diagnosis* 6: 313-321.
- Peng, X., Misawa, N. and Harayama, S. 2003. Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. *Applied Environmental and Microbiology* 69: 1417-1427.
- Pereira, F., Carneiro, J., Matthiesen, R., van Asch, B., Pinto, N., Gusmao, L. and Amorim, A. 2010. Identification of species by multiplex analysis of variable-length sequences. *Nucleic Acids Research* 38 (22): e203–e203.
- Plaggenborg, R., Steinbuchel, A. and Priefert, H. 2001. The coenzyme A dependent, non-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in *Delftia acidovorans*. *FEMS Microbiology Letters* 205: 9–16.
- Plaggenborg, R., Overhage, J., Steinbuchel, A. and Priefert, H. 2003. Functional analyses of genes involved in the metabolism of ferulic acid in *Pseudomonas putida* KT2440. *Applied Microbiology and Biotechnology* 61: 528-535.
- Plaggenborg, R., Overhage, J., Loos, A., Archer, J.A., Lessard, P., Sinskey, A.J., Steinbüchel, A. and Priefert, H. 2006. Potential of *Rhodococcus* strains for biotechnological vanillin production from ferulic acid and eugenol. *Applied Microbiology and Biotechnology* 72 (4): 745-755.
- Priefert, H., Rabenhorst, J. and Steinbuchel, A. 1997. Molecular characterization of genes of *Pseudomonas* sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. *Journal of Bacteriology* 179: 2595-2607.
- Priefert, H., Rabenhorst, J. and Steinbuchel, A. 2001. Minireview: Biotechnological production of vanillin. *Applied Microbiology and Biotechnology* 56: 296–314.
- Prince, R.C. and Gunson, D.E. 1994. Just plain vanilla. *Trends in Biochemical Sciences* 19: 521.

- Purseglove, J.W., Brown, E.G., Green, C.L. and Robbi, S.R.J. 1981. SjJices.Vall, London, Longman, pp. 255.
- Qi, B.C., Aldrich, C., Lorenzen, L. and Wolfaardt, G.W. 2005. Acidogenic fermentation of lignocellulosic substrate with activated sludge. *Chemical Engineering Communications* 192: 1221-1242.
- Rabenhorst, J. and Hopp, R. 1997. Process for the preparation of vanillin and suitable microorganisms. European Patent 0761817.
- Rabenhorst, J. and Hopp, R. 2000. Process for the preparation of vanillin and suitable microorganisms. US Patent No 6133003.
- Ramachandra Rao, S. and Ravishankar, G.A. 1999. Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of *Capsicum frutescens*: study of the influence of β-cyclodextrin and fungal elicitor. *Process Biochemistry* 35: 341–348.
- Ramachandra Rao, S. and Ravishankar G.A. 2000. Vanilla flavour: production by conventional and biotechnological routes. *Journal of the Science of Food and Agriculture* 80: 289–304.
- Ramesh, C.K., Upendra, K.S., Nandini, S. and Arun, K.S. 2007. Isolation and Identification of a Novel Strain of *Pseudomonas chlororaphis* Capable of Transforming Isoeugenol to Vanillin. *Current Microbiology* 54: 457-461.
- Rana, R., Mathur, A., Jain, C., Sharma, S. and Mathur, G. 2010. Microbial production of vanillin. *Brazillian Journal of Microbiology* 41: 519–530.
- Rana, R., Mathur, A., Jain, C., Sharma, S. and Mathur, G. 2013. Microbial Production of Vanillin. *International Journal of Biotechnology and Bioengineering Research* 4(3): 227-234.
- Ranadive, A.S. 2005. Vanilla cultivation. In: Vanilla: The first international congress. Princeton: NJ: Allured, Carol Stream. pp 25–32.
- Rapid Sobti, R.C., Gupta, K.G., Sharma, P., Karmakar, B., Vohra, R.M. and Nandanwar, H. 2000. Degradation of Ferulic acid via 4-vinylguiacol and vanillin by a newly isolated strain of *Bacillus coagulans*. *Journal of Biotechnology* 80: 195–202.

- Retnakaran, A. 1984. Repellent for black fly. US Patent No 4427700.
- Rhodia Members of the Solvay Group, 2011. Vanillin GPS Safety Summary Revision.
- Rodríguez, G., Lama, A., Rodríguez, R., Jiménez, A., Guilléna, R. and Fernández-Bolaños, J. 2008. Olive stone an attractive source of bioactive and valuable compounds. *Bioresource Technology* 99: 5261-5269.
- Roig, A., Cayuela, M.L. and Sánchez-Monedero, M.A. 2006. An overview on olive mill wastes and their valorisation methods. Waste Management 26: 960-969.
- Rosazza, J.P.N., Huang, Z., Dostal, L., Volm, T. and Rousseau, B. 1995. Review: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. *Journal of Industrial Microbiology* 15: 457–471.
- Rucker, P., Torti, F.M. and Torti, S.V. 1997. Recombinant ferritin: Modulation of subunit stoichiometry in bacterial expression systems. *Protein Engineering* 10: 967–973.
- Ruzzi, M., Luziatelli, F. and Di Matteo, P. 2008. Genetic engineering of *Escherichia coli* to enhance biological production of vanillin from ferulic acid. *Journal of Animal Science and Biotechnology* 65: 4–8.
- Sachdev, D., Dubey, A., Mishra, B. G. and Kannan, S. 2008. Environmentally benign liquid phase oxidation of vanillin over copper containing ternary hydrotalcites. *Catalysis Communications* 9: 391–394.
- Sasaki, Y.F., Ohta, T., Imanishi, H., Watanabe, M., Matsumoto, K., Kato, T. and Shirasu, Y. 1990. Suppressing effects of vanillin, cinnamaldehyde and anisaldehyde on chromosome aberrations induced by X-rays in mice. *Mutatation Research* 243: 299–302.
- Scalbert, A., Monties, B., Guittet, E. and Lallemand, J.Y. 1986. Comparison of Wheat Straw Lignin Preparations. I: Chemical and Spectroscopic Characterization. *Holzforchung* 40: 191-195.
- Schreier, P. 1992. Bioflavours: an overview. In: *Biotransformation of Flavours*, ed. R.L.S., Patterson Charlwood, B.V. MacLeo, and A.A. Williams, pp. 1. Cambridge, UK: The Royal Society of Chemistry.

- Semmelroch, P., Laskawy, G., Blank, I. and Grosch, W. 1995. Determination of potent odourants in roasted coffee by stable isotope dilution assays. *Flavour and Fragrance Journal* 10: 1-7.
- Serra, S., Fuganti, C. and Brenna, E. 2005.Biocatalytic preparation of natural flavours and fragrances. *Trends in Biotechnology* 23: 193–198.
- Shakeri, A., Rad, S.M. and Ghasemian, A. 2013. Oxidative Production of Vanillin from Industrial Lignin Using Oxygen and Nitrobenzene: A Comparative Study. *International Journal of Farming and Allied Sciences* 2(24): 1165-1171.
- Shimoni, E., Ravid, U. and Shoham, Y. 2000. Isolation of a *Bacillus* sp. capable of transforming isoeugenol to vanillin. *Journal of Biotechnology* 78: 1–9.
- Shin, H.D. and Chen, R.R. 2006. Production and characterization of a type B feruloyl esterase from *Fusarium proliferatum* NRRL 26517. *Enzyme and Microbial Technology* 38: 478–485.
- Song, J.W., Lee, E.G., Yoon, S.H., Lee, S.H., Lee, J.M., Lee, S.G. and Kim, S.W. 2009. Poster no 125 (session 1), SIM annual meeting and exhibition. Industrial Microbiology and. Biotechnology. Westin harbor castle, Toronto ON, Canada.
- Sorensen, H.P., and Mortensen, K.K. 2005. Advanced genetics strategies for recombinant protein expression in *Escherchia coli*. *Journal of Biotechnology* 115: 113-128.
- Stentelaire, C., Lesage-Meessen, L., Oddou, J., Bernard, O., Bastin, G., Ceccaldi, B.C. and Asther, M. 2000. Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by *Pycnoporus cinnabarinus*. *Journal of Bioscience and Bioengineering* 89: 223-230.
- Sudiyani, Y. and Hermiati, E. 2010. Utilization of oil palm empty fruit bunch (OPEFB) for bioethanol production through alkali and dilute acid pretreatment and simultaneous saccharification and fermentation. *Indonesian Journal of Chemistry* 10(2): 261-267.
- Sullivan, M.L. and Zarnowski, R. 2010. Red clover coumarate 3'-hydroxylase (CYP98A44) is capable of hydroxylating p-coumaroyl-shikimate but not p-coumaroyl-malate: implications for the biosynthesis of phaselic acid. *Planta* 231: 319–328.

- Sutherland, J.B., Crawford, D.L. and Pometto III, A.L. 1983. Metabolism of cinnamic, p-coumaric and ferulic acids by *Streptomyces setonii*. *Canadian Journal of Microbiology* 29: 1253–1257.
- Tabor, S. and Richardson, C.C. 1985. A bacteriophage T7 RNA polymerase/ promoter system for control exclusive expression of specific genes. *Biochemistry* 82: 1074-1078.
- Tai, A., Sawano, T. and Yazama, F. 2011. Anti oxidant properties of ethyl vanillin in vitro and in vivo. *Bioscience Biochemistry and Biotechnology* 75(12): 2346-2350.
- Takahashi, K., Sekiguchi, M. and Kawazoe, Y. 1990. Effects of vanillin and o-vanillin on induction of DNA-repair networks: modulation of mutagenesis in *Escherichia coli. Mutation Research* 230: 127–134.
- Tengerdy, R.P. and Szakacs, G. 2003. Bioconversion of lignocellulose in solid substrate fermentation. *Biochemical Engineering Journal* 13: 169–179.
- Thibault, J., Micard, V., Renard, C., Asther, M., Delattre, M. and Lesage-Meessen, L. 1998. Fungal bioconversion of agricultural byproducts to vanillin. *LWT-Food Science Technology* 31: 530–536.
- Tiefel, P. and Berger, R.G. 1993. Volatiles in precursor fed cultures of Basidiomycetes. In: Scheir, P. & P. Winterhalter (Eds.). Progress in flavour precursor studies. Allured Carol Stream, USA.
- Tilay, A., Bule, M. and Annapure, U. 2010. Production of biovanillin by one-step biotransformation using fungus *Pycnoporous cinnabarinus*. *Journal of Agricultural and Food Chemistry* 58: 4401–4405.
- Tolia, N.H. and Tor, L.J. 2006. Strategies for protein coexpression in *Escherichia coli*. *Nature Methods* 3: 55-64.
- Toms, A. and Wood, J.M. 1970. The degradation of trans-ferulic acid by *Pseudomonas acidovorans*. *Biochemistry* 9: 337–343.
- Torre, P., De Faveri, D., Perego, P., Ruzzi, M., Barghini, P., Gandolfi, R. and Converti, A. 2004. Bioconversion of ferulate into vanillin by *Escherichia coli* strain JM109/pBB1 in an immobilized-cell reactor. *Annals of Microbiology* 54(4): 517-527.

- Torres, B.R., Aliakbarian, B., Torre, P., Perego, P., Dominguez, J.M., Zilli, M. and Converti, A. 2009. Vanillin bioproduction from alkaline hydrolyzate of corn cob by *Escherichia coli* JM109/pBB1. *Enzyme and Microbial Technology* 44(3): 154-158.
- Ubalua, A.U. 2007. Cassava wastes: Treatment options and value addition alternatives. *African Journal of Biotechnology* 6: 2065-2073.
- Vaithanomsat, P. and Apiwatanapiwat, W. 2009. Feasibility study of vanillin production from *Jatropha curcas* stem using stem explosion as a pretreatment. *International Journal of Chemical and Biomolecular Engineering* 2(4): 211-214.
- Vega, J. 2003. Transformación de materiales lignicos a compuestos dealto valor agregado. Seminario de Licenciatura, San Jose, CR, Laboratorio de Polimeros, Universidad de Costa Rica (1993).
- Venturi, V., Zennaro, F., Degrassi, G., Okeke, B.C. and Bruschi, C.V. 1998. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting *Pseudomonas putida* WCS358. *Microbiology* 144: 965–973.
- Walton, N.J., Narbad, A., Faulds, C. and Williamson, G. 2000. Novel approaches to the biosynthesis of vanillin. *Current Opinion in Biotechnology* 11: 490-496.
- Walton, N.J., Mayer, M.J. and Narbad, A. 2003. Vanillin. Phytochemistry 63: 505-515.
- Webster, T.M. 1995. New perspectives on vanilla. Cereal Foods World 40: 198-200.
- Westcott, R.J., Cheetham P.S.J., and Barraclough A.J. 1993. Use of organized viable vanilla plant aerial roots for the production of natural vanillin. *Phytochemistry* 35(1): 135–138.
- Williamson, G., Kroon, P.A. and Faulds, C.B. 1998. Hairy plant polysaccharides: a close shave with microbial esterases. *Microbiology* 144: 2011–2023.
- Woese, C.R. and Fox G.E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. *Proceedings of the National Academy of Sciences* 74 (11): 5088–5090.

- Wu, Y.V., Rosati, R.R. and Brown, P.B. 1997. Use of corn-derived ethanol coproducts and synthetic lysine and tryptophan for growth of tilapia (*Oreochromis niloticus*) fry. *Journal of Agricultural and Food Chemistry* 45(6): 2174-2177.
- Wu, S.L., Chen, J.C., Li, C.C., Lo, H.Y., Ho, T.Y. and Hsiang, C.Y. 2009. Vanillin Improves and Prevents Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. *Journal of Pharmacology and Experimental Theraputics* 330: 370–376.
- Xiao, B., Sun, X.F. and Sun, R. 2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. *Polymer Degradation and Stability* 74: 307–319.
- Xie, Y., Ma, Z., Kong, W. and Zou, H. 2014. Ferulic acid degradation bacterium AWS4B screening and its degradation characteristics. *Journal of Civil Architectural and Environmental Engineering* 36(6): 106-111.
- Xu P., Hua, D. and Ma, C. 2007. Microbial transformation of propenyl benzenes for natural flavour production. *Trends in Biotechnology* 25(12): 571-576.
- Yang, W., Tang, H., Ni, J., Wu, Q., Hua, D. and Tao, F. 2013. Characterization of Two *Streptomyces* Enzymes That Convert Ferulic Acid to Vanillin. *PLoS ONE* 8(6): e67339. doi:10.1371/journal.pone.0067339.
- Yoon, S.H., Li, C., Lee, Y.M., Lee, S.H., Kim, S.H., Choi, M.S., Seo, W.T., Yang, J.K., Kim, J.Y. and Kim, S.W. 2005a. Production of vanillin from ferulic acid using recombinant strain *Escherichia coli*. *Biotechnology and Bioprocess Engineering* 10: 378-384.
- Yoon, S.H., Li, C., Kim, J.E., Lee, S.H., Yoon, J.Y., Choi, M.S., Seo, W.T., Yang, J.K., Kim, J.Y. and Kim, S.W. 2005b. Production of vanillin by metabolically engineered *Escherichia coli*. *Journal of Biotechnology* 27: 1829-1832.
- Yoon, S.H., Lee, E.G., Das, A., Lee, S.H., Li, C., Ryu, H.K., Choi, M.S., Seo, W.T. and Kim, S.W. 2007. Enhanced vanillin production from recombinant *E. coli* using NTG mutagenesis and adsorbent resin. *Biotechnology Progress* 23(5): 1143–1148

- Zabkova, M., Otero, M., Minceva, M., Zabka, M. and Alırio, E.R. 2006. Separation of synthetic vanillin at different pH onto polymeric adsorbent Sephabeads SP206. Chemical Engineering and Processing 45: 598–607.
- Zenk, M.H., Ulbrich, B., Busse, J. and Stockigt, J. 1980. Procedure for the enzymatic-synthesis and isolation of cinnamoyl-CoA thiolesters using a bacterial system. *Analytical Biochemistry* 101: 182–187
- Zhang, Y.M., Xu, P., Han, S., Yan, H.Q. and Ma, C.Q. 2006. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of *Bacillus subtilis* HS8. *Applied Microbiology and Biotechnology* 73: 771–779.
- Zhao, L., Sun, Z., Zheng, P. and He, J. 2006. Biotransformation of Isoeugenol to Vanillin by *Bacillus Fusiformis* Cgmcc1347 with the Addition of Resin Hd-8. *Process Biochemistry* 41(7): 1673-1676.
- Zhao, S., Yao, S, Ou, S, Lin, J., Wang, Y., Peng, X., Li., A. and Yu, B. 2014. Preparation of ferulic acid from corn bran: Its improved extraction and purification by membrane separation. *Food and Bioproducts Processing* 92(3): 309-313.
- Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J. and Guo, X. 2007. Production of vanillin from waste residue of rice bran oil by *Aspergillus niger* and *Pycnoporus cinnabarinus*. *Bioresource Technology* 98: 1115-1119.