

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF BATCH ADSORPTION AND FIXED-BED ADSORPTION OF VANILLIN ONTO RESIN H103

ROZAIMI BIN ABU SAMAH

FBSB 2016 22

OPTIMIZATION OF BATCH ADSORPTION AND FIXED-BED ADSORPTION OF VANILLIN ONTO RESIN H103

By

ROZAIMI BIN ABU SAMAH

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2016

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Dedicated to

Mai Saharah binti Uda, my beloved mother, you are everything to me Tuan Suhaini binti Tuan Samad, my lovely wife, thank you for everything Najlaa & Najah, my beautiful minions, you are the colours of my life

Say, "If the sea were ink for [writing] the words of my Lord, the sea would be exhausted before the words of my Lord were exhausted, even if We brought the like of it as a supplement." Al-Kahfi 18:109

And if whatever trees upon the earth were pens and the sea [was ink], replenished thereafter by seven [more] seas, the words of Allah would not be exhausted. Indeed, Allah is Exalted in Might and Wise. Luqman 31:27

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Doctor of Philosophy

OPTIMIZATION OF BATCH ADSORPTION AND FIXED-BED ADSORPTION OF VANILLIN ONTO RESIN H103

By

ROZAIMI BIN ABU SAMAH

January 2016

Chairman: Professor Suraini binti Abd Aziz, PhD Faculty: Biotechnology and Biomolecular Sciences

Vanillin is a widely used chemical especially in food and beverages industries. Its sweet odour also results in its application in perfumes and cosmetics industries. Traditionally, vanillin is produced by curing vanilla pods from vanilla plants. However, it is a very tedious and time-consuming process. It can also be produced chemically from several chemicals or intermediates, but the processes are either imposing an environmental issue (waste product), or dealing with high pressures and temperatures. Researchers are finding ways to produce vanillin via bioprocesses so it can be produced at slightly elevated temperature, by the act of certain microorganisms on several substrates from plant-based materials or biomass. However, due to its phenolic and aldehyde components in its molecular structure, vanillin can be toxic to the microorganisms when it is produced at certain concentration.

Adsorption is one of the possible techniques to use for vanillin recovery from fermentation broth. However, the fermentation broth contains a variety of biomolecules that might interfere with the preliminary characterisation of the adsorbent. Therefore, researchers normally start the related works by using either an aqueous solution of the target biomolecule, continue with a simulated solution of fermentation broth, and finally test the characterised adsorbent with the actual fermentation broth containing the target product to be recovered.

In this work, six adsorbent resins, namely Amberlite XAD-16, Amberlite XAD-2, Sepabeads SP207, Diaion HP-20, DM11 and H103, were tested for vanillin adsorption in aqueous solution. Other than Amberlite XAD-2 and DM11, the other resins gave more than 95% adsorption. For subsequent work, resin H103 was selected due to its high adsorption capacity of more than 98%, and its low purchasing price at approximately US\$115 per kilogram.

Vanillin adsorption using resin H103 was investigated based on five parameters, which were contact time (minute), resin dosage (g), pH, temperature (°C), and vanillin initial concentration (mg/L). No large effect of vanillin adsorption within pH and temperature range tested. Thermodynamics data revealed that the adsorption process involved was an exothermic reaction, due to a negative sign of its enthalpy value. The magnitude of -17.956 kJ/mol also revealed that the adsorption of vanillin onto resin H103 was a physical adsorption.

It was also revealed that the vanillin adsorption onto resin H103 followed a pseudosecond order kinetics, with values of constant parameters of q_e of 10.684 mg/g and k_2 of 0.006 g/mg.min. The linearized form gave a high determination coefficient ($R^2 = 0.995$ for 0.5 g resin). Based on two most widely used isotherms (Langmuir and Freundlich), it was found that the former was slightly better fitted than the latter with an R^2 value of 0.994. Subsequently, it was determined that the maximum capacity of resin H103 was 73.015 mg vanillin/g resin, and the Langmuir constant, K_L , was determined to be 0.039 L/mg.

Factorial screening was utilized to determine significant factors affecting the adsorption process. Each parameter was randomly subjected to 2^5 fractional factorial design for the identification of significant parameters, and subsequently optimized using response surface methodology (RSM). Sixteen experiments were carried out for the screening process, and 13 experiments for optimization. With the aid of Design Expert version 7.1.6 for statistical analysis, it was determined that vanillin initial concentration and resin dosage were significant factors affecting the vanillin adsorption onto resin H103 (determination coefficient value, or R^2 , of 0.9996). While the other insignificant factors were kept constant, the two significant factors were then subjected to an optimization process using response surface methodology. The tested range for optimization did not reveal any optimum level, despite its high R^2 value of 0.9515. It was observed that the optimum point might fall outside the tested range.

Further adsorption process via fixed bed mode was also investigated, with the aim of elucidating the dynamic adsorption behaviour of vanillin onto resin H103 packed in a column attached to $\ddot{A}KTAexplorer$ 100 system. It was also used to describe the scaling analysis of a fixed bed adsorption column. Three parameters were investigated, which were bed height, vanillin initial concentration, and flow rate of the feed. Plots of effluent concentration versus time, or breakthrough curves, revealed that the fixed bed vanillin adsorption onto resin H103 can be described by both Bohart-Adams and Belter's equation, with a high R² of 0.9672. From the breakthrough curves, the dynamic adsorption capacities of the fixed bed were determined to be 96.813, 194.125, and 314.960 mg vanillin/g adsorbent, for bed heights of 5 cm, 10 cm, and 15 cm, respectively.

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGOPTIMUMAN PENJERAPAN VANILIN SECARA KELOMPOK DAN PENJERAPAN VANILIN SECARA TURUS PADAT OLEH BAHAN PENJERAP H103

Oleh

ROZAIMI BIN ABU SAMAH

Januari 2016

Pengerusi: Profesor Suraini binti Abd Aziz, PhD Fakulti: Bioteknologi dan Sains Biomolekul

Vanilin adalah sejenis bahan kimia yang mempunyai pelbagai kegunaan terutamanya dalam industri makanan dan minuman. Baunya yang harum menyebabkan vanilin juga digunakan dalam bidang wangian dan kosmetik. Secara lazimnya vanilin dihasilkan dengan cara mengeringkan lenggai (kekacang) vanila daripada pokok vanila. Namun, proses tersebut adalah rumit dan memakan masa yang lama. Ia juga boleh dihasilkan melalui tindak balas kimia, tetapi proses tersebut sama ada memberi kesan kepada persekitaran melalui bahan-bahan sisa tindak balas kimia tersebut, atau melibatkan tekanan dan suhu yang tinggi. Penyelidik berusaha untuk menghasilkan vanilin melalui proses biologi yang berlaku pada suhu persekitaran melalui tindak balas beberapa jenis mikroorganisma terhadap substrat daripada bahan tumbuhan atau biomas. Namun begitu, kewujudan sebatian fenolik dan aldehid pada struktur keseluruhan vanilin, ia boleh menjadi toksik kepada mikroorganisma pada jumlah kepekatan yang tertentu.

Proses penjerapan adalah salah satu teknik yang boleh digunakan untuk memisahkan vanilin daripada kaldu fermentasi. Namun, kaldu fermentasi mempunyai pelbagai biomolekul yang mungkin mengganggu proses perincian bahan penjerap. Untuk itu, kebiasaannya para penyelidik akan memulakan kerja-kerja berkaitan dengan menggunakan larutan akueus bahan yang ingin dipisahkan, disambung dengan menggunakan larutan simulasi, dan akhirnya diuji dengan menggunakan larutan kaldu fermentasi yang sebenar.

Untuk kajian ini, enam bahan penjerap dikaji untuk proses penjerapan vanilin iaitu Amberlite XAD-16, Amberlite XAD-2, Sepabeads SP207, Diaion HP-20, DM11 dan H103. Kesemua bahan penjerap menunjukkan kadar penjerapan melebihi 95%, kecuali Amberlite XAD-2 dan DM11. Bahan penjerap H103 digunakan untuk eksperimen seterusnya kerana bahan penjerap tersebut mempunyai kapasiti penjerapan yang tinggi melebihi 98% daripada keseluruhan vanilin, dan juga disebabkan oleh harga belian yang rendah pada US\$115 per kilogram.

Penjerapan vanilin di atas bahan penjerap H103 dikaji berdasarkan lima parameter, iaitu jangka masa proses (minit), jumlah bahan penjerap (g), pH, suhu proses, dan kepekatan awal vanilin (mg/L). Didapati pH dan suhu tidak memberikan kesan yang ketara terhadap proses penjerapan tersebut. Data termodinamik menunjukkan proses penjerapan vanilin di atas bahan penjerap H103 adalah secara eksotermik, berpandukan tanda negatif pada nilai entalpi. Nilai entalpi -17.956 kJ/mol juga menunjukkan bahawa proses penjerapan vanilin adalah dalam kategori penjerapan fizikal.

Data kinetik pula menunjukkan proses tersebut mengikut tindak balas tertib kedua dengan nilai parameter pemalar qe 10.684 mg/g dan k₂ 0.006 g/mg.min. Data kinetik yang dilinearkan memberikan nilai pekali penentuan yang tinggi ($R^2 = 0.995$ bagi 0.5 g bahan penjerap). Berdasarkan dua isoterma penjerapan yang sering digunakan iaitu *Langmuir* dan *Freundlich*, isoterma penjerapan *Langmuir* lebih tepat menggambarkan proses tersebut dengan nilai pekali penentuan 0.994. Seterusnya, kapasiti maksimum bahan penjerap H103, qe, adalah 73.015 mg vanilin/g bahan penjerap dan pemalar *Langmuir*, K_L, bersamaan 0.039 L/mg.

Penyaringan faktoran digunakan bagi menentukan faktor-faktor yang bererti dalam proses penjerapan. Setiap parameter dikaji secara rawak melalui rekabentuk faktoran pecahan 2⁵ dan seterusnya melalui proses pengoptimuman menggunakan metodologi permukaan sambutan. Sebanyak 16 ujikaji dijalankan bagi proses penyaringan dan 13 ujikaji untuk proses pengoptimuman. Dengan menggunakan perisian Design Expert 7.1.6 untuk analisa statistik, kepekatan awal vanilin dan jumlah bahan penjerap didapati adalah faktor-faktor yang bererti dalam proses penjerapan vanilin di atas bahan penjerap H103 dengan nilai pekali penentuan R² bersamaan 0.9996. Kedua-dua faktor tersebut seterusnya melalui proses pengoptimuman, dengan faktor-faktor lain yang tidak bererti ditetapkan pada satu nilai masing-masing. Julat ujikaji bagi faktor-faktor bererti tersebut tidak menunjukkan sebarang nilai optimum walaupun nilai pekali penentuan proses pengoptimuman tersebut sangat tinggi pada 0.9515. Dijangka nilai optimum tersebut berada di luar julat faktor-faktor yang dikaji.

Seterusnya, proses penjerapan vanilin dilakukan dalam mod turus padat dengan tujuan untuk mendapatkan gambaran proses penjerapan vanilin di atas bahan penjerap H103. Ia juga berfungsi untuk analisa penambahbesaran turus padat. Ujikaji dilakukan dengan menggunakan sistem ÄKTAexplorer 100 terhadap tiga parameter iaitu tinggi padatan, kepekatan awal vanilin, dan kadar aliran suapan. Plot kepekatan efluen melawan masa, atau lengkung bulus, menunjukkan proses penjerapan vanilin di atas bahan penjerap H103 dalam mod turus padat boleh digambarkan menggunakan persamaan Bohart-Adams dan persamaan Belter, dengan nilai pekali penentuan yang tinggi pada 0.9672. Nilai kapasiti penjerapan dinamik yang diperolehi adalah 96.813, 194.125, dan 314.960 mg vanilin/g bahan penjerap, untuk ketinggian turus masing-masing 5 cm, 10 cm, and 15 cm.

ACKNOWLEDGEMENTS

In the name of Allah, the Entirely Merciful, the Especially Merciful. [All] praise is [due] to Allah, Lord of the worlds. The Entirely Merciful, the Especially Merciful. Sovereign of the Day of Recompense. It is You we worship and You we ask for help. Guide us to the straight path. The path of those upon whom You have bestowed favour, not of those who have evoked [Your] anger or of those who are astray.

I would like to thank my supervisors, Professor Dr Suraini binti Abd Aziz, Associate Professor Dr Phang Lai Yee, Associate Professor Ir Dr Norazwina binti Zainol, for their continual professional advices, useful guidance, inspiration, support, and enormous patience, in the effort to complete this research.

I am indebted to Universiti Research Grant Scheme, Universiti Putra Malaysia (UPM); Academic Training Scheme for Institutions of Higher Learning Education (SLAI), Malaysia; and Universiti Malaysia Pahang (UMP), for their financial support and facilities provided in pursuing this study. I am also grateful to all the laboratories staff of both Faculty of Biotechnology & Biomolecular Sciences, UPM; and Faculty of Chemical & Natural Resource Engineering, UMP, for their assistance and cooperation throughout the work.

My special credits are conveyed to all of my friends, it is impossible to mention everyone, for their moral support in finishing my study. Last, but not least, I would like to express my thankfulness to my beloved mother, my lovely wife, and my family, for their prayers for my success.

v

I certify that a Thesis Examination Committee has met on 14 January 2016 to conduct the final examination of Rozaimi bin Abu Samah on his thesis entitled "Optimization of Batch Adsorption and Fixed-Bed Adsorption of Vanillin onto Resin H103" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shuhaimi bin Mustafa, PhD

Professor Faculty of Biotechnology & Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Norhafizah binti Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Umi Kalsom binti Md Shah, PhD

Associate Professor Faculty of Biotechnology & Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Misri Gozan, PhD

Professor Dr. Ing. Department of Chemical Engineering University of Indonesia Indonesia (External Examiner)

Zulkarnain bin Zainal, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 24 March 2016

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Suraini binti Abd Aziz, PhD

Professor Faculty of Biotechnology & Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Phang Lai Yee, PhD

Associate Professor Faculty of Biotechnology & Biomolecular Sciences Universiti Putra Malaysia (Member)

Norazwina binti Zainol, PhD

Associate Professor, Ir Faculty of Chemical and Natural Resources Engineering Universiti Malaysia Pahang (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature

Date: January 2016

Name and Matric No.: Rozaimi bin Abu Samah (GS27626)

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory Committee: Suraini binti Abd Aziz, PhD Signature: Name of Member of Supervisory Committee: Phang Lai Ye Signature: Name of Member of Supervisory Committee: Ir Norazwina binti Zainol, PhD

TABLE OF CONTENTS

			Page
ABSTRA	СТ		i
ABSTRA	K		iii
ACKNOV	VLEDGI	EMENTS	V
APPROV	AL		vi
DECLAR	ATION		viii
LIST OF TABLES			xiii
LIST OF	FIGURE	CS	xiv
LIST OF	SYMBO	LS AND ABBREVIATIONS	XV
СНАРТЕ	R		
1	INTE	RODUCTION	1
	1.1	Background and problem statement	1
	1.2	Objectives	2
2	LITE	CRATURE REVIEW	3
	2.1	Flavours and Fragrances	3
	2.2	Vanillin	3
	2.3	Applications of Vanillin	4
		2.3.1 Flavours in Foods and Beverages	4
		2.3.2 Perfumes and Fragrances	5
		2.3.3 Food Preservation and Packaging	5
		2.3.4 Pharmaceutical and Medicinal Industries	6
		2 3 5 Other Applications	7
	2.4	Vanillin Synthesis	7
		2.4.1 Chemical Synthesis	7
		2.4.2 Biotechnological Routes	8
	2.5	Recovery of Bioproducts	9
	210	2.5.1 Recovery of Flavours and Aromatic	-
		Compounds	9
		2.5.2 Recovery of Vanillin	10
	2.6	Adsorption	12
	2.0	2.6.1 Adsorption Process	12
		2.6.2 Adsorbents	13
	27	Factors Affecting Adsorption Process	14
	2.7	2.7.1 Resin Type and Dosage	14
		2.7.2 Solute Characteristics	14
		2.7.2 solute characteristics	15
		2.7.5 pri	15
		2.7.5 Contact time	15
	28	Adsorption parameters	15
	2.0	2.8.1 Adsorption Equilibrium and Isotherm	15
		2.8.1 Adsorption Equilibrium and Isotherm	10
	2.0	Configuration of Adsorption System	21
	2.9	2.0.1 Potch Mode	21
		2.7.1 Datch Would 2.0.2 Fixed Red Mode	21 22
	2 10	2.7.2 FIXed Ded Widde	24
	2.10	Experimental Design	∠+

2.10 Experimental Design

2.10.1 Experimental Design in Adsorption Experiments

3	МАТ	TERIALS AND METHODS	27
	3.1	Materials	27
	3.2	Batch Adsorption	27
		3.2.1 Adsorbent Resin Selection	27
		3.2.2 Effect of Contact Time	27
		3.2.3 Effect of adsorbent resin dosage	27
		3.2.4 Effect of pH	28
		3.2.5 Effect of Temperature	28
		3.2.6 Effect of vanillin initial concentrati	on 29
	3.3	Calculations	29
		3.3.1 Batch Adsorption	29
		3.3.2 Adsorption kinetics	29
		3 3 3 Adsorption Isotherm	30
		3 3 4 Adsorption Thermodynamics	31
	34	Factorial Screening and Optimization for Ba	atch
	5.4	Adsorption	31
	35	Fixed Bed Column Adsorption	33
	5.5	3.5.1 Scale Up Analysis for Vanillin	55
		Adsorption	33
		2.5.2 Eixed Red Column Design	33
		3.5.2 Modeling of Breakthrough Curve	34
		5.5.5 Wodeling of Breakthough Curve	55
4	RES	ULTS AND DISCUSSION	36
	4.1	Vanillin Batch Adsorption	36
		4.1.1 Preliminary Selection of Adsorbent	Resin
		Based on its Adsorption Capacity	36
		4.1.2 Effect of pH. Temperature, and Res	sin
		Dosage on Adsorption Capacity	37
		4.1.3 Adsorption Kinetics	39
		4.1.4 Adsorption Isotherm	42
	4.2	Batch Adsorption Screening Using Fraction	al
		Factorial Design	44
		4.2.1 Main Effect Analysis for Experime	ntal
		Factors	44
		4.2.2 Diagnostic Plots and Analysis of V	ariance
		(ANOVA)	46
		423 Eactors Interaction	51
	43	Batch Adsorption Optimization Using Resp	onse
	т.5	Surface Methodology	55
	44	Vanillin Adsorption in Fixed Bed Mode	58
	7.7	4.4.1 Breakthrough Curve Analysis for E	Jo Jo
		T.T.I DICAKUIOUgli Cuive Alialysis 101 F Bad Adsorption	50
		1/12 Designing Fixed Red Column for V	Jo
		Advantion	annin 50
		Ausorption	59

5 1	Summary	65
5.1	Conclusions	66
5.2	Conclusions	00
5.3	Recommendations for future studies	67

REFERENCES APPENDICES BIODATA OF STUDENT LIST OF PUBLICATIONS

5

C

LIST OF TABLES

514

Table		Page
2.1	Biotechnological routes for vanillin production	9
2.2	ISPR technique for flavours and aromatic compounds	10
2.3	Comparison between physical and chemical adsorption	12
2.4	Guidelines for designing an experiment	24
2.5	Experimental design summary	25
3.1	Properties of the resins used	28
3.2	Factors (variables) studied and their concentration levels	32
3.3	The design matrix of 2 ⁵ fractional factorial design for vanillin	
	adsorption onto resin H103	32
3.4	Experimental design layout for optimization of vanillin	
	adsorption using central composite design (CCD)	33
4.1	Amount of vanillin adsorbed on six adsorbent resins	36
4.2	The effect of different pH of the vanillin solution toward	
	vanillin adsorption onto adsorbent resin H103	37
4.3	Effect of temperature on vanillin adsorption onto resin H103	
	and thermodynamic parameters	38
4.4	Kinetics parameters for the vanillin adsorption onto resin	
	H103	41
4.5	Vanillin adsorption isotherm parameters obtained by linear	
	and non-linear regression	44
4.6	Experimental design layout using 2 ⁵ fractional factorial design	
	with response	45
4.7	Percentage contribution of all factors in vanillin adsorption	
	onto resin H103	45
4.8	Analysis of variance (ANOVA) for vanillin adsorption onto	
	resin H103 for main effects and two-factor interactions	48
4.9	Coefficient estimates for linear regression for the 2 ⁵ fractional	
	factorial design for vanillin adsorption onto resin H103	49
4.10	Experimental design layout for optimization of vanillin	
	adsorption using central composite design (CCD)	57
4.11	Analysis of variance (ANOVA) for optimization of the effect	
	of resin dosage and initial vanillin concentration on vanillin	
	adsorption onto resin H103	57
4.12	Suggested condition for vanillin adsorption in batch mode	58
4.13	The effect of bed height towards breakthrough capacity	60
4.14	Bohart-Adams model constants for the vanillin adsorption	
	onto fixed bed resin H103	62
4.15	Predicted breakthrough time using Bohart-Adams constant for	
	new vanillin initial concentration (900 mg/L)	63
4.16	Predicted breakthrough time using Bohart-Adams constant for	
	new flow rate (10 mL/min)	64

LIST OF FIGURES

Figure		Page
2.1	Vanillin molecular structure	4
2.2	Major applications of vanillin	4
2.3	Adsorption process with solid-particle adsorbent	13
2.4	Linearized plot of Langmuir isotherm	17
2.5	Linearized plot of Freundlich isotherm	18
2.6	Steps in adsorption process	19
2.7	Linearized plot of pseudo-first order adsorption kinetics	20
2.8	Linearized plot of pseudo-second order adsorption kinetics	21
2.9	Typical equilibrium profile for single stage batch adsorption	22
2.10	Concentration profile for an adsorption process in a fixed-bed	23
4.1	Vanillin adsorption uptake of resin H103 at different resin	
	H103 dosage	39
4.2	Contact time profile of vanillin adsorption onto resin H103	40
4.3	Pseudo-first order kinetics of vanillin adsorption onto resin	
	H103	41
4.4	Pseudo-second order kinetics of vanillin adsorption onto resin	
	H103	41
4.5	Intraparticle diffusion model for the adsorption of vanillin onto	
	resin H103	43
4.6	The equilibrium adsorption isotherms at 25°C for vanillin	
	adsorption onto adsorbent resin H103	43
4.7	Half-normal probability plot of effect estimates	47
4.8	Hypothesis test for model regression on vanillin adsorption	
	onto resin H103	48
4.9	Normal probability plot of residuals	50
4.10	Residuals versus predicted values plot	51
4.11	Externally studentized residual plot or outlier T plot	51
4.12	Interaction plot between factor A (contact time) and factor B	
	(initial vanillin concentration)	53
4.13	Interaction plot between factor A (contact time) and factor C	
	(resin dosage)	54
4.14	Interaction plot between factor B (initial vanillin	
	concentration) and factor C (resin dosage)	55
4.15	Interaction plot between factor D (pH) and factor E	
	(temperature)	56
4.16	Response surface plot for the effect of resin dosage and initial	
	vanillin concentration on vanillin adsorption onto resin H103	58
4.17	The effect of bed height on breakthrough curves for vanillin	
110	adsorption onto resin H103	59
4.18	Bonart-Adams model for different breakthrough points at	
	different bed heights, and constant flow rate (5 mL/min) and	
	vaniiin initial concentration (1000 mg/L)	01
4.19	iviainematical modeling using Belter equation	00

LIST OF SYMBOLS AND ABBREVIATIONS

%	Percent
σ	standard deviation
ΔG°	Gibbs free energy
ΔH°	enthalpy
ΔS°	entropy
ΔX_{ι}	step change
1/n	affinity constant
Å	Angstrom
ANOVA	analysis of variance
C ₀	initial concentration
C _{1/2}	original/new concentration in breakthrough analysis
C1/2	intercept parameters in breakthrough analysis
C _b	breakthrough concentration
CCD	central composite design
Ce	equilibrium concentration of solute in liquid @ unbound solute
Ct	residual concentration
erf(x)	error function
g	gram
g/L	gram per litre
h	hour
HCl	hydrochloric acid
k	rate constant in breakthrough analysis
K	Kelvin
\mathbf{k}_1	pseudo-first order rate constant
k ₂	pseudo-second order rate constant
\mathbf{k}_{id}	intraparticle diffusion rate constant
K _C	thermodynamic equilibrium constant
$K_{\rm F}$	Freundlich constant
K_L	Langmuir constant
L	litre
m	meter
m _{1/2}	slope parameters in breakthrough analysis

mg	milligram
min	minute
mL	millilitre
Ν	adsorption capacity in breakthrough analysis
NaOH	sodium hydroxide
°C	degree Celcius
OD	optical density
OPEFB	oil palm empty fruit bunch
q	adsorption capacity
Q _{1/2}	original/new feed flow rate in breakthrough analysis
q _e	amount of solute adsorbed at equilibrium
q _m	Maximum adsorption capacity
q _t	amount of solute adsorbed at time t
R	gas constant
R ²	coefficient determination
R _L	separation factor
rpm	revolution per minute
RSD	relative standard deviation
RSM	response surface methodology
S	second
t	time
Т	temperature
V	volume
V	linear velocity in breakthrough analysis
X ₀	actual value of the <i>i</i> th independent variable at the centre point
Xi	coded value of the <i>i</i> th independent variable
Xi	actual value of the <i>i</i> th independent variable
Z	bed height
Zo	critical bed height
μL	microlitre
μm	micrometer

CHAPTER 1

INTRODUCTION

1.1 Background and problem statement

Vanillin is the most widely used flavour. In the form of vanilla extract, it is extensively used in two major industries, which are food and beverages, and perfumes and cosmetics (Buccellato, 2010). It also finds a good interest in pharmaceuticals and agricultures. Vanilla extract is traditionally obtained from the beans of vanilla orchid, which takes years after the planting of the orchids. This contributes to the high price of the natural vanilla extract. For that reason, the demands for vanilla flavour cannot be met by vanilla extract, mainly due to the minute amount of vanillin component (2 %) in the whole vanilla extract (Havkin-Frenkel and Belanger, 2009).

Due to its dark brown colour, the incorporation of vanilla extract in food or beverages affects the final appearance of the product. Therefore, certain applications require a pure vanillin, as it is in crystal form. This has led to a chemical synthesis of vanillin, which normally involves high temperature and pressure. One of the earliest chemical processes of producing vanillin was from curcumin. The reaction was set to a very high temperature of 316 °C and also very high pressure at 114 atm (Dolfini *et al.*, 1990). Vanillin can also be produced from ortho-chloronitrobenzene, from which guaiacol is produced as an intermediate product for further chemical reactions to produce vanillin, along with nitroanisole and anisidine as byproducts (Vidal, 2008). Guaiacol is then subjected to condensation process with dimethyl aniline and nitroso derivative. This process, with urotropine as catalyst, produces vanillin and para-amino dimethyl aniline as side products. However, this process needs several steps of purification which involve wastewater treatment of toxic raw materials and side products.

In contrast, biotechnology deals with a milder condition for the productions of specialty chemicals and molecules. Most of the fermentations occur at ambient environment, as opposed to chemical processes that take place at harsh conditions. At the same time, there is increasing concern on the natural products among the consumers which requires researchers and manufacturers to look into ways of obtaining vanillin via biotechnology routes. The use of microorganisms takes place in the overall production line. The utilization of living cells and natural substrates fulfil the definition of natural products. Many components are able to be used as the precursors or substrates for the production of vanillin such as ferulic acid, vanillic acid, eugenol and lignin (Walton *et al.*, 2000).

Such precursors are easily obtained from the biomass waste all over the country. For example, ferulic acid is one of the components contain in the lignocellulosic biomass and one of the sources for lignocellulosic biomass is oil palm empty fruit bunches (OPEFB), which is the most abundance biomass in Malaysia. The utilization of oil palm biomass is in line with the country's aspiration to generate its gross national income with the

launching of National Biomass Strategy that identified oil palm biomass as the next potential resource (Agensi Inovasi Malaysia, 2011). Launched in November 2011, it aims in the utilization of the biomass for variety additional end uses, apart from the production of wood products, pellets, bioenergy, biofuels and biobased chemicals. Many of the bioproducts from this biomass need to be carefully and systematically purified before they can be used for their specific use. Therefore, there is increasing challenges in the downstream section. The separation engineers need to find specific and cost effective techniques in recovering the target products.

As for vanillin, its recovery can be done by a few techniques, namely extraction (de Brito Cardoso *et al.*, 2013), distillation (Bryan, 1950), crystallization (Taber *et al.*, 2007), membrane separation (Zabkova *et al.*, 2007b; Wu *et al.*, 2008; Zhang *et al.*, 2008a; Sciubba *et al.*, 2009; Brazinha *et al.*, 2011; Camera-Roda *et al.*, 2013; Mohamad Yusof and Kobayashi, 2013) and adsorption by adsorbent resin such as β -cyclodextrin polymer resin (Li *et al.*, 1998), resin HD-8 (Zhao *et al.*, 2006), resin Sephabeads SP206 (Zabkova *et al.*, 2006), resin DM11 (Hua *et al.*, 2007), and resin D101 (Wang *et al.*, 2010), anisole-modified hyper-cross-linked polystyrene resin (Jin and Huang, 2012), and p-acetaminophen resin (Xiao *et al.*, 2012). In addition, there are also a vast amount of reports on adsorption recovery method for other aromatic compounds or bioproducts from fermentation broth, for example resin XAD-2, XAD-4 and Lewatit 1064 for n-butylbutanoate, benzaldehyde and 4-decanolide (Krings *et al.*, 1993; Krings and Berger, 1995), anion exchange resin for citric acid (Jianlong *et al.*, 2000), and resin S-8 for taurine (Zhigang *et al.*, 2001).

Adsorption also offers a high-throughput yet simple procedures. In the general sequence of bioseparations which consists of four stages (recovery, isolation purification and polishing), adsorption is categorized in the purification stage. Normally, separation techniques classified in this stage is considered specific techniques, which means that it captures the target product selectively. However, there are many types of adsorbent available, and each adsorbent performs differently for a single solute. Thus, this study was conducted to initially determine the capability of polymeric resins to adsorb vanillin in aqueous solution, and further characterize the related parameters in the adsorption process.

1.2 Objectives

The objectives of this study are:

- 1. to characterize adsorption parameters of resin in the recovery of vanillin from aqueous solution,
- 2. to identify significant factors affecting vanillin adsorption in batch mode by utilizing experimental design approach, and
- 3. to elucidate vanillin adsorption behaviour in fixed bed column via dynamic adsorption capacity and rate constant.

REFERENCES

- Adak, A., Bandyopadhyay, M., and Pal, A. (2006). Fixed bed column study for the removal of crystal violet (C. I. Basic Violet 3) dye from aquatic environment by surfactant-modified alumina. *Dyes and Pigments*. 69(3): 245-251.
- Adedeji, J., Hartman, T. G., and Ho, C. T. (1993). Flavor characterization of different varieties of vanilla beans. *Perfumer & Flavorist*. 18(2): 25-33.
- Agensi Inovasi Malaysia. (2011). National Biomass Strategy 2020: New wealth creation for Malaysia's palm oil industry. Kuala Lumpur: Agensi Inovasi Malaysia.
- Al-Mudaris, Z. A. A. H., Majid, A. A., and Mehrabian, S. (2012). *Anticancer Properties* of Novel Synthetic Vanillin Derivatives. Saarbrücken: LAP Lambert Academic Publishing.
- Ali, I. (2012). New Generation Adsorbents for Water Treatment. *Chemical Reviews*. 112(10): 5073-5091.
- Amin, L. P., Pangarkar, V. G., and Beenackers, A. A. C. M. (2001). Recovery of valuable perfumery compounds from a geranium steam distillation condensate using polymeric adsorbents. *Separation Science and Technology*. 36(16): 3639-3655.
- Anderson, M. J., and Whitcomb, P. J. (2003). How to Use Graphs to Diagnose and Deal with Bad Experimental Data. Minneapolis: Stat-Ease, Inc.
- Ataei, S., and Vasheghani-Farahani, E. (2008). In situ separation of lactic acid from fermentation broth using ion exchange resins. *Journal of Industrial Microbiology & Biotechnology*. 35(11): 1229-1233.
- Baines, D., and Seal, R. (2012). *Natural Food Additives, Ingredients and Flavourings.* Cambridge: Elsevier Science.
- Bautista, L. F., Plata, M. M., Aracil, J., and Martinez, M. (2003). Application of an effective diffusion model to the adsorption of Aspartame on functionalised divinylbenzene-styrene macroporous resins. *Journal of food engineering*. 59(2-3): 319-325.
- Belter, P. A., Cussler, E. L., and Hu, W. S. (1988). *Bioseparations: Downstream Processing for Biotechnology*. New York: Wiley.
- Bengtson, G., Böddeker, K. W., Hanssen, H. P., and Urbasch, I. (1992). Recovery of 6pentyl-alpha-pyrone from *Trichoderma viride* culture medium by pervaporation. *Biotechnology Techniques*. 6(1): 23-26.
- Bernardin Jr, F. E. (1985). Experimental Design and Testing of Adsorption and Adsorbates. In F. L. Slejko (Ed.), *Adsorption Technology: A Step-by-step Approach to Process Evaluation and Application* (Vol. 19, pp. 37-90). New York: Marcel Dekker Inc.

- Bingöl, D., Saraydin, D., and Özbay, D. (2014). Full Factorial Design Approach to Hg(II) Adsorption onto Hydrogels. Arabian Journal for Science and Engineering: 1-8.
- Bluemke, W., and Schrader, J. (2001). Integrated bioprocess for enhanced production of natural flavors and fragrances by *Ceratocystis moniliformis*. *Biomolecular Engineering*. 17(4–5): 137-142.
- Bohart, G. S., and Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. *Journal of the American Chemical Society*. 42(3): 523-544.
- Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2005). *Statistics for Experimenters: Design, Innovation, and Discovery* (2nd ed.). New Jersey: Wiley-Interscience.
- Brady, J. M., Tobin, J. M., and Roux, J.-C. (1999). Continuous fixed bed biosorption of Cu²⁺ ions: application of a simple two parameter mathematical model. *Journal* of Chemical Technology & Biotechnology. 74(1): 71-77.
- Brazinha, C., Barbosa, D. S., and Crespo, J. G. (2011). Sustainable recovery of pure natural vanillin from fermentation media in a single pervaporation step. *Green Chemistry*. 13(8): 2197-2203.
- Brookes, I. K., Lilly, M. D., and Drozd, J. W. (1986). Stereospecific hydrolysis of d,lmenthyl acetate by *Bacillus subtilis*: mass transfer-reaction interactions in a liquid-liquid system. *Enzyme and Microbial Technology*. 8(1): 53-57.
- Bryan, C. C. (1950). Patent No. 2,506,540. Washington: USPTO.
- Buccellato, F. (2010). Vanilla in Perfumery and Beverage Flavors *Handbook of Vanilla Science and Technology* (pp. 235-240): Wiley-Blackwell.
- Burri, J., Graf, M., Lambelet, P., and Löliger, J. (1989). Vanillin: More than a flavouring agent—a potent antioxidant. *Journal of the Science of Food and Agriculture*. 48(1): 49-56.
- Camera-Roda, G., Augugliaro, V., Cardillo, A., Loddo, V., Palmisano, G., and Palmisano, L. (2013). A pervaporation photocatalytic reactor for the green synthesis of vanillin. *Chemical Engineering Journal*. 224: 136-143.
- Cava-Roda, R., Taboada-Rodríguez, A., Valverde-Franco, M., and Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and Clove essential oils in controlling *Listeria monocytogenes* and *Escherichia coli* O157:H7 in milk. *Food and Bioprocess Technology*. 5(6): 2120-2131.
- Cerrutti, P., and Alzamora, S. M. (1996). Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purées. *International Journal of Food Microbiology*. 29(2–3): 379-386.

Cerrutti, P., Alzamora, S. M., and Vidales, S. L. (1997). Vanillin as an antimicrobial for producing shelf-stable strawberry Puree. *Journal of Food Science*. 62(3): 608-610.

Chang, R., and Goldsby, K. (2012). Chemistry. New York: McGraw-Hill Education.

- Chen, N., Zhang, Z., Feng, C., Li, M., Chen, R., and Sugiura, N. (2011). Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. *Desalination*. 268(1–3): 76-82.
- Cheng, Y. (2012). Evaluation of natural plant powders with potential use in antimicrobial packaging applications. (Masters thesis), Rochester Institute of Technology.
- Cheung, W. H., Szeto, Y. S., and McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. *Bioresource Technology*. 98(15): 2897-2904.
- Chowdhury, S., and Saha, P. D. (2012). Scale-up of a dye adsorption process using chemically modified rice husk: optimization using response surface methodology. *Desalination and Water Treatment*. 37(1-3): 331-336.
- Chu, K. H. (2004). Improved fixed bed models for metal biosorption. *Chemical Engineering Journal*. 97(2–3): 233-239.
- Chu, K. H., Kim, E. Y., and Feng, X. (2011). Batch kinetics of metal biosorption: Application of the Bohart-Adams rate law. *Separation Science and Technology*. 46(10): 1591-1601.
- Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., and Perego, P. (2010). Microbial production of biovanillin. *Brazilian Journal of Microbiology*. 41: 519-530.
- Couteau, D., and Mathaly, P. (1998). Fixed-bed purification of ferulic acid from sugarbeet pulp using activated carbon: Optimization studies. *Bioresource Technology*. 64(1): 17-25.
- Dąbrowski, A. (2001). Adsorption from theory to practice. *Advances in Colloid and Interface Science*. 93(1–3): 135-224.
- Daifullah, A. A. M., Girgis, B. S., and Gad, H. M. H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. *Colloids and Surfaces A: Physicochemical and Engineering Aspects.* 235(1–3): 1-10.
- Dávila-Guzman, N. E., Cerino-Córdova, F. J., Diaz-Flores, P. E., Rangel-Mendez, J. R., Sánchez-González, M. N., and Soto-Regalado, E. (2012). Equilibrium and kinetic studies of ferulic acid adsorption by Amberlite XAD-16. *Chemical Engineering Journal*. 183(0): 112-116.
- de Brito Cardoso, G., Mourão, T., Pereira, F. M., Freire, M. G., Fricks, A. T., Soares, C. M. F., and Lima, Á. S. (2013). Aqueous two-phase systems based on

acetonitrile and carbohydrates and their application to the extraction of vanillin. *Separation and Purification Technology*. 104(0): 106-113.

- Doig, S. D., Boam, A. T., Leak, D. I., Livingston, A. G., and Stuckey, D. C. (1998). A membrane bioreactor for biotransformations of hydrophobic molecules. *Biotechnology and Bioengineering*. 58(6): 587-594.
- Dolfini, J. E., Glinka, J., and Bosch, A. C. (1990). *Patent No. 4,927,805*. Washington: USPTO.
- Dutta, M., Basu, J. K., FaraZ, H., Gautam, N., and Kumar, A. (2012). Fixed bed column study of textile dye, direct blue 86 by using a composite adsorbent. *Archives of Applied Science Research*. 4(2): 882-891.
- Eckenfelder, W. W. (2000). Industrial Water Pollution Control. New York: McGraw-Hill.
- Fabre, C. E., Condoret, J.-S., and Marty, A. (1999). Extractive fermentation of aroma with supercritical CO₂. *Biotechnology and Bioengineering*. 64(4): 392-400.
- Faust, S. D., and Aly, O. M. (1987). Adsorption Processes for Water Treatment. Massachusetts: Butterworth Publishers.
- Fierro, V., Torné-Fernández, V., Montané, D., and Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. *Microporous and Mesoporous Materials*. 111(1–3): 276-284.
- Fitzgerald, D. J., Stratford, M., Gasson, M. J., Ueckert, J., Bos, A., and Narbad, A. (2004). Mode of antimicrobial action of vanillin against *Escherichia coli*, *Lactobacillus plantarum* and *Listeria innocua. Journal of Applied Microbiology*. 97(1): 104-113.
- Fitzgerald, D. J., Stratford, M., and Narbad, A. (2003). Analysis of the inhibition of food spoilage yeasts by vanillin. *International Journal of Food Microbiology*. 86(1– 2): 113-122.
- Fox, C. R., and Kennedy, D. C. (1985). Conceptual Design of Adsorption Systems. In F.
 L. Slejko (Ed.), Adsorption Technology: A Step-by-step Approach to Process
 Evaluation and Application (Vol. 19, pp. 91-165). New York: Marcel Dekker Inc.
- Gabriel, A. A., and Pineda, J. K. F. (2014). Influences of vanillin and licorice root extract supplementations on the decimal reduction times of *Escherichia coli* O157: H7 in mildly heated young coconut liquid endosperm. *Food Control.* 38: 136-141.
- Geankoplis, C. J. (2003). Transport Processes and Separation Process Principles (Includes Unit Operations) (Fourth ed.). New Jersey: Prentice Hall.
- Ghosh, R. (2006). *Principles Of Bioseparations Engineering*. Singapore: World Scientific.

- Gounaris, Y. (2010). Biotechnology for the production of essential oils, flavours and volatile isolates. A review. *Flavour and Fragrance Journal*. 25(5): 367-386.
- Goyal, M., Dhawan, R., and Bhagat, M. (2010). Adsorption of gallic acid from aqueous solution using fixed bed activated carbon columns. *Separation Science and Technology*. 45(9): 1265-1274.
- Guentert, M. (2007). The Flavour and Fragrance Industry Past, Present, and Future. In R. G. Berger (Ed.), *Flavours and Fragrances - Chemistry, Bioprocessing and Sustainability* (pp. 1-14). Berlin Heidelberg: Springer-Verlag.
- Haaland, P. D. (1989). *Experimental Design in Biotechnology*. New York: Marcel Dekker Inc.
- Harrison, R. G., Todd, P., Rudge, S. R., and Petrides, D. P. (2003). *Bioseparations Science and Engineering*. New York: Oxford University Press.
- Havkin-Frenkel, D., and Belanger, F. C. (2009). Biotechnological Production of Vanillin. In D. Havkin-Frenkel, and F. C. Belanger (Eds.), *Biotechnology in Flavor Production* (pp. 83-103). Oxford: Blackwell Publishing Ltd.
- Havkin-Frenkel, D., Belanger, F. C., Booth, D. Y. J., Galasso, K. E., Tangel, F. P., and Hernández Gayosso, C. J. (2011). A Comprehensive Study of Composition and Evaluation of Vanilla Extracts in US Retail Stores *Handbook of Vanilla Science* and Technology (pp. 220-234): Wiley-Blackwell.
- Ho, Y.-S. (2006a). Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. *Polish Journal of Environmental Studies*. 15(1): 81-86.
- Ho, Y.-S. (2006b). Review of second-order models for adsorption systems. *Journal of Hazardous Materials*. 136(3): 681-689.
- Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. *Process Biochemistry*. 34(5): 451-465.
- Ho, Y. S., Ng, J. C. Y., and McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: Review. *Separation & Purification Reviews*. 29(2): 189-232.
- Hocking, M. B. (1997). Vanillin: Synthetic flavoring from spent sulfite liquor. *Journal* of Chemical Education. 74(9): 1055.
- Hsu, Y.-C., Chiang, C.-C., and Yu, M.-F. (1997). Adsorption behavior of basic dyes on activated clay. *Separation Science and Technology*. 32(15): 2513-2534.
- Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z., and Xu, P. (2007). Enhanced vanillin production from ferulic acid using adsorbent resin. *Applied Microbiology and Biotechnology*. 74(4): 783-790.
- Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. *Journal* of Hazardous Materials. 211–212: 317-331.

- Huesgen, A. G. (2011). Analysis of natural and artificial vanilla preparations *Agilent Application Note* (pp. 1-12).
- Jaroniec, M., Deryło, A., and Marczewski, A. (1983). The Langmuir-Freundlich equation in adsorption from dilute solutions on solids. *Monatshefte für Chemical Monthly.* 114(4): 393-397.
- Jianlong, W., Xianghua, W., and Ding, Z. (2000). Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption. *Bioresource Technology*. 75(3): 231-234.
- Jin, X., and Huang, J. (2012). Adsorption of vanillin by an anisole-modified hyper-crosslinked polystyrene resin from aqueous solution: Equilibrium, kinetics, and dynamics. *Advances in Polymer Technology*. 32: 1-10.
- Kapoor, S. (2013). Multiorgan anticarcinogenic effects of vanillin. Journal of Medicinal Food. 16(9): 777-777.
- Kaur, B., Chakraborty, D., and Kumar, B. (2014). Metabolic engineering of *Pediococcus* acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. *Applied Microbiology and Biotechnology*: 1-13.
- Kennedy, M., and Krouse, D. (1999). Strategies for improving fermentation medium performance: A review. *Journal of Industrial Microbiology and Biotechnology*. 23(6): 456-475.
- Kinniburgh, D. G. (1986). General purpose adsorption isotherms. *Environmental Science* & *Technology*. 20(9): 895-904.
- Kiran, B., and Kaushik, A. (2008). Cyanobacterial biosorption of Cr(VI): Application of two parameter and Bohart Adams models for batch and column studies. *Chemical Engineering Journal*. 144(3): 391-399.
- Knuth, M. E., and Sahai, O. P. (1991). Patent No. 5,057,424. Washington: USPTO.
- Ko, D. C. K., Porter, J. F., and McKay, G. (2000). Optimised correlations for the fixedbed adsorption of metal ions on bone char. *Chemical Engineering Science*. 55(23): 5819-5829.
- Krings, U., and Berger, R. (1995). Porous polymers for fixed bed adsorption of aroma compounds in fermentation processes. *Biotechnology Techniques*. 9(1): 19-24.
- Krings, U., and Berger, R. (2008). In situ recovery of the aroma compound perillene from stirred-tank cultured *Pleurotus ostreatus* using gas stripping and adsorption on polystyrene. *Biotechnology Letters*. 30(8): 1347-1351.
- Krings, U., Kelch, M., and Berger, R. G. (1993). Adsorbents for the recovery of aroma compounds in fermentation processes. *Journal of Chemical Technology & Biotechnology*. 58(3): 293-299.

- Kumar, N. S., and Min, K. (2011). Phenolic compounds biosorption onto *Schizophyllum commune* fungus: FTIR analysis, kinetics and adsorption isotherms modeling. *Chemical Engineering Journal*. 168(2): 562-571.
- Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. *Kungliga Svenska Vetenskapsakademiens Handlingar*. 24(4): 1-39.
- Lee, E.-G., Yoon, S.-H., Das, A., Lee, S.-H., Li, C., Kim, J.-Y., Choi, M.-S., Oh, D.-K., and Kim, S.-W. (2009). Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant *Escherichia coli*. *Biotechnology and Bioengineering*. 102(1): 200-208.
- Leffingwell, and Associates. (2015). 2010-2014 Flavor & Fragrance Industry Leaders. Retrieved 10 February 2016, 2016, from <u>http://www.leffingwell.com/top_10.htm</u>
- LeVan, M. D., Carta, G., and Yon, C. M. (1997). Adsorption and Ion Exchange. In D.
 W. Green, and R. H. Perry (Eds.), *Perry's Chemical Engineers' Handbook* (7th ed.). New York: McGraw-Hill.
- Li, K., and Frost, J. W. (1998). Synthesis of Vanillin from Glucose. Journal of the American Chemical Society. 120(40): 10545-10546.
- Li, Q., Wang, D., Hu, G., Xing, J., and Su, Z. (2011). Integrated bioprocess for highefficiency production of succinic acid in an expanded-bed adsorption system. *Biochemical Engineering Journal*. 56(3): 150-157.
- Li, R., Jiang, Z., Mao, L., and Shen, H. (1998). Adsorbed resin phase spectrophotometric determination of vanillin or/and its derivatives. *Talanta*. 47(5): 1121-1127.
- Likozar, B., Senica, D., and Pavko, A. (2012). Equilibrium and kinetics of vancomycin adsorption on polymeric adsorbent. *AIChE Journal*. 58(1): 99-106.
- Liu, J., Wan, L., Zhang, L., and Zhou, Q. (2011). Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber. *Journal of Colloid and Interface Science*. 364(2): 490-496.
- Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P., and Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. *Chemical Engineering Journal*. 157(2–3): 348-356.
- Liu, Y. (2009). Is the free energy change of adsorption correctly calculated? *Journal of Chemical & Engineering Data*. 54(7): 1981-1985.
- Liu, Y., and Shen, L. (2008). A general rate law equation for biosorption. *Biochemical Engineering Journal*. 38(3): 390-394.
- López-Garzón, C. S., and Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. *Biotechnology Advances*. 32(5): 873-904.

- López-Malo, A., Alzamora, S., and Argaiz, A. (1995). Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems. *Food Microbiology*. 12: 213-219.
- Madagascar Bourbon Vanilla Beans. (2016). Retrieved 10 February 2016, 2016, from https://www.beanilla.com/madagascar-vanilla-beans
- Markus, P. H., Peters, A. L. J., and Roos, R. (1997). Patent No. EP0542348. Munich: EPO.
- Maskeri, R., Ullal, S. D., Belagali, Y., Shoeb, A., and Bhagwat, V. (2012). Evaluation of aphrodisiac effect of vanillin in male wistar rats. *Pharmacognosy Journal*. 4(32): 61-64.
- Michailof, C., Stavropoulos, G. G., and Panayiotou, C. (2008). Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. *Bioresource Technology*. 99(14): 6400-6408.
- Milas, N. A. (1948). Patent No. 2,437,648. Washington: USPTO.
- Mohamad Yusof, N. N., and Kobayashi, T. (2013). Efficient Separation on Vanillin Operated with Permeability Performance of Hollow Fiber Membranes Embedded Vanillin Imprinted Polymer Particles. *Industrial & Engineering Chemistry Research.* 52(47): 16951-16957.
- Montgomery, D. C. (2012). *Design and Analysis of Experiments* (8th ed.). New Jersey: John Wiley & Sons.
- Ohashi, M., Omae, H., Hashida, M., Sowa, Y., and Imai, S. (2007). Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. *Journal of Chromatography A*. 1138(1-2): 262–267.
- Ötük, G. (1985). Degradation of Ferulic Acid by *Escherichia coli*. Journal of *Fermentation Technology*. 63(6): 501-506.
- Özdemir, E., Duranoğlu, D., Beker, Ü., and Avcı, A. Ö. (2011). Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. *Chemical Engineering Journal*. 172(1): 207-218.
- Pedroso, L. S., Fávero, G. M., de Camargo, L. E. A., Mainardes, R. M., and Khalil, N. M. (2013). Effect of the o-methyl catechols apocynin, curcumin and vanillin on the cytotoxicity activity of tamoxifen. *Journal of Enzyme Inhibition and Medicinal Chemistry*. 28(4): 734-740.
- Priefert, H., Rabenhorst, J., and Steinbüchel, A. (2001). Biotechnological production of vanillin. *Applied Microbiology and Biotechnology*. 56(3-4): 296-314.
- Purseglove, J. W., Brown, E., Green, C., and Robbins, S. (1981). Spices. London: Longman.

Rabenhost, J., and Hopp, R. (1991). Patent No. 5,017,388. Washington: USPTO.

- Rajoriya, R., Prasad, B., Mishra, I., and Wasewar, K. (2007). Adsorption of benzaldehyde on granular activated carbon: kinetics, equilibrium, and thermodynamic. *Chemical and Biochemical Engineering Quarterly*. 21(3): 219-226.
- Rakchoy, S., Suppakul, P., and Jinkarn, T. (2009). Antimicrobial effects of vanillin coated solution for coating paperboard intended for packaging bakery products. *Asian Journal of Food and Agro-Industry*. 2(4): 138-147.
- Reineccius, G. (2005). Flavor Chemistry and Technology, 2nd Edition. Florida: CRC Press.
- Rojo, M. C., Arroyo López, F. N., Lerena, M. C., Mercado, L., Torres, A., and Combina, M. (2015). Evaluation of different chemical preservatives to control *Zygosaccharomyces rouxii* growth in high sugar culture media. *Food Control.* 50(0): 349-355.
- Roosta, M., Ghaedi, M., Daneshfar, A., and Sahraei, R. (2014). Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 122(0): 223-231.
- Rouquerol, J., and Rouquerol, F. (2014). Adsorption at the Liquid–Solid Interface: Thermodynamics and Methodology. In F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin (Eds.), *Adsorption by Powders and Porous Solids* (2nd ed., pp. 105-158). Oxford: Academic Press.
- Ruthven, D. M. (1984). *Principles of Adsorption and Adsorption Processes*. New York: Wiley.
- Ruthven, D. M. (2008). Fundamentals of Adsorption Equilibrium and Kinetics in Microporous Solids. In H. G. Karge, and J. Weitkamp (Eds.), *Adsorption and Diffusion* (pp. 1-43). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Sangsuwan, J., Rattanapanone, N., and Pongsirikul, I. (2014). Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake. *International Journal of Food Science & Technology*: n/a-n/a.
- Sarkar, M., and Majumdar, P. (2011). Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead. *Chemical Engineering Journal.* 175(0): 376-387.
- Sarma, S., Dhillon, G., Hegde, K., Brar, S., and Verma, M. (2014). Utilization of Agroindustrial Waste for the Production of Aroma Compounds and Fragrances. In S. K. Brar, G. S. Dhillon, and C. R. Soccol (Eds.), *Biotransformation of Waste Biomass into High Value Biochemicals* (pp. 99-115). New York: Springer.

- Sciubba, L., Di Gioia, D., Fava, F., and Gostoli, C. (2009). Membrane-based solvent extraction of vanillin in hollow fiber contactors. *Desalination*. 241(1): 357-364.
- Seader, J. D., Henley, E. J., and Roper, D. K. (2010). *Separation Process Principles* (3rd Ed.). New Jersey: John Wiley & Sons.
- Shen, Y., Han, C., Liu, B., Lin, Z., Zhou, X., Wang, C., and Zhu, Z. (2014). Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. *Journal* of Dairy Science. 97(2): 679–686.
- Shoeb, A., Chowta, M., Pallempati, G., Rai, A., and Singh, A. (2013). Evaluation of antidepressant activity of vanillin in mice. *Indian Journal of Pharmacology*. 45(2): 141-144.
- Singh, T. S., and Pant, K. K. (2006). Experimental and modelling studies on fixed bed adsorption of As(III) ions from aqueous solution. *Separation and Purification Technology*. 48(3): 288-296.
- Slejko, F. L. (1985). Adsorption Technology: A Step-by-step Approach to Process Evaluation and Application: Marcel Dekker Inc.
- Smith, R. M. (2005). Chemical Process: Design and Integration. West Sussex: Wiley.
- Song, K.-H., and Lee, K.-R. (2005). Pervaporation of flavors with hydrophobic membrane. *Korean Journal of Chemical Engineering*. 22(5): 735-739.
- Stark, D., and von Stockar, U. (2003). In Situ Product Removal (ISPR) in Whole Cell Biotechnology During the Last Twenty Years. In U. von Stockar, L. A. M. van der Wielen, and U. von Stockar (Eds.), *Process Integration in Biochemical Engineering* (Vol. 80, pp. 149-175). New York: Springer-Verlag.
- Stentelaire, C., Lesage-Meessen, L., Oddou, J., Bernard, O., Bastin, G., Ceccaldi, B. C., and Asther, M. (2000). Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by *Pycnoporus cinnabarinus*. *Journal of Bioscience and Bioengineering*. 89(3): 223-230.
- Sutherland, J. B., Crawford, D. L., and Pometto III, A. L. (1983). Metabolism of cinnamic, p-coumaric, and ferulic acids by *Streptomyces setonii*. *Canadian Journal of Microbiology*. 29(10): 1253-1257.
- Taber, D. F., Patel, S., Hambleton, T. M., and Winkel, E. E. (2007). Vanillin synthesis from 4-hydroxybenzaldehyde. *Journal of Chemical Education*. 84(7): 1158.
- Tai, A., Sawano, T., and Yazama, F. (2011). Antioxidant properties of ethyl vanillin in vitro and in vivo. *Bioscience, Biotechnology, and Biochemistry*. 75(12): 2346-2350.
- Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z., and Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: Recent developments and

adsorption mechanisms. *Separation and Purification Technology*. 150: 229-242.

- Thomas, W. J., and Crittenden, B. D. (1998). *Adsorption Technology and Design*. Oxford: Butterworth-Heinemann.
- Toms, A., and Wood, J. M. (1970). Degradation of trans-ferulic acid by *Pseudomonas* acidovorans. Biochemistry. 9(2): 337-343.
- Treybal, R. E. (1980). Mass-Transfer Operations (Third ed.). New York: McGraw-Hill.
- Turin, L., and Sanchez, T. (2010). Perfumes: The A-Z Guide. London: Profile Books.
- Unger, K. K., du Fresne von Hohenesche, C., and Schulte, M. (2005). Columns, Packings and Stationary Phases *Preparative Chromatography* (pp. 51-105). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
- van der Schaft, P., ter Burg, N., van den Bosch, S., and Cohen, A. (1992). Microbial production of natural δ -decalactone and δ -dodecalactone from the corresponding α , β -unsaturated lactones in Massoi bark oil. *Applied Microbiology and Biotechnology*. 36(6): 712-716.
- Vidal, J.-P. (2008). Vanillin *Kirk-Othmer Food and Feed Technology* (Vol. 2, pp. 526-538). New Jersey: John Wiley & Sons.
- Volesky, B., and Prasetyo, I. (1994). Cadmium removal in a biosorption column. Biotechnology and Bioengineering. 43(11): 1010-1015.
- Walton, N. J., Narbad, A., Faulds, C., and Williamson, G. (2000). Novel approaches to the biosynthesis of vanillin. *Current Opinion in Biotechnology*. 11(5): 490-496.
- Wang, C. L., Li, S. L., Zhou, Q. L., Zhang, M., Zeng, J. H., and Zhang, Y. (2005). Extraction of vanillin in fermented broth by macroporous adsorption resin. *Fine Chemicals*. 6: 458–460.
- Wang, H.-L., Fei, Z.-H., Chen, J.-L., Zhang, Q.-X., and Xu, Y.-H. (2007). Adsorption thermodynamics and kinetic investigation of aromatic amphoteric compounds onto different polymeric adsorbents. *Journal of Environmental Sciences*. 19(11): 1298-1304.
- Wang, Z., Chen, K., Li, J., Wang, Q., and Guo, J. (2010). Separation of vanillin and syringaldehyde from oxygen delignification spent liquor by macroporous resin adsorption. *CLEAN – Soil, Air, Water.* 38(11): 1074-1079.
- Wantala, K., Khongkasem, E., Khlongkarnpanich, N., Sthiannopkao, S., and Kim, K.-W. (2012). Optimization of As(V) adsorption on Fe-RH-MCM-41-immobilized GAC using Box–Behnken Design: Effects of pH, loadings, and initial concentrations. *Applied Geochemistry*. 27(5): 1027-1034.

- Weber Jr, W. J. (1985). Adsorption Theory, Concepts and Models. In F. L. Slejko (Ed.), Adsorption Technology: A Step-by-step Approach to Process Evaluation and Application (Vol. 19, pp. 1-35). New York: Marcel Dekker Inc.
- Weber, W. J., and Morris, J. C. (1963). Kinetics of adsorption carbon from solutions. Journal Sanitary Engineering Division, American Society of Civil Engineers. 89(1): 31-60.
- Webster, T. M. (1995). New perspectives on vanilla. Cereal Foods World. 40: 198-200.
- Whittaker, G., Mount, A., and Heal, M. (2000). *BIOS Instant Notes in Physical Chemistry*. Abingdon: Taylor & Francis.
- Wiehn, M., Staggs, K., Wang, Y., and Nielsen, D. R. (2014). In situ butanol recovery from Clostridium acetobutylicum fermentations by expanded bed adsorption. *Biotechnology Progress.* 30(1): 68-78.
- Wu, F.-C., Tseng, R.-L., Huang, S.-C., and Juang, R.-S. (2009). Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. *Chemical Engineering Journal*. 151(1–3): 1-9.
- Wu, Y.-T., Feng, M., Ding, W.-W., Tang, X.-Y., Zhong, Y.-H., and Xiao, Z.-Y. (2008). Preparation of vanillin by bioconversion in a silicon rubber membrane bioreactor. *Biochemical Engineering Journal*. 41(2): 193-197.
- Xiao, G. Q., Long, L. P., and Wang, J. L. (2012). Synthesis of the water-compatible pacetaminophen resin and its adsorption performances for vanillin in aqueous solution. *Chinese Chemical Letters*. 23(1): 123-126.
- Yang, R. T. (2003). Adsorbents: Fundamentals and Applications. New Jersey: Wiley.
- Yoshimoto, T., Samejima, M., Hanyu, N., and Koma, T. (1990). *Patent No. 2,195,871*. J. Patent.
- Zabkova, M., Borges da Silva, E. A., and Rodrigues, A. E. (2007a). Recovery of vanillin from Kraft lignin oxidation by ion-exchange with neutralization. *Separation* and Purification Technology. 55(1): 56-68.
- Zabkova, M., Borges da Silva, E. A., and Rodrigues, A. E. (2007b). Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. *Journal of Membrane Science*. 301(1–2): 221-237.
- Zabkova, M., Otero, M., Minceva, M., Zabka, M., and Rodrigues, A. E. (2006). Separation of synthetic vanillin at different pH onto polymeric adsorbent Sephabeads SP206. *Chemical Engineering and Processing: Process Intensification.* 45(7): 598-607.
- Zhang, C., Zhong, S., and Yang, Z. (2008a). Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin. *Brazilian Journal of Chemical Engineering*. 25: 365-373.

- Zhang, M., Yang, H., Chen, X., Zhou, Y., Zhang, H., Wang, Y., and Hu, P. (2011). Insitu extraction and separation of salvianolic acid B from *Salvia miltiorrhiza Bunge* by integrated expanded bed adsorption. *Separation and Purification Technology*. 80(3): 677-682.
- Zhang, Q.-F., Jiang, Z.-T., Gao, H.-J., and Li, R. (2008b). Recovery of vanillin from aqueous solutions using macroporous adsorption resins. *European Food Research and Technology*. 226(3): 377-383.
- Zhao, L.-Q., Sun, Z.-H., Zheng, P., and He, J.-Y. (2006). Biotransformation of isoeugenol to vanillin by *Bacillus fusiformis* CGMCC1347 with the addition of resin HD-8. *Process Biochemistry*. 41(7): 1673-1676.
- Zhigang, T., Rongqi, Z., and Zhanting, D. (2001). Adsorption and desorption behaviour of taurine on macroporous adsorption resins. *Journal of Chemical Technology* & *Biotechnology*. 76(7): 752-756.
- Zhou, G., A, R., Ge, H., Wang, L., Liu, M., Wang, B., Su, H., Yan, M., Xi, Y., and Fan, Y. (2014). Research on a novel poly (vinyl alcohol)/lysine/vanillin wound dressing: Biocompatibility, bioactivity and antimicrobial activity. *Burns*. 40(8): 1668-1678.