Il
UNIVERSITI PUTRA MALAYSIA

BIODEGRADATION OF CYANIDE BY CYANIDE DIHYDRATASE FROM
LOCALLY ISOLATED Serratia marcescens ISOLATE AQO7

KARAMBA KABIRU IBRAHIM

FBSB 2016 21




UPM

UNIVERSITI PUTRA MALAYSIA

BIODEGRADATION OF CYANIDE BY CYANIDE DIHYDRATASE FROM
LOCALLY ISOLATED Serratia marcescens ISOLATE AQOQ7

By

KARAMBA KABIRU IBRAHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2016



COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs, and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



DEDICATION

| dedicated this thesis to Bauchi State University Gadau (BASUG) for giving me the
opportunity to serve and obtain a Philosophy Doctorate Degree (PhD) under its
umbrella. I hope the University will grow and be the No. 1 University in the Federal

Republic of Nigeria.



Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfillment of
the requirements for the Degree of Doctor of Philosophy

BIODEGRADATION OF CYANIDE BY CYANIDE DIHYDRATASE FROM
LOCALLY ISOLATED Serratia marcescens ISOLATE AQQ7
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Cyanide is a very toxic chemical and is one of the environmental pollutants found in
sewage. Serratia marcescens isolated from soil sample around Universiti Putra
Malaysia (3°00°23.91"N, 101°42°31.45"E) was found to have cyanide degrading
capability. Spectrophotometric method was used to examine the biodegradation
ability of the bacteria in free and immobilised forms using cyanide incorporated
buffer medium. Factors affecting cyanide biodegradation such as carbon and
nitrogen sources, pH of medium, inoculums size, cyanide concentration and
temperature were optimised using one factor at time and response surface methods.
Cyanide tolerance and effect of heavy metals (silver, arsenic, cadmium, cobalt,
chromium, copper, mercury, nickel, lead and zinc) were investigated. The results
illustrates that glucose at 5.5 g/L, yeast extract at 0.55 g/L, pH 6, 20% inoculums
size, 200 mg/L cyanide concentration and 32.5°C are the optimum biodegradation
conditions required by the bacteria. Immobilised form of the bacteria showed better
biodegradation in terms of duration as it degrades the cyanide in 24 hours compared
to free cells that require 72 hours degradation process. The bacteria can tolerate 700
mg/L cyanide concentration in free cells and 900 mg/L in immobilised forms. Heavy
metals tested at 1 ppm illustrates that the bacteria could stand their effect with the
exception of mercury, which degraded only 24.7% in free cells and 61.6% in
immobilised forms. Enzyme activity assay illustrates that the bacteria follow the
hydrolytic pathway catalysed by cyanide dihydratase to degrade the cyanide. The
purified enzyme was able to detoxify 82% of 2 mM potassium cyanide in 10 min of
incubation and the rate of cyanide depletion improved linearly as the enzyme
concentration is increased. Hydrolysis of cyanide by the purified enzyme fits
Michaelis-Menten saturation kinetics when examined over cyanide concentration of
5 mM potassium cyanide. Lineweaver-Burk plot revealed a linear response at 5 mM
KCN and less. Michaelis-Menten constant (K,) for best-fit values of 26.52 and Vax
value of 1.13 and R? value of 0.9 were determined. Total enzyme activity for crude
extract stands at 79.9 and 49, 880 mg/L total protein. After final purification process,
the total enzyme activity stands at 0.165 with a total protein of 52 mg/L
demonstrating yield of 0.207% and purification fold of 65.78. Effect of pH and
temperature revealed that enzyme activity was most active at pH of 8 and



temperature of 27°C. The temperature stability test carried out on the enzyme
illustrated that it was stable for 70 days at — 20°C and when stored at 4°C, the
stability starts reducing after 4 days of incubation. Furthermore, SDS-PAGE
electrophoresis post purification revealed the molecular weight of the enzyme to be
~38 kDa, which is a further affirmation. Serratia marcescens isolate AQO07 was
observed to have the ability to degrade cyanide. Suitable growth and biodegradation
conditions were obtained using the optimisation methods. It demonstrates that
immobilised cells of the bacteria have a greater ability for cyanide biodegradation
compared to free cells, which can be applied for cyanide treatment in sewage. It has
been registered in the gene bank as isolate AQO7 with assigned accession number
KP213291
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Sianida adalah bahan kimia yang sangat toksik dan adalah salah satu daripada
pencemaran alam sekitar yang dijumpai di dalam kumbahan. Serratia marcescens
dipencilkan daripada sampel tanah di Universiti Putra Malaysia (3°00°23.91"N,
101°42°31.45"E) didapati mempunyai keupayaan menurunkan sianida. Kaedah
spektrofotometri telah digunakan untuk mengkaji keupayaan biopenurunan oleh
bakteria dalam bentuk yang bebas dan sekat gerak menggunakan sianida yang
dicampar dengan media penimbal. Faktor yang mempengaruhi biopenurunan sianida
seperti sumber karbon dan nitrogen, medium pH, saiz inokulum, kepekatan sianida
dan suhu telah dioptimumkan menggunakan satu faktor pada masa dan kaedah gerak
balas permukaan. Toleransi sianida dan kesan logam berat (perak, arsenik, kadmium,
kobalt, kromium, tembaga, merkuri, nikel, plumbum dan zink) telah dikaji.
Keputusan menunjukkan bahawa glukosa pada 5.5 g/L, ekstrak yis pada 0.55 g/L,
pH 6, 20% saiz inokulum, 200 mg/L kepekatan sianida dan 32.5°C adalah
diperlukan bagi biopenurunan optima oleh bakteria. Bentuk sekat gerak bakteria
menunjukkan biopenurunan lebih baik dari segi jangka masa kerana ia menurunkan
sianida dalam tempoh 24 jam berbanding dengan sel-sel bebas yang memerlukan 72
jam proses penurunan. Bakteria boleh bertoleransi dengan 700 mg/L kepekatan
sianida dalam sel bebas dan 900 mg/L dalam bentuk sekat gerak. Logam berat diuji
pada 1 ppm menggambarkan bahawa bakteria boleh tahan kesannya kecuali merkuri,
yang menurunkan hanya 24.7% dalam sel bebas dan 61.6% dalam bentuk sekat
gerak. Aktiviti enzim asai menunjukkan bahawa bakteria mengikuti laluan hidrolitik
menjadi pemangkin oleh sianida hidratase untuk menurunkan sianida. Enzim tulen
dapat menyahtoksik 82% daripada 2 mM kalium sianida dalam 10 min masa
pengeraman dan kadar pengurangan sianida meningkat secara linear sebagai
kepekatan enzim bertambah. Hidrolisis sianida oleh enzim tulen sepadan kinetik tepu
Michaelis-Menten apabila diperiksa atas kepekatan sianida pada 5 mM kalium
sianida. Plot Lineweaver-Burk mendedahkan tindak balas linear pada 5 mM KCN
dan kurang. Pemalar Michaelis-Menten (Km) untuk nilai-nilai terbaik patut 26.52 da
n nilai Vmax 1.13 dan nilai R2 0.9 telah ditentukan. Jumlah aktiviti enzim untuk
ekstrak mentah berada pada 79.9 dan 49, 880 jumlah protein. Selepas proses
penulenan berakhir, aktiviti enzim jumlah mencecah 0.165 dengan jumlah protein 52



mg/L menunjukkan hasil 0.207% dan pembersihan kali ganda 65.78. Kesan pH dan
suhu menunjukkan bahawa aktiviti enzim adalah yang paling aktif pada pH 8 dan
suhu 27°C. Ujian kestabilan suhu dijalankan ke atas enzim menunjukkan bahawa ia
adalah stabil selama 70 hari di -20°C dan apabila disimpan pada 4°C, kestabilan mula
mengurangkan selepas 4 hari pengeraman. Tambahan pula, SDS-PAGE
elektroforesis penulinan menunjukkan berat molekul enzim menjadi ~38 kDa, yang
merupakan ikrar selanjutnya. Serratia marcescens pencilan AQO7 telah diperhatikan
mempunyai keupayaan untuk menurunkan sianida. Keadaan pertumbuhan dan
biopuraian yang sesuai telah diperolehi dengan menggunakan kaedah
pengoptimuman. la menunjukkan bahawa sel sekat gerak daripada bakteria
mempunyai kemampuan yang lebih besar untuk biopenurunan sianida berbanding sel
bebas, yang boleh digunakan untuk rawatan sianida dalam kumbahan. la telah
didaftarkan di GenBank sebagai pencilan AQO7 dengan nombor kesertaan diberikan
KP213291.
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CHAPTER 1

INTRODUCTION

Free cyanide like Hydrogen Cyanide and CN" are reflected as the most toxic forms of
cyanide because of their great metabolic inhibition capacity (Gurbuz et al., 2009).
They are universally found in the environment. Amygdalin found in apricots, fruits,
vegetables, seeds, cashew nuts, cherries, bean sprouts, is a normal source of HCN
(DOH, 2004). Cyanide ensues as normal metabolite in a wide-range of animals, plants
and fungi inspite of its noxiousness. It is reflected as one of the poisonous chemicals
worldwide. It virtually affects all living organisms as it disables the respiratory
functions of a living cell by resolutely binding to the terminal oxidase (Chen et al.,
2008). Contact with deadly dosage of cyanide via ingestion, inhalation or skin
adsorption devoid of quick first aid action can be tremendously lethal to human being
in just a few minutes (Badugu et al., 2005).

Additionally, cyanide also arises anthropogenically. Utilisation of huge amounts of
cyanide in several manufacturing practices like metal plating, polymer synthesis,
electroplating, steel tempering, and mining signify the significant sources of possible
cyanide effluence in the environment (Ebbs et al., 2010). Moreover, cyanide is utilised
in gold extraction and jewellery manufacturing that produce wastes highly
contaminated with cyanide. The cyanidation method utilised for gold mining has
generated over 20% of worldwide cyanide production (Luque-Almagro et al., 2011).
Through the cyanidation course, cyanide leaching produces various complexes of
metal cyanide.

Due to industrial actions, cyanide compounds and complexes are released as industrial
waste into the environment, whereby a predicted 14 million kg/year of entire cyanide
discharge from these industries have been reported (Dash et al., 2009). The wastes
from these manufacturing industries commonly contain between 0.01 and 10 ppm of
total cyanide. Conversely, these figures can increase up to 10,000 to 30,000 ppm as
certain cyanide effluents from discrete processes at metal plating and electroplating
finishing plants can be stowed for years. Actually, greater levels of cyanide amounting
to 100,000 ppm can be obtained in some industrial wastes in which it surpasses the
acceptable standards for release to the environment.

Ozonation, alkaline chlorination, sulphur-based technologies and wet air oxidation are
some of the presently obtainable chemical approaches for cyanide containing effluent
treatments. The utilisation of expensive and unsafe compounds as depolluting agents
attested to be unfavourable (Luque-Almagro et al., 2011). Moreover, total removal of
cyanide complexes is not attainable by these methods. The employment of
commercially prevailing physical and chemical approaches of cyanide removal
inclines to produce noxious spinoffs, which also need appropriate treatment and
consequently increase the total cost of wastes treatment. Furthermore, exceptional
equipment and upkeep are also needed to employ these techniques. Owing to these
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demerits, cyanide bearing sewages from several manufacturing plants are
incompletely detoxified to the cyanate stage or in vilest scenarios straight release
devoid of treatment so as to reduce operational cost (Dash et al., 2009). Hence, the
exploration of a substitute treatment method capable of attaining high detoxification
efficacy at subsidised cost is very significant.

On the other hand, biological detoxification can be used to treat cyanide bearing
effluents. Biological methods of cyanide detoxification that are less expensive and free
of risk have consequently been accepted, predominantly in mining industries where
cyanide can be converted to inoffensive end products (Ebbs, 2004). Nevertheless, the
detoxification of cyanide harbouring effluents by biological methods has not been
broadly investigated, which could be attributable to the noxiousness of cyanide and
deficiency of the essential knowledge on bacteriological processes (Khor, 2009).
Though most bacteria are very subtle to cyanide, others not only endure it, but even
utilise it in selected instances as a source of sustenance. Cyanide forbearance can be
instructed in two ways, which are by the production of cyanide resilient cytochrome
oxidases and by the metabolism of cyanide to harmless end-products (Kunz, 2004).

With fast proliferations of many manufacturing plants that regularly use cyanide, cost-
effective and effective degradation methodologies are necessary. Constant researches
for assessing the degrading capacities of the new microbes for different cyanide
compounds from effluents have to be mutually conducted, in the laboratory and in real
scale. As a result, the assortment of microbes has to be based on their capacity to
degrade cyanide and also to endure the supplementary pressures, like the thrilling
environmental conditions such as higher or lower pH and toxicity effect of other
contaminants. The microbes must be capable of competing with native microbial
inhabitants efficiently in the environment wherein they will be operative (Dash et al.,
2009). Primarily, biological detoxification method has to be established and
improvised so as to surpass present technologies with added value benefits as well as
filling particular essentials related to the treatment of industrial waste waters.

A broad variety of microbes has been identified to break down the extremely noxious
cyanide and therefore established the cyanide metabolic degradation pathways, which
have been applied in manufacturing plants for the previous 40 years (Hong, 2006).
Several previous efforts in designing a biological method for the degradation of
cyanide have focused on cyanide-degrading moulds such as Trichoderma and
Fusarium and quite a few reports have been also reported on the utilisation of bacterial
strains like Klebsiella, Acinetobacter, Pseudomonas, Burkholderia, Bacillus and
Alcalegens.

The utilisation of bacteria inter alia appeared to be the best acknowledged and best
viable method of biological cyanide treatment. Strains of bacteria are capable of
adapting and growing in the cyanide bearing medium either by inducing degradation
enzymes or by the inducing of cyanide resisting enzymes (Naveen et al., 2011).
Meanwhile, the use of bacterial strains demonstrates to be achievable for practical
application in degrading cyanide containing effluent, thus the necessity to explore

2



extra cyanide detoxification microbes is of great importance. Nevertheless, no
additional study on the bacteria was conducted in relation to the removal capacity of
its immobilised form or other environmental conditions that could affect the
degradation or the degradation pathways that bacteria utilise in the removal process.
The dearth of thorough valuation on these bacteria encouraged the present study to
deliver a better all-inclusive account on the series of actions that could result to the
cyanide degradation. Furthermore, both one factor at a time and response method
methodology were employed as the optimisation methods to bring out more detailed
options required by the bacteria in the removal of cyanide.

This study aims to bring out a biological methodology for degradation of cyanide by
means of bacterial isolate. Bacteria were anticipated to induce cyanide detoxification
enzymes or to develop cyanide-resistant enzymes as well as to allow them to adapt
and proliferate in the cyanide bearing medium.

The specific objectives of this study are:

1. To isolate, screen and identify cyanide degrading bacteria from soil.

2. To optimise cyanide degradation condition using one factor at a time (OFAT)
approach and response surface methodology (RSM) by free and immobilised
cells.

3. To determine the effect of cyanide concentration and heavy metals on

biodegradation of cyanide by free and immobilised cells.

To purify the enzyme responsible for the degradation of cyanide

To examine the capacity and Kinetic properties of cyanide degradation

enzymes

ok~



REFERENCES

Abdel-Salam, A.M., Al-Dekheil, A., Babkr, A., Farahna, M., Mousa, H.M., 2010.
High fiber probiotic fermented mare’s milk reduces the toxic effects of
mercury in rats. North American Journal of Medical Sciences. 2, 569.

Acinas, S.G., Rodrguez-Valera, F., Pedr&-Alig C., 1997. Spatial and temporal
variation in marine bacterioplankton diversity as shown by RFLP
fingerprinting of PCR amplified 16S rDNA. FEMS Microbiology Ecology. 24,
27-40.

Adjei, M.D., Ohta, Y., 1999. Isolation and characterization of a cyanide-utilizing
Burkholderia cepacia strain. World Journal of Microbiology and
Biotechnology. 15, 699-704.

Ahmad, S.A., 2011. Biodegradation of phenol by locally isolated Acinetobacter sp.
strain AQOS5NOL 1 and purification of phenol hydrolase. Universiti Putra
Malaysia.

Ahmad, S., Ibrahim, S., Shukor, M., Johari, W.L., Rahman, N.A., Syed, M., 2015.
Biodegradation kinetics of caffeine by Leifsonia sp. strain siu. Journal of
Chemical and Pharmaceutical Sciences. 8, 312 — 316.

Ahmed, S.A., 2008. Invertase production by Bacillus macerans immobilized on
calcium alginate beads. Journal of Applied Sciences Research. 4, 1777-1781.

Aitimbetov, T., White, D.M., Seth, I., 2005. Biological gold recovery from gold —
cyanide solutions. International Journal of Mineral Processing 76, 33-42.

Akcil, A., 2003. Destruction of cyanide in gold mill effluents: biological versus
chemical treatments. Biotechnology Advances. 21, 501-511.

Aksu, Z., BUbd, G., 1999. Determination of the effective diffusion coefficient of
phenol in Ca-alginate-immobilized P. putida beads. Enzyme and Microbial
Technology. 25, 344-348.

Alkarkhi, A.F., Ahmad, A., Ismail, N., Easa, A.M., 2008. Multivariate analysis of
heavy metals concentrations in river estuary. Environmental Monitoring and
Assessment. 143, 179-186.

Alzubaidy, S.K., 2012. The resistance of locally isolated Serratia marcescens to heavy
metals chlorides and optimization of some environmental factors. Journal of
Environmental and Occupational Sciences. 1, 37-42.

Anderson, P.M., 1980. Purification and properties of the inducible enzyme cyanase.
Biochemistry (Mosc.) 19, 2882-2888.

ASTDR, 2008. Reader Question: What fruits and vegetables contain Cyanide?
https://www.healthaliciousness.com (accessed 1.2.16).

141



Atkinson, A., 1975. Bacterial cyanide detoxification. Biotechnology and
Bioengineering 17, 457-460.

Awasthi, M., Rai, L.C., 2005. Toxicity of nickel, zinc, and cadmium to nitrate uptake
in free and immobilized cells of Scenedesmus quadricauda. Ecotoxicology and
Environmental Safety. 61, 268-272.

Badugu, R., Lakowicz, J.R., Geddes, C.D., 2005. Enhanced fluorescence cyanide
detection at physiologically lethal levels: reduced ICT-based signal
transduction. Journal of the American and Chemical Society. 127, 3635-3641.

Bai, J., Wen, J.-P., Li, H.-M., Jiang, Y., 2007. Kinetic modeling of growth and
biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process
Biochemistry. 42, 510-517.

Banerjee, A., Ghoshal, A.K., 2010. Phenol degradation by Bacillus cereus: Pathway
and kinetic modeling. Bioresource Technology. 101, 5501-5507.

Barclay, M., Day, J.C., Thompson, I.P., Knowles, C.J., Bailey, M.J., 2002. Substrate-
regulated cyanide hydratase (chy) gene expression in Fusarium solani: the
potential of a transcription-based assay for monitoring the biotransformation
of cyanide complexes. Environmental Microbiology. 4, 183-189.

Barclay, M., Hart, A., Knowles, C.J., Meeussen, J.C., Tett, V.A., 1998.
Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme
and Microbial Technology. 22, 223-231.

Barnum, D.A., Thackeray, E.L., Fish, N.A., 1958. An outbreak of mastitis caused by
Serratia marcescens. Canadian Journal of Comparative Medicine and
Veterinary Science 22, 392 — 395.

Bas, D., Boyaci, I.LH., 2007. Modeling and optimization I: Usability of response
surface methodology. Journal of Food Engineering. 78, 836-845.

Baxter, J., Cummings, S.P., 2006. The current and future applications of
microorganism in the bioremediation of cyanide contamination. Antonie Van
Leeuwenhoek 90, 1-17.

Beshay, U., 2003. Production of alkaline protease by Teredinobacter turnirae cells
immobilized in Ca-alginate beads. African Journal of Biotechnology. 2, 60—
65.

Biotech, U., 2015. BCH 3102 Enzymology, Universiti Putra Malaysia. 1 - 37

Botz, M.M., 2001. Overview of cyanide treatment methods. Mining Environmental.
Management. Mining Journal. Ltd London UK. 28-30.

Button, D.K., 1985. Kinetics of nutrient-limited transport and microbial growth.
Microbiology Reviews. 49, 270.

142



Cappuccino, J.G., Sherman, N., 1999. Basic laboratory techniques for isolation,
cultivation and cultural characerization of microorganisms, 5th ed.
Benjamin/Cummings Science Publishing.

Castric, P.A., Strobel, G.A., 1969. Cyanide metabolism by Bacillus megaterium.
Journal of Biological Chemistry. 244, 4089-4094.

Chapatwala, K.D., Babu, G.R.V., Vijaya, O.K., Kumar, K.P., Wolfram, J.H., 1998.
Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon
dioxide by immobilized cells of Pseudomonas putida. Journal of Industrial
Microbiology and Biotechnology. 20, 28-33.

Chatterjee, S., Sau, G.B., Mukherjee, S.K., 2011. Bioremediation of Cr (VI) from
chromium-contaminated wastewater by free and immobilized cells of
Cellulosimicrobium cellulans KUCr3. Bioremediation Journal. 15, 173-180.

Chen, C.Y., Kao, C.M., Chen, S.C., 2008. Application of Klebsiella oxytoca
immobilized cells on the treatment of cyanide wastewater. Chemosphere 71,
133-1309.

Cherruault, Y., 1994. Global optimization in biology and medicine. Mathematical and
Computer Modeling. 20, 119-132.

Chibata, I., Tosa, T., Sato, T., Takata, ., 1986. Immobilization of cells in carrageenan.
Methods in Enzymology. 135, 189-198.

Choi, S.H., Moon, S.-H., Gu, M.B., 2002. Biodegradation of chlorophenols using the
cell-free culture broth of Phanerochaete chrysosporium immobilized in
polyurethane foam. Journal of Chemical Technology and Biotechnology. 77,
999-1004.

Chung, T.-P., Tseng, H.-Y., Juang, R.-S., 2003. Mass transfer effect and intermediate
detection for phenol degradation in immobilized Pseudomonas putida systems.
Process Biochemistry. 38, 1497-1507.

Cipollone, R., Ascenzi, P., Tomao, P., Imperi, F., Visca, P., 2008. Enzymatic
detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese.
Journal of Molecular Microbiology and Biotechnology. 15, 199-211.

Cunningham, C.J., Ivshina, 1.B., Lozinsky, V.l., Kuyukina, M.S., Philp, J.C., 2004.
Bioremediation of diesel-contaminated soil by microorganisms immobilised
in polyvinyl alcohol. International Biodeterioration and Biodegradation. 54,
167-174.

Dash, R.R., Gaur, A., Balomajumder, C., 2009. Cyanide in industrial wastewaters and

its removal: a review on biotreatment. Journal of Hazardous Material. 163, 1—
11.

143



Davey, K.R., 1994. Modelling the combined effect of temperature and pH on the rate
coefficient for bacterial growth. International Journal of Food Microbiology.
23, 295-303.

Demoling, L.A., Baath, E., 2008. The use of leucine incorporation to determine the
toxicity of phenols to bacterial communities extracted from soil. Applied Soil
Ecology. 38, 34-41.

De Souza, M.P., Pickering, 1.J., Walla, M., Terry, N., 2002. Selenium assimilation and
volatilization from selenocyanate-treated Indian mustard and muskgrass. Plant
Physiology. 128, 625-633.

Dhillon, J.K., Shivaraman, N., 1999. Biodegradation of cyanide compounds by a
Pseudomonas species (S1). Canadian Journal of Microbiology. 45, 201-208.

Dias, J., Rezende, R., Linardi, V., 2001. Bioconversion of nitriles by Candida
guilliermondii CCT 7207 cells immobilized in barium alginate. Applied
Microbiology and Biotechnology. 56, 757—761.

DOE, M., 2003. Malaysia Environmental Quality Report 2002. Ministry of Science,
Technology and the Environment Malaysia. (Accessed 18/10/2015)

DOH, N., 2004. The facts about cyanide. New York State Department of Health.
(http://www.health.state.ny.us) (Accessed 27/1/2016)

Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.-P., Raoult, D., 2000.
16S ribosomal DNA sequence analysis of a large collection of environmental
and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology.
38, 3623-3630.

Dubey, S.K., Holmes, D.S., 1995. Biological cyanide destruction mediated by
microorganisms. World Journal of Microbiology and Biotechnology. 11, 257—
265.

Dumestre, A., Chone, T., Portal, J.,, Gerard, M., Berthelin, J., 1997. Cyanide
Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated
from Contaminated Soils. Applied and Environmental Microbiology. 63,
2729-2734.

du Plessis, C. a., Barnard, P., Muhlbauer, R.M., Naldrett, K., 2001. Empirical model
for the autotrophic biodegradation of thiocyanate in an activated sludge
reactor. Letters in Applied Microbiology. 32, 103-107.

Dursun, A.Y., Aksu, Z., 2000. Biodegradation kinetics of ferrous (I1) cyanide complex
ions by immobilized Pseudomonas fluorescens in a packed bed column
reactor. Process Biochemistry. 35, 615-622.

Dursun, AY., Tepe, O., 2005. Internal mass transfer effect on biodegradation of

phenol by Ca-alginate immobilized Ralstonia eutropha. Journal of Hazardous
Material. 126, 105-111.

144



Ebbs, S., 2004. Biological degradation of cyanide compounds. Current Opinion in
Biotechnology. 15, 231-236.

Ebbs, S.D., Kosma, D.K., Nielson, E.H., Machingura, M., Baker, A.J.M., Woodrow,
I.E., 2010. Nitrogen supply and cyanide concentration influence the
enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and
sorghum (Sorghum bicolor L.). Plant Cell and Environment. 33, 1152-1160.

Ezzi, M.1., Lynch, J.M., 2005. Biodegradation of cyanide by Trichoderma spp . and
Fusarium spp . Enzyme and Microbial Technology. 36, 849-854.

Ezzi, M.1., Lynch, J.M., 2002. Cyanide catabolizing enzymes in Trichoderma spp.
Enzyme and Microbial Technology. 31, 1042-1047.

Frost, R.C., 2009. EU practice in setting wastewater emission limit values.
http://www.wgw.org.ua (2015-09-22 11:30:34)

Fry, W.E., Millar, R.L., 1972. Cyanide degradion by an enzyme from Stemphylium
loti. Archives of Biochemistry and Biophysics. 151, 468-474.

Ganczarczyk, J.J., Takoaka, P.T., Ohashi, D.A., 1985. Application of polysulfide for
pretreatment of spent cyanide liquors. Journal of the Water Pollution control
Federation. 1089-1093.

Gonzalez, G., Herrera, G., Garci, M.T., Pena, M., 2001. Biodegradation of phenolic
industrial wastewater in a fluidized bed bioreactor with immobilized cells of
Pseudomonas putida. Bioresource Technology 80, 137-142.

Guilloton, M., Espie, G.S., Anderson, P.M., 2002. What is the role of cyanase in
plants. Rev Plant Biochemistry and Biotechnology 1, 57-79.

Gurbuz, F., Ciftci, H., Akcil, A., 2009. Biodegradation of cyanide containing effluents
by Scenedesmus obliquus. Journal of Hazardous Material. 162, 74-79.

Hao, O.J., Kim, M.H., Seagren, E.A., Kim, H., 2002. Kinetics of phenol and
chlorophenol utilization by Acinetobacter species. Chemosphere 46, 797-807.

Haroun, M., Idris, A., Omar, S.S., 2007. A study of heavy metals and their fate in the
composting of tannery sludge. Waste Management. 27, 1541-1550.

Heide, B., 2012. Natural Source of Cyanide in Plants. http://www.ehow.com (accessed
10.9.15).

Hong, L.-Y., 2006. Dissipation of cyanide contaminants in the rhizosphere
environment. PURDUE UNIVERSITY.

House, J.M.Y.I., Marsden, J., 1992. The chemistry of gold extraction. Ellis Horwood,
London, United Kingdom.

145



Ingvorsen, K., Hger-Pedersen, B., Godtfredsen, S.E., 1991. Novel cyanide-
hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans.
Applied and Environmental Microbiology. 57, 1783-1789.

Jandhyala, D., Berman, M., Meyers, P.R., Sewell, B.T., Willson, R.C., Benedik, M.J.,
2003. CynD , the Cyanide Dihydratase from Bacillus pumilus : Gene Cloning
and Structural Studies. Applied and Environmental Microbiology 69, 4794—
4805.

Jones, R., 2012. Bukit Koman: 10 Reasons Why We Protest Against the Use of
Cyanide In the Gold Mine Operation http://www.loyarburok.com (accessed
11.5.15).

Kaewkannetra, P., Imai, T., Garcia-garcia, F.J., Chiu, T.Y., 2009. Cyanide removal
from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with
mixed microorganisms in activated sludge treatment system 172, 224-228.

Kao, C.M., Chen, K.F., Liu, J.K., Chou, S.M., Chen, S.C., 2006. Enzymatic
degradation of nitriles by Klebsiella oxytoca. Applied Microbiology and
Biotechnology. 71, 228-233.

Kao, C.M., Liu, J.K,, Lou, H.R., Lin, C.S., Chen, S.C., 2003. Biotransformation of
cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50,
1055-1061.

Karamba, K.I., Syed, M.A., Shukor, M.Y., Ahmad, S.A., 2015. Biological
Remediation of Cyanide: A Review. Biotropia 22, 151 - 163.

Kenfield, C.F., Qin, R., Semmens, M.J., Cussler, E.L., 1988. Cyanide recovery across
hollow fiber gas membranes. Environmental Science and Technology. 22,
1151-1155.

Khor, B.H., 2009. Treatment of Wastewater Containing Cyanide Using Locally
Isolated Bacteria Immobilized Onto Bioparticles. University Technology
Malaysia. B. Sc. Thesis.

Knorre, H., Griffiths, A., 1984. Cyanide detoxification with hydrogen peroxide using
the Degussa process, in: Proceedings of the Cyanide and the Environment
Conference, Tucson, Arizona.

Kumar, V., Kumar, V., Bhalla, T.C., 2013. In vitro cyanide degradation by Serretia
marcescens RL2b. International Journal of Environmental Sciences. 3, 1985—
1995.

Kunz, D.A., 2004. Bacterial Cyanide Assimilation: Pterin Cofactor and Enzymatic
Requirements for Substrate Oxidation. University of North Texas.

Kunz, D.A., Chen, J.-L., Pan, G., 1998. Accumulation of a-keto acids as essential

components in cyanide assimilation by Pseudomonas fluorescens NCIMB
11764. Applied and Environmental Microbiology. 64, 4452-4459.

146



Kunz, D.A., Fernandez, R.F., Parab, P., 2001. Evidence that bacterial cyanide
oxygenase is a pterin-dependent hydroxylase. Biochemical and Biophysical
Research and Communication. 287, 514-518.

Kunz, D.A., Nagappan, O., Silva-Avalos, J., Delong, G.T., 1992. Utilization of
cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764
evidence for multiple pathways of metabolic conversion. Applied
Environmental Microbiology. 58, 2022—-2029.

Kwon, H.K., Woo, S.H., Park, J.M., 2002. Thiocyanate degradation by Acremonium
strictum and inhibition by secondary toxicants. Biotechnology Letters. 24,
1347-1351.

Li, P., Feng, X.B., Qiu, G.L., Shang, L.H., Li, Z.G., 2009. Mercury pollution in Asia:
a review of the contaminated sites. Journal of Hazardous Material. 168, 591—
601.

Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z.Q., Lin, M., 2009. Antibacterial activities
of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of
Applied Microbiology. 107, 1193-1201.

Logsdon, M.J., Hagelstein, K., Mudder, T., 2015. The management of cyanide in gold
extraction. International Council on Metals and the Environment Ottawa.

Lowry, C.O., Rosebrough, N., Farr, A., Randall, R., 1951. Protein measurement with
the Folin phenol reagent. Journal of Biological Chemistry. 193, 265-275.

Lugue-Almagro, V.M., Blasco, R., Mart nez-Luque, M., Moreno-Vivian, C., Castillo,
F., Rold&, M.D., 2011. Bacterial cyanide degradation is under review:
Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic
cyanotroph. Biochemical Society Transaction. 39, 269-274.

Lugue-Almagro, V.M., Huertas, M.-J., Martmnez-Luque, M., Moreno-Vivia, C.,
Rold&, M.D., Garce-Gil, L.J., Castillo, F., Blasco, R., 2005. Bacterial
degradation of cyanide and its metal complexes under alkaline conditions.
Applied and Environmental Microbiology. 71, 940-947.

Maniyam, M.N., 2013. Biodetoxification of cyanide by Malaysian isolate
Rhodococcus UKMP-5M. Universiti Selangor Malaysia.

Maniyam, M.N., Sjahrir, F., Ibrahim, A.L., 2011. Bioremediation of Cyanide by
Optimized Resting Cells of Rhodococcus Strains Isolated from Peninsular
Malaysia, International Journal of Bioscience, Biochemistry and
Bioinformatics. 1, 98-101.

Maniyam, M.N., Sjahrir, F., Ibrahim, A.L., Cass, A.E.G., 2013. Biodegradation of
cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M. Journal
of General and Applied Microbiology. 404, 393-404.

Nallapan Maniyam, M., Sjahrir, F., Latif Ibrahim, A., & Cass, A. E. (2015).

147



Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP—
5M. Journal of Environmental Science and Health, Part A, 50(4), 357-364.

Megharaj, M., Avudainayagam, S., Naidu, R., 2003. Toxicity of hexavalent chromium
and its reduction by bacteria isolated from soil contaminated with tannery
waste. Current Microbiology. 47, 0051-0054.

Meyers, P.R., Gokool, P., Rawlings, D.E., Woods, D.R., 1991. An efficient cyanide-
degrading Bacillus pumilus strain. Journal of general microbiology 137, 1397—
1400.

Meyers, P.R., Rawlings, D.E., Woods, D.R., Lindsey, G.G., 1993. Isolation and
Characterization of a Cyanide Dihydratase from Bacillus pumilus CI. Journal
of Bacteriology 175, 6105-6112.

Meyer, W., 2010. Isolation and Genetic Characterization of a Microbial Consortium
Capable of Cyanide Degradation. University of the free state, Bloemfontein,
South Africa.

Mirizadeh, S., Yaghmaei, S., Ghobadi Nejad, Z., 2014. Biodegradation of cyanide by
a new isolated strain under alkaline conditions and optimization by response
surface methodology (RSM). Journal of Environmental and Health Science
Engineeering. 12, 1-9.

Mohamed, N.I., 2011. Effect of heavy metals on phenol degradation by consortium
bacteria. Universiti Putra Malaysia.

Mohanty, S.S., Jena, H.M., Satpathy, G.R., 2011. Comparative Study of the Phenol
Biodegradation Potential of Free Cells and Immobilized Pseudomonas
Resinovorans.

Monod, J., 2012. The growth of bacterial cultures. Selected Papers in Molecular.
Biology. Jacques Monod 371 - 395.

Mordocco, A., Kuek, C., Jenkins, R., 1999. Continuous degradation of phenol at low
concentration using immobilized Pseudomonas putida. Enzyme and Microbial
Technology 25, 530-536.

Mudder, T.1., Botz, M.M., Smith, A., 2001. Chemistry and treatment of cyanidation
wastes. Mining Journal Books, London, UK.

Muntari, B., Amid, A., Mel, M., Jami, M.S., Salleh, H.M., 2012. Recombinant
bromelain production in Escherichia coli: process optimization in shake flask
culture by response surface methodology. AMB Express 2, 1-9.

Nagashima, S., 1977. Spectrophotometric determination of cyanide with ¥ - picoline -
barbituric acid. Analytica Chimica Acta. 91, 303-306.

Naveen, D., Majumder, C.B., Mondal, P., Shubha, D., 2011. Biological treatment of
cyanide containing wastewater. Research Journal of Chemical Sciences 1, 15—
21.

148



Nies, D.H., 1999. Microbial heavy-metal resistance. Applied Microbiology and
Biotechnology. 51, 730-750.

Nolan, L.M., Harnedy, P.A., Turner, P., Hearne, A.B., O’Reilly, C., 2003. The cyanide
hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS
Microbiology Letters. 221, 161-165.

O’Neil, M.J., 2013. The Merck index: an encyclopedia of chemicals, drugs, and
biologicals. RSC Publishing. 15" Edition. 1 - 1020.

O’Reilly, C., Turner, P.D., 2003. The nitrilase family of CN hydrolysing enzymes—a
comparative study. Journal of Applied Microbiology. 95, 1161-1174.

Osman, R.M., Ang, L.H., 2000. The occurrence of some potentially toxic elements in
ex-mining land located in Bidor. International Atomic Energy Agency, INIS
research.

Ozel, Y.K., Gedikli, S., Aytar, P., Unal, A., Yamag M., Cabuk, A., Kolankaya, N.,
2010. New fungal biomasses for cyanide biodegradation. Journal of
Bioscience and Bioengineering. 110, 431-435.

Pandiyan, S., Mahendradas, D., 2011. Application of bacteria to remove Ni (I1) lons
from aqueous solution. European Journal of Scientific Research. 52, 345-358.

Parga, J.R., Shukla, S.S., Carrillo-Pedroza, F.R., 2003. Destruction of cyanide waste
solutions using chlorine dioxide, ozone and titania sol. Waste Management.
23,183-191.

Parmar, P., Soni, A., Desai, P., 2013. Enzymatic study of cyanide utilizing
Pseudomonas species isolated from contaminated soil. Journal of Science and
Innovative Research. 2, 1058-1066.

Parmar, P., Soni, A., Vyas, A., Desai, P.V., 2012. Isolation and characterization of
cyanide degrading bacterial strains from contaminated soil. International
Journal of Environmental Sciences. 2, 2006 — 2014.

Patil, Y.B., Paknikar, K.M., 2000. Development of a process for biodetoxification of
metal cyanides from waste waters. Process Biochemistry 35, 1139-1151.

Pong, T.K., Adrien, R.J., Besida, J., O’donnell, T.A., Wood, D.G., 2000. Spent
potlining—a hazardous waste made safe. Process Safety and Environmental
Protection. 78, 204-208.

Potivichayanon, S., Kitleartpornpairoat, R., 2010. Biodegradation of Cyanide by a
Novel Cyanide- degrading Bacterium. World Academy of Science,
Engineering and Technology. 42, 1362-1365.

Pritchard, J.D., 2007. Hydrogen Cyanide Toxicological Overview. Health Protection.
Agency CHAPD HQ. 1 -11

149



Rahman, R., Ghazali, F.M., Salleh, A.B., Basri, M., 2006. Biodegradation of
hydrocarbon contamination by immobilized bacterial cells. Journal of
Microbiology.-SEOUL- 44, 354.

Raja, C.E., Anbazhagan, K., Selvam, G.S., 2006. Isolation and characterization of a
metal-resistant Pseudomonas aeruginosa strain. World Journal of
Microbiology and Biotechnology. 22, 577-585.

Rand, M.C., Greenberg, A.E., Taras, M.J., others, 1976. Standard methods for the
examination of water and wastewater. Prepared and published jointly by
American Public Health Association, American Water Works Association, and
Water Pollution Control Federation. http://www.cabdirect.org. (Accessed:
2015-09-28 15:38:43)

Raybuck, S.A., 1992. Microbes and microbial enzymes for cyanide degradation.
Biodegradation 3, 3-18.

Reyes, G.F., Corbett, D., Benz, F.W., Doyle, R.J., 2000. Acrylonitrile induces
autolysis Bacillus subtilis. FEMS Microbiology Letters. 182, 255-258.

Rezende, R.P., Teixeira Dias, J.C., Ferraz, V., Linardi, V.R., 2000. Metabolism of
benzonitrile by Cryptococcus sp. UFMG-Y28. Journal of Basic Microbiology.
40, 389-392.

Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution. 4, 406—
425.

Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning. Cold spring harbor
laboratory press New York. 2, 1 -34

Saravanan, P., Pakshirajan, K., Saha, P., 2009. Batch growth kinetics of an indigenous
mixed microbial culture utilizing m-cresol as the sole carbon source. Journal
of Hazardous Material. 162, 476—481.

Saravanan, P., Pakshirajan, K., Saha, P., 2008. Growth kinetics of an indigenous
mixed microbial consortium during phenol degradation in a batch reactor.
Bioresource Technology. 99, 205-209.

Scopes, R.K., 2013. Protein purification: principles and practice. Springer Science &
Business Media. 1 - 345

Silver, S., 1996. Bacterial resistances to toxic metal ions-a review. Gene 179, 9-109.
Skowronski, B., Strobel, G.A., 1969. Cyanide resistance and cyanide
utilization by a strain of Bacillus pumilus. Canadian Journal of Microbiology.
15, 93-98.

Sorokin, D.Y., Tourova, T.P., Lysenko, a M., Kuenen, J.G., 2001. Microbial

thiocyanate utilization under highly alkaline conditions. Applied and
Environmental Microbiology. 67, 528-38.

150



Suh, Y., Park, J.M., Yang, J., 1994. Biodegradation of cyanide compounds by
Pseudomonas fluorescens immobilized on zeolite. Enzyme and Microbial
Technology 16, 529-533.

Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylogenies
by using the neighbor-joining method. Proceedings of the National Academy
of Sciences. U. S. A. 101, 11030-11035.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGAG:
molecular evolutionary genetics analysis version 6.0. Molecular Biology and
Evolution. 30, 2725-2729.

Tatusova, T.A., Madden, T.L., 1999. BLAST 2 Sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiology Letters. 174, 247-250.

Tepe, O., Dursun, A.Y., 2008. Combined effects of external mass transfer and
biodegradation rates on removal of phenol by immobilized Ralstonia eutropha
in a packed bed reactor. Journal of Hazardous Materials. 151, 9-16.

Ubalua, A.O., 2010. Cyanogenic glycosides and the fate of cyanide in soil. Australian
Journal of Crop Sciences. 4, 223.

USEPA, 2009. Water Treatability Database. http://iaspub.epa.gov (accessed
10.12.15).

Vidali, M., 2001. Bioremediation. an overview. Pure and Applied Chemistry. 73,
1163-1172.

Wagner-Dbler, 1., Linsdorf, H., LUbbeh{sen, T., Von Canstein, H.F., Li, Y., 2000.
Structure and species composition of mercury-reducing biofilms. Applied and
Environmental Microbiology. 66, 4559-4563.

Wang, X., Gai, Z., Yu, B., Feng, J.,, Xu, C., Yuan, Y., Lin, Z.,, Xu, P., 2007.
Degradation of carbazole by microbial cells immobilized in magnetic gellan
gum gel beads. Applied and Environmental Microbiology 73, 6421-6428.

Watanabe, A., Yano, K., Kazuyoshi, Y., Kazunori, I., Isao, K., 1998. Cyanide
hydrolysis in a cyanide-degrading bacterium , Pseudornonas stutzeri AK61 ,
by cyanidase. Microbiology. 144, 1677-1682.

White, D.M., Schnabel, W., 1998. Treatment of cyanide waste in a sequencing batch
biofilm reactor. Water Research. 32, 254-257.

White, J.M., Jones, D.D., Huang, D., Gauthier, J.J., 1988. Conversion of cyanide to
formate and ammonia by a Pseudomonad obtained from industrial wastewater.
Journal of Industrial Microbiology. 3, 263-272.

Wijffels, R.H., 2000. Immobilized cells, R.H. Wijffels. ed. Springer.1 - 259

151



Wouertz, S., Mergeay, M., van Elsas, J.D., Trevors, J.T., Wellington, E.M.H., others,
1997. The impact of heavy metals on soil microbial communities and their
activities. Modern Soil Microbiology. 607—642.

Yadzir, M., Hani, Z., 2007. Characterization, Identification and Application of
Acinetobacter baumannii Serdang 1 for Phenol Biodegradation. Universiti
Teknologi PETRONAS.

Yamasaki, M., Matsushita, Y., Namura, M., Nyunoya, H., Katayama, Y., 2002.
Genetic and immunochemical characterization of thiocyanate-degrading
bacteria in lake water. Applied and Environmental Microbiology. 68, 942—946.

Yan, J., Jianping, W., Jing, B., Daoquan, W., Zongding, H., 2006. Phenol
biodegradation by the yeast Candida tropicalis in the presence of m-cresol.
Biochemical Engineering Journal. 29, 227-234.

Yap, C.K,, Ismail, A., Edward, F.B., Tan, S.G., Siraj, S.S., 2006. Use of different soft
tissues of Perna viridis as biomonitors of bioavailability and contamination by
heavy metals (Cd, Cu, Fe, Pb, Ni, and Zn) in a semi-enclosed intertidal water,
the Johore Straits. Toxicological and Environmental Chemistry. 88, 683-695.

Yap, C.K. Razeff, S.M.R., Edward, F.B., Tan, S.G., 2009. Heavy metal
concentrations (Cu, Fe, Ni and Zn) in the clam, Glauconome virens, collected
from the northern intertidal areas of peninsular Malaysia. Malays Applied
Biology. 38, 29-35.

Ying, W., Ye, T., Bin, H., ZHAO, H., Bl, J., CAl, B., 2007. Biodegradation of phenol
by free and immobilized Acinetobacter sp. strain PD12. Journal of
Environmental Sciences. 19, 222—-225.

Zeng, L., Huang, J., Zhang, Y., Qiu, G., Tong, J., Chen, D., Zhou, J., Luo, X., 2008.

An effective method of DNA extraction for bioleaching bacteria from acid
mine drainage. Applied Microbiology and Biotechnology. 79, 881-888.

152



	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Front.pdf
	Blank Page


