UNIVERSITI PUTRA MALAYSIA

IDENTIFICATION OF LIPASE INHIBITOR FROM Orthosiphon stamineus Benth AND ANALYSIS OF LIPASE-INHIBITOR COMPLEX INTERACTION

NORSYUHADA ALIAS

FBSB 2016 11
IDENTIFICATION OF LIPASE INHIBITOR FROM Orthosiphon stamineus Benth AND ANALYSIS OF LIPASE-INHIBITOR COMPLEX INTERACTION

By

NORSYUHADA ALIAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

IDENTIFICATION OF LIPASE INHIBITOR FROM Orthosiphon stamineus Benth AND ANALYSIS OF LIPASE-INHIBITOR COMPLEX INTERACTION

By

NORSYUHADA ALIAS

June 2016

Chairman : Prof. Raja Noor Zaliha Raja Abd. Rahman, D. Eng
Faculty : Biotechnology and Biomolecular Sciences

Natural products are a vast source of potential compounds that can be developed as an anti-obesity agent. One of the mechanisms of anti-obesity agents is inhibition of pancreatic lipase. Orlistat is the only commercial pancreatic lipase inhibitor with FDA approval, but it is derived synthetically and has side effects. Hence, there is a need to find for alternative from natural resources. It is postulated that lipase inhibitor from local plants could change pancreatic lipase structure conformation and impair it function. Therefore, this study aims to screen selected plants for pancreatic lipase-inhibitory activity, to identify the lipase-inhibitory compound and to analyse the lipase-inhibitor complex interaction. Screening of 24 crude extracts for their in vitro activity against porcine pancreatic lipase (PPL) detected four extracts demonstrating high (>70%) inhibition, while seven extracts had medium (30-70%) inhibition and the remaining 13 extracts exhibited low (<30%) inhibition when incubated with PPL at a final concentration of 500 µg/ml for 10 min at 37°C. P. niruri extract displayed the most potent PPL inhibitor, followed by O. stamineus, M. paniculata and A. bilimbi with the IC₅₀ value of 27.7<34.7<41.5<55.2 µg/ml, respectively. The best two extracts, namely P. niruri and O. stamineus, showed noncompetitive and uncompetitive inhibition, respectively. P. niruri and O. stamineus showed total phenolic content of 431.0 ± 0.01 and 103.0 ± 0.01 mg GAE/g dry extract, while total flavonoid content of 14.8 ± 0.07 and 21.6 ± 0.03 mg QE/g dry extract, respectively. Both P. niruri and O. stamineus extracts showed high antioxidant activity, with EC₅₀ values of 8.4 and 26.3 µg/ml, respectively. Isolation of lipase-inhibitory compound from P. niruri and O. stamineus was performed via chromatographic approaches. However, the isolation process later came to focus on O. stamineus active fractions due to difficulty separating the P. niruri active fraction. A combined fraction of MK38 and MK39 from O. stamineus extract demonstrated the highest inhibitory activity with 50% PPL inhibition. Fractionation of combined fraction MK38 and MK39 by high-performance liquid chromatography (HPLC) yielded an active compound designated as sub-fraction P5 with 45% PPL inhibition. Sub-fraction
P5 was authenticated as rosmarinic acid by spectroscopic analyses, namely liquid chromatography-mass spectrometry-mass spectrometry (MS-MS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). Rosmarinic acid inhibited PPL in a non-competitive manner with an IC$_{50}$ value of 19.5 µg/ml. Circular dichroism analysis showed a conformational change of the PPL secondary structure upon binding of rosmarinic acid towards PPL. However, no diffraction data were acquired from X-ray crystallography technique. Molecular docking predicted the potential binding site of rosmarinic acid was positioned far from the active site, whereas a molecular dynamic simulation projected that the flexibility of PPL structure would be affected upon binding of rosmarinic acid towards PPL. Hence, the in silico results were in agreement with the inhibition mode analysis. These results have suggested that rosmarinic acid from O. stamineus may play a complimentary role in obesity treatment, acting as a non-competitive pancreatic lipase inhibitor.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGENALPASTIAN PERENCAT LIPASE DARI Orthosiphon stamineus Benth DAN ANALISIS TERHADAP INTERAKSI DI ANTARA KOMPLEKS LIPASE – PERENCAT

Oleh

NORSYUHADA ALIAS

Jun 2016

Pengerusi : Prof. Raja Noor Zaliha Raja Abd. Rahman, D. Eng
Fakulti : Bioteknologi dan Sains Biomolekul

Tumbuhan dari sumber semula jadi berpotensi untuk menghasilkan agen anti-obesiti. Salah satu mekanisme agen anti-obesiti adalah dengan merencat aktiviti lipase dari pankreas. Orlistat adalah satu-satunya perencat lipase komersial yang mendapat kelulusan FDA, tetapi ianya dihasilkan secara sintetik dan mempunyai kesan sampingan. Justeru, ada keperluan untuk mendapatkan alternatif dari sumber semulajadi. Adalah dijangka yang lipase perencat dari tumbuhan tempatan boleh mengubah konformasi struktur lipase dari pankreas dan menjenaskan fungsi. Jadi, penyelidikan ini bertujuan untuk menyaring tumbuhan terpilih yang mampu merencat aktiviti lipase dari pankreas, untuk mengenal pasti sebatian perencat lipase dan untuk menganalisa interaksi di antara komplex lipase-perencat. Saringan 24 ekstrak dari tumbuhan terpilih yang berpotensi merencat aktiviti lipase dari pankreas khinzir (PPL) secara in vitro mendapati empat ekstrak menunjukkan perencatan tertinggi (>70% perencatan), tujuh ekstrak menunjukkan perencatan sederhana (30–70% perencatan) dan 13 ekstrak menunjukkan perencatan yang rendah (<30% perencatan) terhadap aktiviti lipase apabila diamati dengan PPL pada kepekatan akhir sebanyak 500 μg/ml selama 10 minit pada suhu 37°C. Ektrak dari P. niruri adalah perencat yang paling berkesan, diikuti oleh ekstrak dari O. stamineus, M. paniculata dan A. bilimbi dengan masing-masing menunjukkan nilai IC_{50} sebanyak 27.7<34.7<41.5<55.2 μg/ml. Dua ekstrak terbaik, iaitu P. niruri dan O. stamineus, masing-masing merencat PPL secara non-kompetitif dan un-kompetitif. P. niruri dan O. stamineus, masing-masing perencat PPL secara non-kompetitif dan un-kompetitif. P. niruri dan O. stamineus, masing-masing menunjukkan kandungan fenolik berjumlah 431.0 ± 0.01 dan 103.0 ± 0.01 mg GAE/g ekstrak kering manakala kandungan flavonoid berjumlah 14.8 ± 0.07 dan 21.6 ± 0.03 mg QE/g ekstrak kering. Kedua-dua ekstrak P. niruri dan O. stamineus menunjukkan aktiviti antioksidan yang tinggi dengan nilai EC_{50} masing-masing sebanyak 8.4 dan 26.3 μg/ml. Proses pengasingan sebatian dari kedua-dua ekstrak O. stamineus dan P. niruri telah dibuat dengan menggunakan kaedah kromatografi. Walau bagaimanapun,
proses pengasingan sebatian kemudiannya hanya tertumpu kepada pecahan aktif O. stamineus kerana kesukaran memisahkan pecahan aktif dari ekstrak P. niruri. Gabungan pecahan MK38 dan MK39 daripada ekstrak O. stamineus menunjukkan aktiviti perencatan tertinggi dengan 50% aktiviti lipase berjaya direncan. Pemeringkatan kedua-dua pecahan menggunakan kromatografi cecair berprestasi tinggi (HPLC) berjaya memperoleh sebatian aktif yang dinamakan sebagai sub-pecahan P5 yang merencatkan aktiviti PPL sebanyak 45%. Sub-pecahan P5 telah disahkan sebagai asid rosmarinik melalui beberapa analisis spektroskopi iaitu kromatografi cecair gandingan spektrometri jisim-spektrometri jisim (MS-MS), spektroskopi inframerah transformasi Fourier (FTIR) dan spektrometer resonans magnet nukleus (NMR). Asid rosmarinik merencat aktiviti PPL secara non-kompetitif dengan nilai IC_{50} sebanyak 19.5 μg/ml. Analisis ‘circular dichroism’ pula menunjukkan berlakunya perubahan konformasi di dalam struktur PPL apabila ia bergabung dengan asid rosmarinik. Walaupun begitu, tiada sebarang data pembelauan diperolehi daripada teknik kristalografi sinar-X. Dok molekul menjangkakan asid rosmarinik mengikat struktur PPL pada kedudukan yang jauh dari tapak aktif manakala simulasi molekul dinamik menunjukkan bahawa fleksibiliti struktur PPL terjejas apabila berlakunya interaksi dengan asid rosmarinik. Oleh itu, hasil kajian In silico adalah selari dengan analisis mod perencatan. Kesimpullannya, asid rosmarinik dari O. stamineus boleh memainkan peranan bagi merawat kegemukan di mana ia bertindak sebagai perencat lipase dari pankreas secara non-kompetitif.
I would like to express my greatest gratitude to the almighty God, Allah S.W.T as I finally completed my research project and proudly compiled the thesis. Throughout these five years of study, I have been through many challenges to complete this project. For that reason, I feel grateful as the project was successfully completed.

In the process of writing this thesis, I have benefited from the guidance of my supervisors: Professor Dr. Raja Noor Zaliha Raja Abd. Rahman, Professor Dato’ Dr. Abu Bakar Salleh, Dr. Mohd Shukuri Mohamad Ali, Dr. Adam Leow Thean Chor and Dr. Asilah Ahmad Tajudin. They provided constructive criticism, valuable suggestions, understanding and patience throughout the years and assisted in every way until the completion of this study. My appreciation is also dedicated to all Enzyme and Microbial Technology Research Centre (EMTech) lecturers for their invaluable supports and guidance over the years.

I would like to take this opportunity to extend my appreciation to my EMTech colleagues, especially in Lab 140 (Biotech 2) for providing assistance, comments and food for thought at various points during the production of this thesis. Thank you everyone, although not individually mentioned here, who had contributed directly or indirectly to my project and thesis. Finally, I would like to acknowledge my dearest family who has provided invaluable support throughout this project. Their trust, love and encouragement inspire me to be stronger and more successful in my future undertakings.
I certify that a Thesis Examination Committee has met on 13 June 2016 to conduct the final examination of Norsyuhada bt Alias on her thesis entitled "Identification of Lipase Inhibitor from Orthosiphon stamineus Benth and Analysis of Lipase-Inhibitor Complex Interaction" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Wan Zuhainis binti Saad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd. Puad bin Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Norazizah binti Shafee, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Naeem Rashid, PhD
Professor
University of the Punjab
Pakistan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Raja Noor Zaliha Raja Abd. Rahman, D. Eng
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abu Bakar Salleh, PhD
Professor Dato’
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Shukuri Mohamad Ali, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Adam Leow Thean Chor, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Asilah Ahmad Tajudin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature : __________________________ Date : __________________________

Name and Matric No. : Norsyuhada Alias (GS29395)
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature Name of Chairman of Supervisory Committee: Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman

Signature Name of Member of Supervisory Committee: Prof. Dato’ Dr. Abu Bakar Salleh

Signature Name of Member of Supervisory Committee: Assoc. Prof. Dr. Mohd Shukuri Mohamad Ali

Signature Name of Member of Supervisory Committee: Dr. Adam Leow Thean Chor

Signature Name of Member of Supervisory Committee: Dr. Asilah Ahmad Tajudin
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Problem statement</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Rationale and novelty of the study</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Hypothesis</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Objectives of the project</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Outline of the thesis</td>
<td>2</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Obesity</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Obesity worldwide</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Obesity in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Prevention of obesity</td>
<td>5</td>
</tr>
<tr>
<td>2.1.4 History of medication for obesity</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Orlistat</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Natural products for treatment of obesity</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Polyphenols</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Rosmarinic acid</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 Natural products mechanism</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3.1 Natural appetite suppressants</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3.2 Natural energy expenditure stimulants</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3.3 Natural adipocyte differentiation inhibitors</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3.4 Natural lipid metabolism regulators</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3.5 Natural products with lipase-inhibitory effect</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Phyllanthus niruri</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Orthosiphon stamineus</td>
<td>17</td>
</tr>
<tr>
<td>2.6 Fat digestion</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Pancreatic lipase</td>
<td>19</td>
</tr>
<tr>
<td>2.7.1 Porcine pancreatic lipase</td>
<td>20</td>
</tr>
<tr>
<td>2.7.2 Characteristics and structure of PPL</td>
<td>20</td>
</tr>
<tr>
<td>2.7.3 Purification of PPL</td>
<td>22</td>
</tr>
<tr>
<td>2.8 Enzyme inhibition and kinetics</td>
<td>23</td>
</tr>
<tr>
<td>2.8.1 Irreversible inhibitors</td>
<td>23</td>
</tr>
<tr>
<td>2.8.2 Reversible inhibitors</td>
<td>24</td>
</tr>
<tr>
<td>2.9 Protein-ligand interactions</td>
<td>26</td>
</tr>
</tbody>
</table>
2.9.1 In silico study
 2.9.1.1 Molecular docking
 2.9.1.2 Molecular dynamic
2.9.2 Circular dichroism
2.9.3 X-ray crystallography

3 SCREENING OF SELECTED LOCAL PLANTS FOR ANTI-LIPASE ACTIVITY
3.1 Introduction
3.2 Materials
3.3 Methods
 3.3.1 Method outline
 3.3.2 Plant extractions
 3.3.2.1 Small-scale extraction
 3.3.2.2 Large scale extraction
 3.3.3 Lipase inhibition assay
 3.3.3.1 Lipase preparation
 3.3.3.2 Lipase inhibition reaction
 3.3.3.3 IC50 determination
 3.3.3.4 Inhibition mode determination
 3.3.4 DPPH radical scavenging activity assay
 3.3.5 Phytochemical analysis
 3.3.5.1 Estimation of total phenolic content
 3.3.5.2 Estimation of total flavonoid content
3.4 Results and Discussion
 3.4.1 Lipase-inhibition of crude plant extracts
 3.4.2 Inhibition mode
 3.4.3 Large scale extraction of O. stamineus and P. niruri extracts
 3.4.4 Lipase inhibition of O. stamineus and P. niruri extracts
 3.4.5 Antioxidant activity of O. stamineus and P. niruri extracts
 3.4.6 TPC and TFC of O. stamineus and P. niruri extracts
3.5 Conclusion

4 ISOLATION AND IDENTIFICATION OF LIPASE INHIBITOR
4.1 Introduction
4.2 Materials
4.3 Methods
 4.3.1 Method outline
 4.3.2 Isolation of lipase-inhibitory compound from P. niruri
 4.3.2.1 Fractionation by column chromatography
 4.3.2.2 TLC after fractionation
 4.3.2.3 TLC of active fraction
 4.3.2.4 LC-MS profiling
 4.3.2.5 HPLC profiling
 4.3.3 Isolation of lipase-inhibitory compound from

O. stamineus 59
4.3.3.1 Fractionation by column chromatography 59
4.3.3.2 TLC after fractionation 60
4.3.3.3 LC-MS profiling 60
4.3.3.4 HPLC profiling and sub-fractions collection 61
4.3.4 Identification of lipase-inhibitory compound from O. stamineus 61
4.3.4.1 MS-MS analysis 61
4.3.4.2 FTIR analysis 62
4.3.4.3 NMR analysis 62
4.4 Results and Discussion 62
4.4.1 Isolation of lipase-inhibitory compound from P. niruri 62
4.4.1.1 Column chromatography fractionation 63
4.4.1.2 TLC of P. niruri fractions 64
4.4.1.3 Lipase-inhibitory activity of P. niruri fractions 66
4.4.1.4 TLC of P. niruri active fraction 66
4.4.1.5 LC-MS profiling of P. niruri active fraction 67
4.4.1.6 HPLC profiling of P. niruri active fraction 68
4.4.2 Isolation of lipase-inhibitory compound from O. stamineus 69
4.4.2.1 Column chromatography fractionation 69
4.4.2.2 TLC of O. stamineus fractions 71
4.4.2.3 Lipase-inhibitory activity of O. stamineus fractions 72
4.4.2.4 LC-MS profiling of O. stamineus active fraction 72
4.4.2.5 HPLC profiling and sub-fractions collection 75
4.4.2.6 Lipase-inhibitory activity of sub-fractions 75
4.4.3 Identification of lipase-inhibitory compound from O. stamineus 76
4.4.3.1 MS-MS analysis 76
4.4.3.2 FTIR analysis 78
4.4.3.3 NMR analysis 80
4.5 Conclusion 82

5 ANALYSIS OF LIPASE-INHIBITOR COMPLEX INTERACTION
5.1 Introduction 83
5.2 Materials 84
5.3 Methods 84
5.3.1 Method outline 84
5.3.2 Purification of commercial crude PPL 86
5.3.2.1 Preparation of crude PPL extract 86
5.3.2.2 Gel filtration 86
5.3.2.3 Protein concentration determination 86
5.3.2.4 Sodium dodecyl sulphate polyacrylamide electrophoresis 86
gel electrophoresis (SDS-PAGE) analysis 87
5.3.2.5 Native PAGE analysis 87
5.3.3 IC_{50} determination of rosmarinic acid 87
5.3.4 Inhibition mode determination of rosmarinic acid 88
5.3.5 Circular dichroism analysis 88
5.3.6 Protein crystallization of PPL 88
5.3.6.1 Sitting drop vapour diffusion method 88
5.3.6.2 Hanging drop vapour diffusion method 89
5.3.7 Protein cocrystallization of PPL ternary complex 89
5.3.8 In silico study 90
5.3.8.1 Molecular docking 90
5.3.8.2 Molecular dynamic (MD) simulation 91
5.4 Results and Discussion 91
5.4.1 Purification of PPL by gel filtration 91
5.4.2 IC_{50} value of rosmarinic acid 94
5.4.3 Inhibition mode of rosmarinic acid 95
5.4.4 CD analysis 96
5.4.5 Protein crystallization 98
5.4.5.1 Crystallization of PPL (Apo enzyme) 98
5.4.5.2 Crystallization of PPL-CLP-RA ternary complex 103
5.4.6 In silico study 105
5.4.6.1 Molecular docking 105
5.4.6.2 MD simulation 115
5.5 Conclusion 118
6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 119
REFERENCES 121
APPENDICES 149
BIODATA OF STUDENT 165
LIST OF PUBLICATIONS 166
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Key messages of recent studies performed on rosmarinic acid and its biological and pharmacological activities</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>List of plants selected for lipase inhibitory activity screening</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>PPL inhibitory activity screening result of 24 methanolic plants extracts</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of the small scale and large scale extraction yield of P. niruri and O. stamineus methanolic extract</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of TPC, TFC, anti-lipase activity and antioxidant activity of P. niruri and O. stamineus extract</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Gradient profile of LC-MS for fraction C, P. niruri</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Gradient profile of LC-MS for combined fraction MK 38 and MK 39 from O. stamineus</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Gradient profile of HPLC for O. stamineus active fraction</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Column chromatography data analysis of P. niruri extract</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Column chromatography data analysis of O. stamineus extract</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of cocystalization of PPL ternary complexes</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Purification table of PPL</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison between HPL and EPL crystallization strategy</td>
<td>98</td>
</tr>
<tr>
<td>5.4</td>
<td>List of crystal formulations producing PPL crystal hits</td>
<td>99</td>
</tr>
<tr>
<td>5.5</td>
<td>Reported studies on X-ray crystallography pancreatic lipase ternary complexes</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Docking summary of PPL-CLP-RA and PPL-CLP-pNPB complexes</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Packaging of orlistat by different manufacturers</td>
</tr>
<tr>
<td>2.2</td>
<td>Selected polyphenols with pancreatic-lipase inhibitory activity</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of rosmarinic acid</td>
</tr>
<tr>
<td>2.4</td>
<td>P. niruri plant</td>
</tr>
<tr>
<td>2.5</td>
<td>O. stamineus plant</td>
</tr>
<tr>
<td>2.6</td>
<td>Digestion and absorption of dietary lipids</td>
</tr>
<tr>
<td>2.7</td>
<td>Three-dimensional structure of pancreatic lipase – colipase complex</td>
</tr>
<tr>
<td>2.8</td>
<td>Crystallographic structure of human FAS inhibited by orlistat</td>
</tr>
<tr>
<td>2.9</td>
<td>Three types of reversible inhibition</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology of lipase inhibition screening process of selected local plants from Section 3.3.2 to Section 3.3.5.2</td>
</tr>
<tr>
<td>3.2</td>
<td>Screening of lipase inhibitory activity from 24 local plants</td>
</tr>
<tr>
<td>3.3</td>
<td>IC₅₀ determinations of selected plant extracts</td>
</tr>
<tr>
<td>3.4</td>
<td>Inhibition mode determination</td>
</tr>
<tr>
<td>3.5</td>
<td>Lipase inhibition of P. niruri and O. stamineus extract</td>
</tr>
<tr>
<td>3.6</td>
<td>IC₅₀ values of O. stamineus and P. niruri extracts at different concentration</td>
</tr>
<tr>
<td>3.7</td>
<td>Antioxidant activities of O. stamineus and P. niruri extracts at different concentration</td>
</tr>
<tr>
<td>4.1</td>
<td>Methodology of the isolation and identification of lipase-inhibitory compound from Section 4.3.2 to Section 4.3.3.4</td>
</tr>
<tr>
<td>4.2</td>
<td>TLC chromatogram of P. niruri fractions</td>
</tr>
<tr>
<td>4.3</td>
<td>TLC chromatogram of P. niruri under UV-254</td>
</tr>
<tr>
<td>4.4</td>
<td>Lipase inhibition assay result of P. niruri fractions</td>
</tr>
</tbody>
</table>
4.5 TLC chromatogram of *P. niruri* fraction C
4.6 The ECC of fraction C from *P. niruri* extract under gradient condition
4.7 TLC chromatogram of *O. stamineus* fractions
4.8 Lipase inhibition assay result of *O. stamineus* fractions
4.9 The ECC of combined fraction MK 38 and MK 39 from *O. stamineus* under gradient condition
4.10 The chromatogram profile of *O. stamineus* sub-fractions
4.11 Lipase-inhibitory assay result of *O. stamineus* sub-fractions
4.12 TIC chromatogram of sub-fraction P5 and rosmarinic acid standard
4.13 MS-MS spectrum
4.14 FTIR spectrum
4.15 1H-NMR and 13C-NMR spectrum

5.1 Methodology of the analysis of lipase-inhibitor complex interaction from Section 5.3.1 to Section 5.3.7
5.2 The crystal structure of the PPL-CLP-TGME complex (PDB-ID: 1ETH) derived from the PDB for docking study
5.3 Chromatogram profile and corresponding SDS-PAGE after gel filtration
5.4 Native-PAGE of the purified lipase from PPL
5.5 IC$_{50}$ value of pure RA isolated from *O. stamineus*
5.6 Inhibition mode determination of RA isolated from *O. stamineus*
5.7 CD spectroscopy
5.8 Positive hits obtained in crystallization screening of PPL
5.9 Crystallization screening of PPL using hanging drop method
5.10 Cocrystallization of PPL-CLP-RA
5.11 Template preparation of the receptor PPL-CLP complex
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Molecular docking of PPL - CLP with RA</td>
<td>108</td>
</tr>
<tr>
<td>5.13</td>
<td>Molecular docking of PPL - CLP with pNPB</td>
<td>113</td>
</tr>
<tr>
<td>5.14</td>
<td>RMSD of Cα-backbone atoms of PPL complexes as a function of time</td>
<td>115</td>
</tr>
<tr>
<td>5.15</td>
<td>RMSF throughout a 20 ns trajectories</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>CLP</td>
<td>Porcine colipase</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HPL</td>
<td>Human pancreatic lipase</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MS-MS</td>
<td>Liquid chromatography-mass spectrometry-mass spectrometry</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular weight cut off</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>pNPB</td>
<td>p-nitrophenyl butyrate</td>
</tr>
<tr>
<td>PPL</td>
<td>Porcine pancreatic lipase</td>
</tr>
<tr>
<td>PL</td>
<td>Pancreatic lipase</td>
</tr>
<tr>
<td>RA</td>
<td>Rosmarinic acid</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N, N-Tetramethylenediamide</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-layer chromatography</td>
</tr>
<tr>
<td>U</td>
<td>Unit of activity</td>
</tr>
<tr>
<td>U/mg</td>
<td>Unit per milligram</td>
</tr>
<tr>
<td>U/ml</td>
<td>Unit per milliliter</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Obesity has been classified as an epidemic affecting both developed and developing countries worldwide. The prevalence of obesity at an alarming rate has led to a rise of medical costs. More importantly, concerns about obesity are not about ‘looking good’ and having a beautiful silhouette, but merely maintaining a disease-free and healthy body. Obesity is known to facilitate the development of chronic diseases such as type 2 diabetes mellitus, hypertension, heart attack, stroke, osteoarthritis, sleep apnea, and some type of cancers (Mohamed et al., 2014; Wan Mohamud et al., 2011). The rise of these obesity-associated complications has compelled researchers to seek out lasting solutions for weight management and control. Although reduction of caloric intake by diet and increased level of physical activity are the most recommended approaches to lose weight, these attempts do not always work. Basically, suitable weight-loss programs depend on obesity level, overall health, and the patient’s inclination to take part in the weight-loss plan. The treatment tools include dietary modifications, exercise, behaviour change, prescription of weight-loss medications and weight-loss surgery as the last resort (Glazer, 2001).

1.1 Problem statement

Nowadays, the need for anti-obesity drugs and other supplements is fast gaining recognition. There are many anti-obesity drugs in the market that have received approval from the U.S Food and Drug Administration (FDA). These anti-obesity drugs have specific mode of action to treat obesity. However, practically all of them have side effects. This was proven with the withdrawal of sibutramine, rimonabant, and a few other anti-obesity drugs from the European market due to their adverse side effects. The most effective lipase inhibitor in the market right now is orlistat. Orlistat is an over-the-counter medication that is also labeled as a fat blocker. However, orlistat is a synthetic drug with side effects. Orlistat may cause severe liver and kidney problems (Filippatos et al., 2008). It also inhibits the absorption of certain vitamins in the body. This indicates a need to find an effective and safe lipase inhibitor. Currently, most of the commercial non-prescribed slimming preparations available in the market are derived from plants. Various side effects from the synthetic drug application have prompted interest in the use of medication derived from natural sources. This indicates that plant-based materials may be an interesting sources for the development of anti-obesity agents, especially the one targeting on pancreatic lipase inhibition.
1.2 Rationale and novelty of the study

Malaysia is a tropical country rich with plants and herbs which are yet to be explored for their benefits. Many plants have traditionally been used as slimming aids by various communities in Malaysia, for daily consumptions or external used such as ointments and creams. Although the use of plant-based materials to lose weight has been based on the knowledge handed down through generations, their scientific evidence is still lacking and not well documented. There has been no detailed study of compound(s) contributing to the lipase inhibition action or anti-obesity property of these prospective plants. Hence, this study is vital to reveal the potential ability of selected plants in Malaysia as anti-obesity agents. This study would identify local plant(s) with the lipase-inhibition action and uncover the mechanisms through which the lipase-inhibitory compound acts. This could strengthen the fundamental knowledge on the interaction between lipase and its inhibitor. Various approaches have been applied in drug-discovery technology in order to develop new drugs. In this study, a combination of computer technology with the existing instrumentation, such as X-ray crystallography and circular dichroism, was chosen to study protein-ligand interaction. This provides exposure to high-end technology and diversifies the utilization of these sophisticated instruments provided by the university.

1.3 Hypothesis

Local plants selected in this study have a potential compound(s) capable of inhibiting pancreatic lipase. Binding interaction of the inhibitory compound(s) towards pancreatic lipase could trigger conformational changes of the pancreatic lipase structure that might impair its function.

1.4 Objectives of the project

This thesis aims to gain an understanding of the mechanism of pancreatic lipase inhibition of prospective Malaysian plants. The general aim results in several objectives:

1. Screening of selected plants for pancreatic lipase-inhibitory activity.
2. Isolation and identification of a pancreatic lipase-inhibitory compound.
3. Analysis of the pancreatic lipase-inhibitor complex interaction.

1.5 Outline of the thesis

Plants and herbs are natural sources of pancreatic lipase inhibitor for obesity treatment. A review of the prevalence of obesity, natural products as a potential source of anti-obesity agent, and the technology available to study the lipase inhibition action is contained in Chapter 2. Screening of selected Malaysian plants was performed to identify the potential plant(s) with the highest inhibition activity against pancreatic lipase and related in Chapter 3. Isolation of the
active compound was carried out by several chromatographic techniques, while the identification of the active compound was performed using several spectroscopic methods, as described in Chapter 4. Chapter 5 contains analyses of the protein-ligand complex interaction between the pancreatic lipase and the active compound (the potential lipase inhibitor), conducted by incorporating experimental testing with a computational approach. Finally, a summary of the results obtained in this thesis and recommendations for future study is contained in Chapter 6.
REFERENCES

Ado, M. A. (2010). Screening of Malaysian Medicinal / Herbs and Aquatic Plants for Pancreatic Lipase Inhibitory Activities and Identification of Active Constituent. Universiti Putra Malaysia, Malaysia.

De La Garza, A. L., Milagro, F. I., Boque, N., Campión, J., & Martínez, J. A.

Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. *LWT - Food Science and

Pharmaceutical Biology, 51(9), 1087–1090.

Ninomiya, K., Matsuda, H., Shimoda, H., Nishida, N., Kasajima, N., Yoshino,

Ethanol Extraction to Produce and Test Plant Material (Essential Oils) for Their Antimicrobial Properties. *Journal of Microbiology and Biology Education, 15*(1), 45–46.

Sotnikova, R., Okruhlicova, L., Vikovicova, J., Navarova, J., Gajdacova, B.,

Tajuddin Abd. Manap, Agricultural Senior Assistant Officer, Institute of Bioscience, Universiti Putra Malaysia, pers. comm. 9 February, 2011.

Streptozotocin-Induced Diabetic Rats. *Nutrients*, 7(9), 7764–7780.

compounds from *Orthosiphon stamineus* with the CB1 assay. *Obesity Facts*, 2, 250.

