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Prostaglandin E2 (PGE2) is one of the lipid mediators of inflammation. Chronic 

inflammation drives overproduction of PGE2 that leads to development of chronic 

inflammatory diseases. PGE2 is synthesized by cyclooxygenase (COX) enzyme that 

exists in isoforms of COX-1, which is constitutively expressed; and COX-2, which is 

expressed upon induction. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit 

COXs to control excessive production of PGE2 during inflammation but, most of 

commercialized NSAIDs selectively inhibit COX-1 or being non-selective which 

compensate for limitations and detrimental side effects of the medicine. Hence, 

deciphering the mechanisms of selectively inhibiting COX-2 is of great interest. 

Curcumin was known as remedy to treat the inflammatory-related diseases, but suffers 

from poor bioavailability and instability. Synthesis of curcumin derivatives was carried 

out to overcome the limitations.  Thus, the objectives of this study are to investigate the 

effects of 43 curcumin derivatives towards activated cellular PGE2 production and 

COX’s activity, as well as to understand its mechanism of actions in silico and in vitro. 

In this study, effects of curcumin derivatives on PGE2 production in murine 

macrophage (RAW264.7) cells which was stimulated by combination of interferon-

gamma (IFN-) and lipopolysaccharide (LPS), were evaluated using immunoassay 

procedures. Quantitative structure-activity relationship (QSAR) analysis was performed 

to correlate between the structure and PGE2 inhibition activity of curcumin derivatives. 

Enzymatic assay and molecular docking analysis were performed to decipher the 

mechanism of inhibition on COX activity by curcumin derivatives. Effects of active 

curcumin derivatives on gene expression of COX-1 and COX-2 were also determined. 

Results demonstrated that 3 out of 43 compounds significantly inhibited PGE2 

production in IFN-γ/LPS-stimulated RAW264.7 cells dose-dependently which were 

2,6-bis(2-fluorobenzylidene)cyclohexanone (compound 25), 2,6-bis(4-

fluorobenzylidene)cyclohexanone (compound 27), and 2,5-bis(3,4,5-

trimethoxybenzylidene)cyclopentanone (compound 43) with IC50 values of 6.15 ± 0.48 

M, 5.78 ± 1.67 M and 12.15 ± 1.88 M respectively which were higher than that of 

curcumin. Furthermore, these three compounds were not toxic to the cells (cytotoxicity 

IC50>500 µM). The PGE2 inhibitory effect was contributed by the suppression of the 

IFN-γ/LPS-stimulated COX-2 gene expression, without affecting the phorbol myristate 
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acetate (PMA)-stimulated COX-1 gene expression in RAW264.7 cells by these three 

compounds. Arene substitution patterns and substituents of electron withdrawing 

groups may contribute to the PGE2 inhibition activity of the compounds. Besides, 

QSAR study recommended that positive contribution of lipophilicity and numbers of 

rotatable bonds, and negative contribution of kappa_2 descriptor of the compounds 

were crucial for their anti-inflammatory properties. The enzymatic assay showed that 

most curcumin derivatives tested selectively inhibited COX-1 activity rather than 

COX-2. However, compounds 25 and 43 selectively inhibited COX-2, unlike 

compound 27 which favours towards COX-1 activity. Moreover, docking study 

revealed that compounds 25 and 43 interacted with COX’s active site receptors that 

favour towards COX-2 inhibition. Arg120, His90, Phe518 and Arg513 are important 

receptors involved in COX-2 inhibition, while Arg120 and Ser530 are important 

receptors in COX-1 inhibition. In conclusion, the experimental data have provided 

mechanistic insights into properties of compounds 25, 27, and 43 as COX-inhibitors. 

Compounds 25 and 43 could be potential lead compounds for development of new 

COX-2 selective inhibitors. 
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Prostaglandin E2 (PGE2) merupakan satu daripada pengantara lipid bagi radang. 

Keradangan kronik telah mendorong lebihan pengeluaran PGE2 yang membawa kepada 

perkembangan penyakit radang kronik. PGE2 disintesis oleh enzim siklooksigenase 

(COX) yang wujud dalam isoform COX-1, yang diekspres sebagai penyelenggara; dan 

COX-2 yang terinduksi. Dadah anti-radang bukan steroid (NSAIDs) ialah dadah yang 

merencat COX-2 untuk mengawal lebihan pengeluaran PGE2 semasa radang, tetapi 

NSAIDs komersil kebanyakannya secara terpilih merencat COX-1 atau tidak berdaya 

memilih yang mana memampas kepada pembatasan dan kesan sampingan yang 

memudaratkan oleh ubat tersebut. Oleh itu, dengan mentafsirkan mekanisme yang 

berdaya memilih bagi merencatkan COX-2 adalah menjadi keutamaan. Kurkumin telah 

dikenalpasti sebagai ubat bagi merawat penyakit-penyakit berkaitan keradangan, tetapi 

menderita daripada bioketersediaan yang lemah dan ketakstabilan. Sintesis terbitan 

kurkumin telah dilakukan bagi mengatasi keterbatasannya. Jadi, objektif kajian ini 

adalah bagi menyiasat kesan 43 terbitan kurkumin terhadap penghasilan PGE2 sel 

teraktif dan aktiviti COX, serta bagi memahami mekanisme tindakannya in silico dan 

in vitro. Dalam kajian ini, kesan terbitan kurkumin terhadap penghasilan PGE2 dalam 

sel makrofaj murin (RAW 264.7) yang diransang oleh kombinasi interferon-gama 

(IFN-γ) dan lipopolisakarida (LPS), dinilai melalui prosedur imunoasai. Analisis 

hubungan struktur-aktiviti kuantitatif (QSAR) telah dilakukan untuk mengaitkan antara 

struktur dan aktiviti perencatan PGE2 oleh terbitan kurkumin. Asai enzim dan analisis 

mengedok molekul dilakukan bagi mentafsir mekanisme perencatan aktiviti COX oleh 

terbitan kurkumin. Kesan terbitan kurkumin yang aktif terhadap ekspresi gen COX-1 

dan COX-2 juga ditentukan. Keputusan menunjukkan 3 daripada 43 sebatian merencat 

penghasilan PGE2 dalam sel yang diransang IFN-γ/LPS dengan ketara mengikut dos 

iaitu 2,6-bis(2-fluorobenzilidena)sikloheksanon (sebatian 25), 2,6-bis(4- 

fluorobenzilidena)sikloheksanon (sebatian 27), dan 2,5-bis(3,4,5-

trimetoksibenzilidena)siklopentanon (sebatian 43) dengan nilai IC50 masing-masing 

6.15 ± 0.48 µM, 5.78 ± 1.67 µM dan 12.15 ± 1.88 µM yang mana lebih tinggi 

berbanding kurkumin. Tambahan pula, tiga sebatian ini tidak toksik kepada sel 
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(kesitotoksian IC50>500 µM). Kesan perencatan PGE2 disumbangkan oleh penindasan 

gen COX-2 yang diransang IFN-γ/LPS, tanpa memberi kesan terhadap ekspresi gen 

COX-1 yang diransang forbol miristat asetat dalam sel RAW264.7 oleh tiga sebatian 

tersebut. Pola penggantian arin dan kumpulan penarikan electron mungkin 

menyumbang kepada aktiviti merencat PGE2 sebatian tersebut. Selain itu, kajian QSAR 

telah menganjurkan bahawa sumbangan positif lipofilik dan nombor ikatan boleh putar, 

dan juga sumbangan negatif penerang kappa_2 sebatian tersebut adalah penting untuk 

sifat anti-radangnya. Asai enzim menunjukkan kebanyakan terbitan kurkumin yang 

diuji dengan terpilih merencat aktiviti COX-1 berbanding COX-2. Bagaimanapun, 

sebatian 25 dan 43 dengan terpilih merencat COX-2, tidak seperti sebatian 27 yang 

cenderung kepada aktiviti COX-1. Selain itu, kajian mengedok mendedahkan bahawa 

sebatian 25 dan 43 berinteraksi dengan reseptor tapak aktif COX yang cenderung 

kepada perencatan COX-2. Arg120, His90, Phe518, dan Arg513 adalah reseptor 

penting yang terlibat dalam perencatan COX-2, manakala Arg120 serta Ser530 adalah 

reseptor penting dalam perencatan COX-1. Kesimpulannya, data eksperimen ini telah 

menyediakan pemahaman mekanisme bagi ciri-ciri sebatian 25, 27 dan 43 sebagai 

perencat COX. Sebatian 25, dan 43 boleh menjadi sebatian utama yang berpotensi 

untuk pembangunan perencat COX-2 yang baharu. 
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CHAPTER 1 

INTRODUCTION 

Inflammation is a complex biological response. As part of immune system, the 

inflammation response not only serves as protective frontline towards harmful stimuli, 

but also as convergence point towards progression of severe inflammatory defects. 

Inflammation is an intrinsically beneficial event for biological host in fighting against 

offending factors such as pathogens, toxins, injuries, and chemical irritants with aims to 

eliminate the injurious factors, promote healing process and tissue restoration, as well 

as to build up memories for a faster and more specific counteractions in future 

occurrence (Stables and Gilroy, 2011).  

 

The beneficial effects of inflammation were normally implemented during acute phase 

which is the initial stage of inflammation. In this stage, innate immunity takes place 

through recruitment of activated cells like neutrophils, dendritic cells, lymphocytes and 

macrophages to the site of injury. They integrate to phagocytize the pathogens and 

promote healing process. However, persistence of pro-inflammatory stimuli will lead to 

sustainment of inflammation for weeks, months and even years if the stimuli cannot be 

eliminated or if there are problems with healing process such as auto-immunity 

(Stables and Gilroy, 2011).  

 

The persistence of inflammation has been reported to be associated with 

pathophysiology of chronic stage. Extended period of inflammation is problematic 

which can harm physiological systems due to tremendous increase of multiple reactive 

oxygen species and pro-inflammatory mediators such as prostaglandins, cytokines, 

inflammatory enzymes, and protein kinases (Kellog et al., 2015). Damage on 

cells/tissues is the initial process which may lead to several serious chronic 

inflammatory diseases like rheumatoid arthritis (RA), Alzheimer‟s disease (AD) and 

cancers (Ricciotti and Fitzgerald, 2011). 

 

One of the important regulators in inflammatory response is prostaglandin. This 

physiologically active 20-carbon lipid compound in normal condition, engages in 

various homeostasis regulation such as blood pressure, gastrointestinal integrity, 

cardiovascular system, central nervous system (CNS) activity, and fertility (Ricciotti 

and Fitzgerald, 2011). Prostaglandin also involves in onset of cardinal signs of 

inflammation: pain, heat, redness, and swelling. Thus it has been referred as classical 

pro-inflammatory mediator (Funk, 2001; Harris et al., 2002).  

 

Derived from plasma membrane arachidonic acid (AA), prostaglandin exists in several 

isoforms, and most abundant isoform in human is PGE2 (Serhan and Levy, 2003). 

PGE2, through different binding receptors, termed EP1 to EP4, exerts multiple 

homeostasis and inflammatory signals (Sugimoto and Narumiya, 2007). PGE2 can also 

repeatedly cooperate with cytokine and pathogen- or damage-associated molecular 

patterns (PAMPs and DAMPs) during multiple inflammatory events and amplifies 

cytokine and PAMP/DAMP signaling by boosting the expression of inflammation-

related genes induced by these stimuli (Aoki and Narumiya, 2012). Alleviated PGE2 
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levels in human have been linked specifically with pancreatic, colorectal, breast, and 

lung cancer (Wang et al., 2007).  

 

Biosynthesis of PGE2 from AA is catalyzed by prostaglandin G/H synthase, or 

cyclooxygenase (COX). The enzyme exists in two isoforms. The first isoform is 

cyclooxygenase-1 (COX-1), that constitutively and ubiquitously expresses 

prostaglandin at basal level to coordinate physiological conditions. COX-1 is present in 

almost every cells in human body. On the other hand, the second isoform is an 

inducible enzyme known as cyclooxygenase-2 (COX-2). COX-2 is produced only in 

injured tissues relatively at high levels and subsequently produces large amount of 

PGE2 upon triggered by inflammatory stimuli (Lee
a
 et al., 2009).  

 

Activated macrophages serve as one of the central producers of COX-2 in the course of 

inflammation (Bowdish et al., 2007). Combination of lipopolysaccharide (LPS) and 

interferon-gamma (IFN-γ) synergistically stimulates the activation of macrophage 

(Chan and Riches, 2001). Persistence of stimulation by these pro-inflammatory 

mediators however may resulted in over-expression of COX-2 which in turn leads to 

excess production of PGE2 and consequently ends up with various chronic 

inflammatory diseases and tumors (Greenhough et al., 2009; Wang et al., 2007).   

 

Production of prostaglandin particularly through inflammation can be controlled by 

targeting COX activities. Non-steroidal anti-inflammatory drugs (NSAIDs) are a class 

of drugs which have been reported to deliver pharmacological effects such as analgesic, 

anti-pyretic, and anti-inflammatory properties (Vonkeman and Laar, 2010). The 

mechanisms of most NSAIDs are particularly either blocking the production of 

prostaglandin via competitively bind and inhibit the activity of COX enzyme, suppress 

the COX gene expression itself or inhibition of transcription factors (Liggett et al., 

2014). Although plenty of successful NSAIDs have been produced, marketed and 

administered for a long time, mounting of health and clinical issues are raised over 

time.  

 

Epidemiological studies on several traditional NSAIDs like acetylsalicylic acid, 

indomethacin, ibuprofen and naproxen have revealed that these medicines are non-

selective on COX isoforms, reflecting both clinical efficacy and deleterious effects, 

which in turn associated with gastric ulceration and renal failure (Liu et al., 2001). 

Unfortunately, benefit-risk calculations have been biased on continuingly marketing 

these drugs due to their efficacy in treating chronic inflammation diseases.  

 

Recently, NSAIDs that preferentially block COX-2, namely „coxibs‟ family were 

considered as new generation of safe and effective drugs (Rao and Knaus, 2008). 

Unfortunately, clinical trials on prevention of colorectal cancer by rofecoxib and 

celecoxib resulted in myocardial infarction and stroke, and even death, which were far 

more serious than side effects of traditional NSAIDs (Bresalier et al., 2005; Solomon et 

al., 2005). The trials had led to the withdrawal of rofecoxib (Vioxx) from the market. 

Therefore, discovery of alternative anti-inflammatory agents is of utmost important.     

 



© C
OPYRIG

HT U
PM

3 

 

On natural preference of the treatment, a wide spectrum of phytochemicals and their 

derivatives have been identified for development as anti-inflammatory agents. 

Interestingly, curcumin which is widely presents as secondary metabolite in plants has 

been recognized as potent inhibitor against inflammation (Bukhari et al., 2013). 

However, curcumin suffers from major drawbacks due to poor bioavailability. Once 

consumed, it will go through hepatic conjugation, resulted in production of 

glucuronides and sulphates whereas systemic administration caused it to be eliminated 

(Anand et al., 2007). The problem is due to unstable 7-carbon spacer of ß-diketone 

moiety (diarylheptanoid) of curcumin, which is a specific substrate for liver aldo-keto 

reductases (Anand et al., 2007).  

 

Synthesizing a new class of curcumin related compounds is one of researchers' 

approaches (Leow et al., 2014). In addition, computational analysis has become 

another powerful tools in modern research area which can be utilized to understand the 

structure-activity relationship of the potential compounds. Recently, a few studies have 

proved the pharmacological interest of curcumin derivatives due to its effectiveness 

against inflammation (Jantan et al., 2012). These findings have enormously encouraged 

the development of better amendment of newly synthesized curcumin derivatives. 

Nevertheless, the effects and mechanism of actions of curcumin derivatives towards 

PGE2 in normal and inflammatory conditions are poorly understood.  

 

Here, a series of curcumin derivatives were assayed for prostaglandin E2 inhibition in 

IFN-γ/LPS-stimulated RAW264.7 (macrophage) cells as well as on pure COX-1 and -2 

enzyme activities. Their potential in PGE2 inhibition was analyzed quantitatively 

related to their molecular geometry. While molecular docking study was exploited to 

find a theoretical mechanism of inhibition of curcumin derivatives in COX active sites 

in comparison with their effects on the enzymatic activity. Finally, samples were tested 

on COX genes expression level. 

 

Objectives of study 

 

The general objective of this study is to elucidate the anti-inflammatory properties of 

curcumin derivatives in IFN-γ/LPS-stimulated macrophage cells. 

The specific objectives are: 

 

1. To evaluate the inhibition activity of 43 curcumin derivatives towards PGE2 

production in IFN-γ/LPS-stimulated RAW264.7 cells. 

2. To measure geometric and chemical characteristics of curcumin derivatives in 

which related to their PGE2 inhibition activity using quantitative structure-

activity relationship (QSAR) analysis. 

3. To determine the binding orientation of curcumin derivatives in COX active 

sites using molecular docking approach and correlate with COX enzymatic 

assay. 

4. To determine the effect of selected curcumin derivatives on mRNA expression 

of COX-1 and -2 in IFN-γ/LPS-stimulated RAW264.7 cells. 
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