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Prostaglandin E, (PGE,) is one of the lipid mediators of inflammation. Chronic
inflammation drives overproduction of PGE, that leads to development of chronic
inflammatory diseases. PGE, is synthesized by cyclooxygenase (COX) enzyme that
exists in isoforms of COX-1, which is constitutively expressed; and COX-2, which is
expressed upon induction. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit
COXs to control excessive production of PGE, during inflammation but, most of
commercialized NSAIDs selectively inhibit COX-1 or being non-selective which
compensate for limitations and detrimental side effects of the medicine. Hence,
deciphering the mechanisms of selectively inhibiting COX-2 is of great interest.
Curcumin was known as remedy to treat the inflammatory-related diseases, but suffers
from poor bioavailability and instability. Synthesis of curcumin derivatives was carried
out to overcome the limitations. Thus, the objectives of this study are to investigate the
effects of 43 curcumin derivatives towards activated cellular PGE, production and
COX’s activity, as well as to understand its mechanism of actions in silico and in vitro.
In this study, effects of curcumin derivatives on PGE, production in murine
macrophage (RAW264.7) cells which was stimulated by combination of interferon-
gamma (IFN-y) and lipopolysaccharide (LPS), were evaluated using immunoassay
procedures. Quantitative structure-activity relationship (QSAR) analysis was performed
to correlate between the structure and PGE, inhibition activity of curcumin derivatives.
Enzymatic assay and molecular docking analysis were performed to decipher the
mechanism of inhibition on COX activity by curcumin derivatives. Effects of active
curcumin derivatives on gene expression of COX-1 and COX-2 were also determined.
Results demonstrated that 3 out of 43 compounds significantly inhibited PGE,
production in IFN-y/LPS-stimulated RAW264.7 cells dose-dependently which were
2,6-bis(2-fluorobenzylidene)cyclohexanone (compound 25), 2,6-bis(4-
fluorobenzylidene)cyclohexanone (compound 27), and 2,5-bis(3,4,5-
trimethoxybenzylidene)cyclopentanone (compound 43) with 1Cs, values of 6.15 + 0.48
puM, 5.78 £ 1.67 uM and 12.15 + 1.88 uM respectively which were higher than that of
curcumin. Furthermore, these three compounds were not toxic to the cells (cytotoxicity
IC50>500 pM). The PGE, inhibitory effect was contributed by the suppression of the
IFN-y/LPS-stimulated COX-2 gene expression, without affecting the phorbol myristate



acetate (PMA)-stimulated COX-1 gene expression in RAW264.7 cells by these three
compounds. Arene substitution patterns and substituents of electron withdrawing
groups may contribute to the PGE, inhibition activity of the compounds. Besides,
QSAR study recommended that positive contribution of lipophilicity and numbers of
rotatable bonds, and negative contribution of kappa 2 descriptor of the compounds
were crucial for their anti-inflammatory properties. The enzymatic assay showed that
most curcumin derivatives tested selectively inhibited COX-1 activity rather than
COX-2. However, compounds 25 and 43 selectively inhibited COX-2, unlike
compound 27 which favours towards COX-1 activity. Moreover, docking study
revealed that compounds 25 and 43 interacted with COX’s active site receptors that
favour towards COX-2 inhibition. Arg120, His90, Phe518 and Arg513 are important
receptors involved in COX-2 inhibition, while Arg120 and Ser530 are important
receptors in COX-1 inhibition. In conclusion, the experimental data have provided
mechanistic insights into properties of compounds 25, 27, and 43 as COX-inhibitors.
Compounds 25 and 43 could be potential lead compounds for development of new
COX-2 selective inhibitors.
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Prostaglandin E, (PGE,) merupakan satu daripada pengantara lipid bagi radang.
Keradangan kronik telah mendorong lebihan pengeluaran PGE, yang membawa kepada
perkembangan penyakit radang kronik. PGE, disintesis oleh enzim siklooksigenase
(COX) yang wujud dalam isoform COX-1, yang diekspres sebagai penyelenggara; dan
COX-2 yang terinduksi. Dadah anti-radang bukan steroid (NSAIDs) ialah dadah yang
merencat COX-2 untuk mengawal lebihan pengeluaran PGE, semasa radang, tetapi
NSAIDs komersil kebanyakannya secara terpilih merencat COX-1 atau tidak berdaya
memilih yang mana memampas kepada pembatasan dan kesan sampingan yang
memudaratkan oleh ubat tersebut. Oleh itu, dengan mentafsirkan mekanisme yang
berdaya memilih bagi merencatkan COX-2 adalah menjadi keutamaan. Kurkumin telah
dikenalpasti sebagai ubat bagi merawat penyakit-penyakit berkaitan keradangan, tetapi
menderita daripada bioketersediaan yang lemah dan ketakstabilan. Sintesis terbitan
kurkumin telah dilakukan bagi mengatasi keterbatasannya. Jadi, objektif kajian ini
adalah bagi menyiasat kesan 43 terbitan kurkumin terhadap penghasilan PGE, sel
teraktif dan aktiviti COX, serta bagi memahami mekanisme tindakannya in silico dan
in vitro. Dalam kajian ini, kesan terbitan kurkumin terhadap penghasilan PGE, dalam
sel makrofaj murin (RAW 264.7) yang diransang oleh kombinasi interferon-gama
(IFN-y) dan lipopolisakarida (LPS), dinilai melalui prosedur imunoasai. Analisis
hubungan struktur-aktiviti kuantitatif (QSAR) telah dilakukan untuk mengaitkan antara
struktur dan aktiviti perencatan PGE, oleh terbitan kurkumin. Asai enzim dan analisis
mengedok molekul dilakukan bagi mentafsir mekanisme perencatan aktiviti COX oleh
terbitan kurkumin. Kesan terbitan kurkumin yang aktif terhadap ekspresi gen COX-1
dan COX-2 juga ditentukan. Keputusan menunjukkan 3 daripada 43 sebatian merencat
penghasilan PGE, dalam sel yang diransang IFN-y/LPS dengan ketara mengikut dos
iaitu 2,6-bis(2-fluorobenzilidena)sikloheksanon (sebatian 25), 2,6-bis(4-
fluorobenzilidena)sikloheksanon (sebatian 27), dan 2,5-bis(3,4,5-
trimetoksibenzilidena)siklopentanon (sebatian 43) dengan nilai 1Cs, masing-masing
6.15 £ 0.48 pM, 5.78 + 1.67 pM dan 12.15 + 1.88 pM yang mana lebih tinggi
berbanding kurkumin. Tambahan pula, tiga sebatian ini tidak toksik kepada sel



(kesitotoksian 1C5,>500 puM). Kesan perencatan PGE, disumbangkan oleh penindasan
gen COX-2 yang diransang IFN-y/LPS, tanpa memberi kesan terhadap ekspresi gen
COX-1 yang diransang forbol miristat asetat dalam sel RAW264.7 oleh tiga sebatian
tersebut. Pola penggantian arin dan kumpulan penarikan electron mungkin
menyumbang kepada aktiviti merencat PGE, sebatian tersebut. Selain itu, kajian QSAR
telah menganjurkan bahawa sumbangan positif lipofilik dan nombor ikatan boleh putar,
dan juga sumbangan negatif penerang kappa_2 sebatian tersebut adalah penting untuk
sifat anti-radangnya. Asai enzim menunjukkan kebanyakan terbitan kurkumin yang
diuji dengan terpilih merencat aktiviti COX-1 berbanding COX-2. Bagaimanapun,
sebatian 25 dan 43 dengan terpilih merencat COX-2, tidak seperti sebatian 27 yang
cenderung kepada aktiviti COX-1. Selain itu, kajian mengedok mendedahkan bahawa
sebatian 25 dan 43 berinteraksi dengan reseptor tapak aktif COX yang cenderung
kepada perencatan COX-2. Argl20, His90, Phe518, dan Arg513 adalah reseptor
penting yang terlibat dalam perencatan COX-2, manakala Arg120 serta Ser530 adalah
reseptor penting dalam perencatan COX-1. Kesimpulannya, data eksperimen ini telah
menyediakan pemahaman mekanisme bagi ciri-ciri sebatian 25, 27 dan 43 sebagai
perencat COX. Sebatian 25, dan 43 boleh menjadi sebatian utama yang berpotensi
untuk pembangunan perencat COX-2 yang baharu.
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CHAPTER 1
INTRODUCTION

Inflammation is a complex biological response. As part of immune system, the
inflammation response not only serves as protective frontline towards harmful stimuli,
but also as convergence point towards progression of severe inflammatory defects.
Inflammation is an intrinsically beneficial event for biological host in fighting against
offending factors such as pathogens, toxins, injuries, and chemical irritants with aims to
eliminate the injurious factors, promote healing process and tissue restoration, as well
as to build up memories for a faster and more specific counteractions in future
occurrence (Stables and Gilroy, 2011).

The beneficial effects of inflammation were normally implemented during acute phase
which is the initial stage of inflammation. In this stage, innate immunity takes place
through recruitment of activated cells like neutrophils, dendritic cells, lymphocytes and
macrophages to the site of injury. They integrate to phagocytize the pathogens and
promote healing process. However, persistence of pro-inflammatory stimuli will lead to
sustainment of inflammation for weeks, months and even years if the stimuli cannot be
eliminated or if there are problems with healing process such as auto-immunity
(Stables and Gilroy, 2011).

The persistence of inflammation has been reported to be associated with
pathophysiology of chronic stage. Extended period of inflammation is problematic
which can harm physiological systems due to tremendous increase of multiple reactive
oxygen species and pro-inflammatory mediators such as prostaglandins, cytokines,
inflammatory enzymes, and protein kinases (Kellog et al.,, 2015). Damage on
cells/tissues is the initial process which may lead to several serious chronic
inflammatory diseases like rheumatoid arthritis (RA), Alzheimer’s disease (AD) and
cancers (Ricciotti and Fitzgerald, 2011).

One of the important regulators in inflammatory response is prostaglandin. This
physiologically active 20-carbon lipid compound in normal condition, engages in
various homeostasis regulation such as blood pressure, gastrointestinal integrity,
cardiovascular system, central nervous system (CNS) activity, and fertility (Ricciotti
and Fitzgerald, 2011). Prostaglandin also involves in onset of cardinal signs of
inflammation: pain, heat, redness, and swelling. Thus it has been referred as classical
pro-inflammatory mediator (Funk, 2001; Harris et al., 2002).

Derived from plasma membrane arachidonic acid (AA), prostaglandin exists in several
isoforms, and most abundant isoform in human is PGE, (Serhan and Levy, 2003).
PGE,, through different binding receptors, termed EP1 to EP4, exerts multiple
homeostasis and inflammatory signals (Sugimoto and Narumiya, 2007). PGE, can also
repeatedly cooperate with cytokine and pathogen- or damage-associated molecular
patterns (PAMPs and DAMPs) during multiple inflammatory events and amplifies
cytokine and PAMP/DAMP signaling by boosting the expression of inflammation-
related genes induced by these stimuli (Aoki and Narumiya, 2012). Alleviated PGE,

1



levels in human have been linked specifically with pancreatic, colorectal, breast, and
lung cancer (Wang et al., 2007).

Biosynthesis of PGE, from AA is catalyzed by prostaglandin G/H synthase, or
cyclooxygenase (COX). The enzyme exists in two isoforms. The first isoform is
cyclooxygenase-1 (COX-1), that constitutively and ubiquitously expresses
prostaglandin at basal level to coordinate physiological conditions. COX-1 is present in
almost every cells in human body. On the other hand, the second isoform is an
inducible enzyme known as cyclooxygenase-2 (COX-2). COX-2 is produced only in
injured tissues relatively at high levels and subsequently produces large amount of
PGE, upon triggered by inflammatory stimuli (Lee® et al., 2009).

Activated macrophages serve as one of the central producers of COX-2 in the course of
inflammation (Bowdish et al., 2007). Combination of lipopolysaccharide (LPS) and
interferon-gamma (IFN-y) synergistically stimulates the activation of macrophage
(Chan and Riches, 2001). Persistence of stimulation by these pro-inflammatory
mediators however may resulted in over-expression of COX-2 which in turn leads to
excess production of PGE, and consequently ends up with various chronic
inflammatory diseases and tumors (Greenhough et al., 2009; Wang et al., 2007).

Production of prostaglandin particularly through inflammation can be controlled by
targeting COX activities. Non-steroidal anti-inflammatory drugs (NSAIDs) are a class
of drugs which have been reported to deliver pharmacological effects such as analgesic,
anti-pyretic, and anti-inflammatory properties (Vonkeman and Laar, 2010). The
mechanisms of most NSAIDs are particularly either blocking the production of
prostaglandin via competitively bind and inhibit the activity of COX enzyme, suppress
the COX gene expression itself or inhibition of transcription factors (Liggett et al.,
2014). Although plenty of successful NSAIDs have been produced, marketed and
administered for a long time, mounting of health and clinical issues are raised over
time.

Epidemiological studies on several traditional NSAIDs like acetylsalicylic acid,
indomethacin, ibuprofen and naproxen have revealed that these medicines are non-
selective on COX isoforms, reflecting both clinical efficacy and deleterious effects,
which in turn associated with gastric ulceration and renal failure (Liu et al., 2001).
Unfortunately, benefit-risk calculations have been biased on continuingly marketing
these drugs due to their efficacy in treating chronic inflammation diseases.

Recently, NSAIDs that preferentially block COX-2, namely ‘coxibs’ family were
considered as new generation of safe and effective drugs (Rao and Knaus, 2008).
Unfortunately, clinical trials on prevention of colorectal cancer by rofecoxib and
celecoxib resulted in myocardial infarction and stroke, and even death, which were far
more serious than side effects of traditional NSAIDs (Bresalier et al., 2005; Solomon et
al., 2005). The trials had led to the withdrawal of rofecoxib (Vioxx) from the market.
Therefore, discovery of alternative anti-inflammatory agents is of utmost important.



On natural preference of the treatment, a wide spectrum of phytochemicals and their
derivatives have been identified for development as anti-inflammatory agents.
Interestingly, curcumin which is widely presents as secondary metabolite in plants has
been recognized as potent inhibitor against inflammation (Bukhari et al., 2013).
However, curcumin suffers from major drawbacks due to poor bioavailability. Once
consumed, it will go through hepatic conjugation, resulted in production of
glucuronides and sulphates whereas systemic administration caused it to be eliminated
(Anand et al., 2007). The problem is due to unstable 7-carbon spacer of R-diketone
moiety (diarylheptanoid) of curcumin, which is a specific substrate for liver aldo-keto
reductases (Anand et al., 2007).

Synthesizing a new class of curcumin related compounds is one of researchers'
approaches (Leow et al., 2014). In addition, computational analysis has become
another powerful tools in modern research area which can be utilized to understand the
structure-activity relationship of the potential compounds. Recently, a few studies have
proved the pharmacological interest of curcumin derivatives due to its effectiveness
against inflammation (Jantan et al., 2012). These findings have enormously encouraged
the development of better amendment of newly synthesized curcumin derivatives.
Nevertheless, the effects and mechanism of actions of curcumin derivatives towards
PGE, in normal and inflammatory conditions are poorly understood.

Here, a series of curcumin derivatives were assayed for prostaglandin E, inhibition in
IFN-y/LPS-stimulated RAW?264.7 (macrophage) cells as well as on pure COX-1 and -2
enzyme activities. Their potential in PGE, inhibition was analyzed quantitatively
related to their molecular geometry. While molecular docking study was exploited to
find a theoretical mechanism of inhibition of curcumin derivatives in COX active sites
in comparison with their effects on the enzymatic activity. Finally, samples were tested
on COX genes expression level.

Objectives of study

The general objective of this study is to elucidate the anti-inflammatory properties of
curcumin derivatives in IFN-y/LPS-stimulated macrophage cells.
The specific objectives are:

1. To evaluate the inhibition activity of 43 curcumin derivatives towards PGE,
production in IFN-y/LPS-stimulated RAW?264.7 cells.

2. To measure geometric and chemical characteristics of curcumin derivatives in
which related to their PGE, inhibition activity using quantitative structure-
activity relationship (QSAR) analysis.

3. To determine the binding orientation of curcumin derivatives in COX active
sites using molecular docking approach and correlate with COX enzymatic
assay.

4. To determine the effect of selected curcumin derivatives on mRNA expression
of COX-1 and -2 in IFN-y/LPS-stimulated RAW264.7 cells.
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