

UNIVERSITI PUTRA MALAYSIA

IMPROVING CONSISTENCY OF UML AND ITS IMPLEMENTATION
USING REVERSE ENGINEERING APPROACH

VASANTHI A/P KALIAPPAN

FSKTM 2018 38

© C
OP

UPM

IMPROVING CONSISTENCY OF UML AND ITS IMPLEMENTATION
USING REVERSE ENGINEERING APPROACH

By

VASANTHI A/P KALIAPPAN

Thesis Submitted to the School of Graduate Studies,
University Putra Malaysia, in Fulfilment of the

Requirements for the Degree of Master of Computer Science

January, 2018

© C
OP

UPM

ii

All material contained within the report, including without limitation text, logos,

icons, photographs and all other artwork, is copyright material of Universiti

Putra Malaysia unless otherwise stated. Use may be made of any material

contained within the thesis for non-commercial purposes from the copyright

holder. Commercial use of material may only be made with the express, prior,

written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OP

UPM

iii

TABLE OF CONTENTS

ABSTRACT .. v
ABSTRAK .. vi
ACKNOWLEDGEMENTS ... vii
DECLARATION FORM ... viii
LIST OF TABLES .. ix
LIST OF FIGURES ... x
LIST OF ABBREVIATIONS .. xii
CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction.. 1

1.2 Research Background and Motivation .. 1

1.3 Problem Statement .. 2
1.4 Project Objectives .. 3

1.5 Project Contributions ... 4
1.6 Scope of Project ... 4

1.7 Dissertation Outline .. 5
CHAPTER 2: LITERATURE REVIEW .. 7

2.1 Introduction.. 7
2.2 UML Models in Inconsistency Management .. 7

2.3 UML Model Transformation .. 10
2.4 C# Programming Language ... 13

2.5 Reverse Engineering of Source Code .. 14
2.6 Consistency Checking ... 16

2.6.1 Horizontal Consistency Checking ... 17

2.6.2 Vertical Inconsistency Checking ... 21

2.7 Related Work in Inconsistency Management .. 23
2.8 Summary ... 24

CHAPTER 3: PROJECT METHODOLOGY ..25
3.1 Introduction.. 25

3.2 Research Methodology ... 25
3.2.1 Theoretical Study .. 25

3.2.2 Identify and Analyse Requirements .. 26

3.2.3 Design Prototype ... 26

3.2.4 Prototype Development .. 27

3.2.5 Validate Prototype ... 27

3.2.6 Draw Conclusion ... 27

3.3 Project Requirements .. 27

© C
OP

UPM

iv

3.3.1 Software Requirements .. 27

3.3.2 Hardware Requirements .. 28

3.4 Summary ... 28
CHAPTER 4: DESIGN AND IMPLEMENTATION ...29

4.1 Introduction.. 29

4.2 Prototype Design .. 29

4.2.1 Architecture of UCCCT ... 29

4.2.2 Design Pattern ... 30

4.2.3 Flowchart of UCCCT ... 31

4.2.4 Use Case Diagram of UCCCT .. 31

4.3 Overall Workflow .. 33

4.3.1 Step 1: Processing of XMI of UML Diagrams ... 34

4.3.2 Step 2: Reverse Engineering of Source Code .. 42

4.3.3 Step 3: Perform Consistency Checking ... 46

4.3.4 Step 4: Display Consistency Checking Result .. 50

4.4 Implementation ... 51

4.4.1 Interface Design .. 51

4.5 Summary ... 54
CHAPTER 5: EVALUATION AND RESULT ..55

5.1 Introduction.. 55

5.2 Evaluation of UCCCT .. 55
5.3 Experiment Design ... 56

5.4 Result Analysis ... 57
5.4.1 Effectiveness .. 57

5.4.2 Usability .. 58

5.5 Summary ... 61
CHAPTER 6: CONCLUSION AND FUTURE WORK ..62

6.1 Introduction.. 62
6.2 Overview .. 62

6.3 Future Work .. 62

6.4 Conclusion ... 64
REFERENCES ...65
APPENDICES ..68
APPENDIX A: UCCCT INCONSISTENCY DETECTION PROGRAM68
APPENDIX B: TEST CASE - C# PROGRAM FOR ATM SYSTEM76
APPENDIX C: TEST CASE - UML DESIGN MODELS FOR ATM SYSTEM87

© C
OP

UPM

v

ABSTRACT

Software development deals with various changes and evolution that cannot

be avoided and it is an important activity in software life cycle because

development processes are vastly incremental and iterative. In Model Driven

Engineering, inconsistency between model and its implementation has huge

impact on the development process in terms of added cost, time and effort.

The later the inconsistencies are found, it could add more cost to the project.

Thus, this project aim to propose a mechanism and to develop a tool that can

improve consistency between UML design models and its C# implementation

using reverse engineering approach. A list of informal consistency rules are

set to check vertical and horizontal consistencies between structural (class

diagram) and behavioural (sequence diagram and use case diagram) UML

models against the implemented C# source code. The work deals with reverse

engineering of source code using .NET Reflection API and parsing of UML XMI

file using C# XMLReader. The inconsistency found between design diagram

and source code are presented in textual description and visualized in tree

view structure. The project is evaluated via end user evaluation. The

contribution of this project is to aid software developers to maintain design

models consistency in a faster and correct way and to guide them to take

measures to not let design models and source code drift apart.

© C
OP

UPM

vi

ABSTRAK

Perubahan dan evolusi di dalam pembangunan perisian tidak dapat dielakkan

dan ia merupakan aktiviti penting dalam kitaran hayat perisian kerana proses

pembangunan perlu ditambah baik secara berulang. Di dalam pembangunan

berasaskan model, model yang tidak konsisten dengan pelaksanaannya

mempunyai kesan besar terhadap proses pembangunan dari segi kos

tambahan, masa dan tenaga. Sewaktu projek segera diperlukan dalam

jangkamasa pendek, salah faham konsep dan kecuaian pengaturcara boleh

menyebabkan model and program mudah menjadi tidak konsisten.

Inkonsistensi yang dijumpai pada fasa akhir kitar hayat pembangunan perisian

akan menambah kos berlebihan kepada projek. Oleh itu, projek ini bertujuan

untuk mencadangkan mekanisme dan membangunkan applikasi yang boleh

meningkatkan konsistensi di antara model UML dan pelaksanaan kod sumber

menggunakan pendekatan kejuruteraan balikan. Peraturan tidak formal

digunakan untuk memeriksa konsistensi di antara model dan kod sumber C#.

UML di dalam format XMI diproses mengunakan C# XMLReader dan .NET

Rekfleksi API digunakan untuk pendekatan kejuruteraan balikan. Inkonsistensi

yang dijumpai akan dipaparkan kepada pengguna aplikasi melalui keterangan

teks dan digambarkan dalam struktur paparan pokok. Projek ini dinilai

menggunakan penilaian pengguna akhir. Projek ini dijangka membantu

pemaju perisian untuk mengekalkan konsistensi model reka bentuk dengan

cara yang lebih pantas dan betul dan membimbing mereka untuk mengambil

langkah-langkah untuk tidak membiarkan model reka bentuk dan kod sumber

tidak konsisten.

© C
OP

UPM

vii

ACKNOWLEDGEMENTS

All thanks and praise goes to God for His will and for bestowing me with

health, time and interest to further my study.

Many thanks to Dr. Norhayati Mohd Ali for being my supervisor during

master degree who provided assistance, guidance and constructive comments

during the process of completing this project.

Thanks to all my lecturers and friends for their support, commitment,

knowledge sharing and working together throughout the study in

accomplishing this Master Degree.

Lastly, countless thanks to my mother Madam Nacheammah, sisters

and friends for their never ending love, moral support and guidance.

© C
OP

UPM

viii

DECLARATION FORM

I hereby confirm that:

� This thesis is my original work.

� Quotations, illustrations and citations have been duly referenced.

� This thesis has not been submitted previously or concurrently for any
other degree at any other institutions.

� Intellectual property from the thesis and copyright of thesis are fully-
owned by University Putra Malaysia, as according to the University
Putra Malaysia (Research) Rules 2012; written permission must be
obtained from supervisor and the office of Deputy

� Vice-Chancellor (Research and Innovation) before thesis is published
(in the form of written, printed or in electronic form) including books,
journals, modules, proceedings, popular writings, seminar papers,
manuscripts, posters, reports, lecture notes, learning modules or any
other materials as stated in the University Putra Malaysia (Research)
Rules 2012.

� There is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld as according to the University Putra
Malaysia

� (Graduate Studies) Rules 2003 (Revision 2012-2013) and the
University Putra

� Malaysia (Research) Rules 2012. The thesis has undergone plagiarism
detection software.

Signature: __________________

Date:

Name and Matric No: VASANTHI A/P KALIAPPAN, GS43875

Signature: __________________

DR NORHAYATI MOHD ALI (Supervisor)

© C
OP

UPM

ix

LIST OF TABLES

Table Page

Table 2.1: Description of UML diagrams 9

Table 2.2: Summary of literature review 23

Table 3.1: List of software components required 28

Table 4.1: Type of UML elements extracted from XMI file 36

Table 4.2: Meta data extracted from class diagram 38

Table 4.3: Meta data extracted from sequence diagram 39

Table 4.4: Meta data extracted from use case diagram 40

Table 4.5: Meta data extracted from source code 44

Table 5.1: Experiment results 58

Table 5.2: Questionnaire for usability testing 59

© C
OP

UPM

x

LIST OF FIGURES

Figure Page

Figure 2.1: Overview of UML diagram 8

Figure 2.2: Horizontal inconsistency rules between design models 19

Figure 2.3: Overview of model consistency management 20

Figure 2.4: Horizontal consistency rules for multi view diagrams 21

Figure 3.1: Project Methodology 25

Figure 4.1: Architecture of UCCCT prototype 30

Figure 4.2: Class diagram for Singleton design pattern 31

Figure 4.3: Flowchart for UCCCT prototype 32

Figure 4.4: Use case diagram for UCCCT prototype 32

Figure 4.5: Overall UCCCT process flow 33

Figure 4.6: Steps to process XMI file 34

Figure 4.7: XMI file exported from modelling tool for a class

 diagram

35

Figure 4.8: Meta model of topological class diagram 37

Figure 4.9: Meta model of topological sequence diagram 39

Figure 4.10: Meta model of topological use case diagram 40

Figure 4.11: Tree View structure for design class diagram 41

Figure 4.12: Tree View structure for design sequence diagram 41

Figure 4.13: Tree View structure for design use case diagram 42

Figure 4.14: Framework to reverse engineer source code 42

Figure 4.15: Dependency relationship 45

© C
OP

UPM

xi

Figure 4.16: Inheritance relationship 45

Figure 4.17: Association relationship 46

Figure 4.18: Inconsistency between class diagram and sequence

 diagram

49

Figure 4.19: Main screen of UCCCT Prototype 51

Figure 4.20: Browse C# project folder 51

Figure 4.21: Browse for XMI file 52

Figure 4.22: Consistency checking result for class diagram 52

Figure 4.23: Consistency checking result for sequence diagram 52

Figure 4.24: Consistency checking result for use case diagram 53

Figure 4.25: Textual description of inconsistency 53

Figure 4.26: Print consistency checking result 53

Figure 4.27: View UCCCT consistency rules 54

Figure 5.1: Result for Usability Questions 59

Figure 5.2: Result for usability points 60

Figure 5.3: Result for value of the tool questions 60

Figure 5.4 Result for overall value 61

© C
OP

UPM

xii

LIST OF ABBREVIATIONS

UML Unified Modelling Language

PIM Platform Independent Models

MDD Model Driven Development

MDA Model Driven Architecture

UCCCT UML-Code Consistency Checking Tool

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformations

XMI XML Metadata Interchange

© C
OP

UPM

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces research background and motivation of this

project. It also presents problem statements, project objectives, methodology

and expected results and contributions of this project. Lastly the chapter

concludes with thesis organization.

1.2 Research Background and Motivation

Software life cycle deals with various changes either in software

operating environment or requirements. Software evolution cannot be avoided

and it is an important activity in software life cycle because development

processes are vastly incremental and iterative. Three explicit maintenance

activities in software evolution are corrective to fix defect, adaptive to adapt

new technologies and environment, and perfective to enhance and improve

software quality. In software development, inconsistencies between

architectural instruments and the implemented source code might occur due

to erroneous implementation of the design architecture or the separate and

uncontrolled changes or amendments in the code (Selim Ciraci, Hasan Sozer

& Bedir Tekinerdogan, 2012).

To plan and repair these inconsistencies, software developers have to

interfere their workflow further to reinvestigate the model changes that

contribute to these inconsistencies. Other than fixing inconsistencies, software

© C
OP

UPM

2

developers also have to fix other model changes that were dependent on the

erroneous model elements (Alexander Egyed, 2011).

In times where development schedule and timeline are tight or urgently

required projects, manual inconsistency detection and fixing may easily

breach model consistency conformance due to errors and mistakes made by

human or wrong understanding of the model. According to Michael John

Decker, Kyle Swartz, Michael L. Collard & Jonathan I. Maletic (2016), the

manual recovery of UML class diagrams is a time consuming and expensive

operation, which led industries lack of interest in maintenance activities. Also,

their study found that most automatic reverse-engineering tools perform

poorly. The tools mostly focused on producing simple class diagrams whereby

design abstractions were not represented properly and correctly.

In such scenarios, checking consistency between a design model and

its implementation is much required to make sure that function of models are

implemented as they should be during various changes in software lifetime.

Thus, consistency checking can also help in the understanding models, by

implementing its design properties which helps developers to use model

driven design approaches more effectively.

1.3 Problem Statement

Inconsistencies between UML model and source code could occur due

to various changes implemented during the project’s lifetime at source code

level but design models were not updated accordingly due to constraints like

time, money, resources and separate and uncontrolled evolution (Selim Ciraci,

Hasan Sozer & Bedir Tekinerdogan, 2012).

© C
OP

UPM

3

Based on IEEE 2016 Programming Language Spectrum rating, despite

being one of the most popular object oriented language among software

developers, it is observed that recent researches in inconsistency

management has more attention for Java and C++ compared to C#. This has

been studied and synthesized in a systematic critique conducted by Raja

Sehrab Bashira, Sai Peck Lee, Saif Ur Rehman Khan, Victor Chang & Shahid

Farid (2016). Furthermore, it was found that most researches in existing

literatures focused more on class, state chart and sequence diagrams

compared to use case diagram. Combination of class diagram, use case

diagram and sequence diagram are not explored much. The study also reveals

that majority of literature for model inconsistencies were done using forward

engineering. In contrast to the vertical consistency problems, horizontal

consistency problems were more emphasized in studies and researches.

Therefore, this project aim to find a mechanism and to create a tool that

can improve consistency between class diagram, use case diagram and

sequence diagram and its C# implementation using reverse engineering

approach. Informal consistency rules will be adopted to detect and diagnose

vertical and horizontal inconsistencies.

1.4 Project Objectives

The objective of this project is to propose a mechanism to detect

inconsistencies between structural (class diagram) and behavioural (use case

diagram and sequence diagram) UML models against its C# source code

implementation using reverse engineering approach. A prototype tool will be

© C
OP

UPM

4

designed and developed to implement the proposed mechanism. The

prototype tool will be evaluated via end user evaluation.

1.5 Project Contributions

The main contribution of this research is to propose a mechanism and

to develop a prototype tool that can improve consistency between structural

(class diagram) and behavioural (use case diagram and sequence diagram)

UML models and its C# implementation using reverse engineering approach.

A consistency checker tool will be developed to

i) Read UML design class diagram, sequence diagram and use case

diagram.

ii) Read C# source code and extract implemented class model

iii) Detect vertical and horizontal inconsistencies between (i) and (ii) using

informal consistency rules.

iv) Generate a textual description and tree view visualization of detected

inconsistencies.

The outcome of this project work is expected to assist developers to

use model driven design approaches more effectively. It is also expected to fill

the gaps in model inconsistency management as mentioned in problem

statement.

1.6 Scope of Project

This study aims to aid software developers to maintain design models

consistency in a faster and correct way to be in line with the source code

implementation. The consistency checking is between code implementation in

Visual Studio and UML models. Application scope will be C# source code that

© C
OP

UPM

5

is free from any syntax error. The target users of proposed tool are software

developers.

1.7 Dissertation Outline

This thesis is structured in accordance to standard thesis outline. It

starts with the introduction chapter and ends with conclusion chapter.

In Chapter 2, detailed review of literature is made. Literatures related to

UML models, vertical and horizontal consistency checking rules and reverse

engineering methods of source code into models are reviewed. This chapter

further discuss related works in research area of concern.

Chapter 3 describes the methodology used in this research. It presents

an explanation of vertical and horizontal consistency rules of class diagram,

sequence diagram and use case diagram. The chapter also discusses about

inconsistency detection logic and approaches. This chapter further discuss the

research phases and activities in detail.

Chapter 4 introduces the design and implementation of consistency

checker tool in detail. Metadata extraction from UML design model and source

code are explained in detail. Identification of vertical and horizontal

inconsistency are described with support of algorithm used in this project.

Some important line of codes in the implementation program were also

discussed.

Chapter 5 presents testing and evaluation of consistency checker tool.

Tool testing and evaluation has been conducted using 2 case studies. The

main focus of testing to identify inconsistencies between UML models and

© C
OP

UPM

6

source code by applying consistency rules on the metadata extracted from

both UML model and source code.

Chapter 6 provides conclusion of this research. This chapter outlines

limitation of research and some possible future works.

© C
OP

UPM

65

REFERENCES

A. Ananda Rao, T. V. Rajini Kanth, G. Ramesh (2016). “A Model Driven

Framework for Automatic Detection and Tracking Inconsistencies”.

Journal of Software, Volume 11, Number 6 (pp. 538 – 553).

A.Elmounadi, N.Berbiche, F.Guerouate, N.Sefiani (2017). “Eclipse JDT-Based

Method For Dynamic Analysis Intergration In Java Code Generation

Process”. Journal of Theoretical and Applied Information Technology

Vol.95. No. 24.

Abilio G. Parada, Eliane Siegert, Lisane B. De Brisolara (2011). “Generating

Java code from UML class and sequence diagrams”. Brazilian

Symposium on Computing System Engineering (SBESC) (pp. 99-101).

Alexander Egyed (2011). “Automatically Detecting and Tracking

Inconsistencies in Software Design Models”. IEEE Transactions of

Software Engineering, Vol. 37, No. 2.

Alexander Reder, Alexander Egyed (2013). “Determining the Cause of a

Design Model Inconsistency”. IEEE Transactions of Software

Engineering, Vol. 39, No. 11.

Andrew Sutton, Jonathan I. Maletic (2005). “Mappings for Accurately Reverse

Engineering UML Class Models from C++”. WCRE Proceedings of the

12th Working Conference on Reverse Engineering (pp. 175 – 184).

Chikofsky, E. J. and Cross, J. H. (1990), “Reverse Engineering and Design

Recovery: A Taxonomy”. IEEE Software, Vol. 7, No. 1 (pp. 13-17).

Collard, M. L., Decker, M. J., and Maletic, J. I. (2013). “srcML: An Infrastructure

for the Exploration, Analysis, and Manipulation of Source Code: A Tool

Demonstration”. 29th IEEE International Conference Proceedings on

Software Maintenance (ICSM) (pp. 516-519).

Harshal D. Gurad , V.S.Mahalle (2014). “Transformation of UML Sequence

Diagram To Java Code”. The International Journal of Pure and Applied

Research in Engineering and Technology, Vol.2, No.8 (pp. 703-710).

© C
OP

UPM

66

Hector M. Chavez, Wuwei Shen (2016). “An Approach to Checking

Consistency between UML Class Model and Its Java Implementation”.

IEEE Transactions of Software Engineering, Vol. 42, No. 4.

http://spectrum.ieee.org/static/interactive-the-top-programming-languages-

2016

http://www.omg.org/spec/XMI

http://www.uml-diagrams.org

https://docs.microsoft.com/en-us/dotnet/csharp

Huy, T., Faiz, U. M., & Uwe, Z. (2015). “A graph-based approach for

containment checking of behavior models of software systems”.

Proceedings of the 2015 IEEE 19th International Conference on

Enterprise Distributed Object Computing (pp. 84-93).

Huzar, Z., Kuzniarz, L., Reggio, G., & Sourrouille, J. L. (2005). “Consistency

Problems in UML-Based Software Development”. UML Modeling

Languages and Applications (pp. 1–12).

Laszlo Angyal, Laszlo Lengyel, and Hassan Charaf (2008). “A Synchronizing

Technique for Syntactic Model-Code Round-Trip Engineering”. 15th

Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systems.

Lene Nielsen (2012). “The usability expert's fear of agility: an empirical study

of global trends and emerging practices”. Proceedings of the 7th Nordic

Conference on Human-Computer Interaction: Making Sense Through

Design (pp. 261-264).

M. Osman, M. Chaudron, P. Van Der Putten, T. Ho-Quang (2014).

“Condensing reverse engineered class diagrams through class name

based abstraction.” Information and Communication Technologies

(WICT) 2014 Fourth World Congress (pp. 158-163).

Michael John Decker, Kyle Swartz, Michael L. Collard, Jonathan I. Maletic

(2016). “A Tool for Efficiently Reverse Engineering Accurate UML Class

Diagrams”. IEEE International Conference on Software Maintenance

and Evolution.

© C
OP

UPM

67

Misbhauddin, M., & Alshayeb, M. (2015). “UML model refactoring: a

systematic literature review”. Journal of Empirical Software

Engineering, Vol. 20 Issue (1). (pp. 206–251).

Mohammadreza Sharbaf, Bahman Zamani, Behrouz Tork Ladani (2015).

“Towards automatic generation of formal specifications for UML

consistency verification”. International Conference on Knowledge-

Based Engineering and Innovation (KBEI) (pp. 860-865).

N. Cuong and X. Qafmolla (2011). “Model transformation in web engineering

and automated model driven development”. International Journal of

Modelling and Optimization Vol. 1 No. 1 (pp. 7-12).

R Alroobaea, PJ Mayhew (2014). “How many participants are really enough

for usability studies?”. Science and Information Conference (SAI) (pp.

48-56).

Raja Sehrab Bashira, Sai Peck Lee, Saif Ur Rehman Khan, Victor Chang,

Shahid Farid (2016). “UML models consistency management:

Guidelines for software quality Manager”. 36th International Journal of

Information Management (pp. 883–899).

Selim Ciraci, Hasan Sozer, Bedir Tekinerdogan (2012). “An Approach for

Detecting Inconsistencies between Behavioral Models of the Software

Architecture and the Code”. IEEE 36th International Conference on

Computer Software and Applications.

Spanoudakis, G., & Zisman, A. (2001). “Inconsistency management in

software engineering: survey and open research issues”. Handbook of

SofQaftware Engineering and Knowledge Engineering, Vol. 1. (pp.

329–380).

Van Cam Pham, Ansgar Radermacher, Sebastien Gerard, Shuai Li (2017).

“Bidirectional Mapping between Architecture Model and Code for

Synchronization”. IEEE International Conference on Software

Architecture.

