The analysis on effect of thrust constant, spring constant, electrical time constant, mechanical time constant to oscillation displacement of slot-less linear oscillatory actuator

ABSTRACT

This paper presents the analysis on effect thrust constant k_f, spring constant k_s, electrical time constant T_e and mechanical time constant T_m to oscillation displacement of slot-less linear oscillatory actuator (LOA) using Permeance Analysis Method (PAM). The results show that the LOA geometrical structure has high impact on the thrust constant k_f, spring constant k_s, electrical time constant T_e, mechanical time constant T_m and as a result affect the oscillation displacement x. Finally, the analysis presents in this paper can be used to determine the best LOA structure based on the desired thrust constant k_f, spring constant k_s, electrical and mechanical time constant T_e and T_m, and oscillation displacement.

Keyword: Linear oscillatory actuator; Thrust constant; Electrical time constant; Mechanical time constant; Spring constant; Oscillation displacement