

UNIVERSITI PUTRA MALAYSIA

TEST CASE PRIORITIZATION APPROACH FOR SEQUENCE OF
EVENTS USING COMPLEXITY FACTOR

EMYREEMA BINTI JA’AFAR

FSKTM 2018 32

© C
O

UPM

i

TEST CASE PRIORITIZATION APPROACH FOR SEQUENCE OF EVENTS USING

COMPLEXITY FACTOR

By

EMYREEMA BINTI JA’AFAR

Thesis Submitted to School of Graduate Studies,
University Putra Malaysia, in Fulfillment of the

Requirement for the Degree of Master of Computer Science

January, 2018

© C
O

UPM

ii

DEDICATION

Alhamdulillah, my grateful and praises to the Almighty of Allah who has inspired,

strengthened, guided and ease the implementation of this project. I dedicate this

dissertation especially to my mum, Amnah Binti Md Salleh for her prayers and

supervisor for their countless supports through this journey to finish up the thesis as

part of requirement fulfillment for Master of Computer Science. I also would like to

express appreciation from my deepest heart to all my family members, lecturers and

friends who have assisted directly or indirectly and supported me during this

postgraduate study.

© C
O

UPM

iii

ABSTRACT

Test case prioritization (TCP) is a method to prioritize and schedule test cases.

The technique is developed in order to run test cases of higher priority for minimizing

the time, cost and effort during software testing phase. Complexity is one of the factors

that affect the effectiveness of the TCP. However, the existing techniques for

measuring complexity have some limitations. This is due to inaccuracy in finding the

weightage value for complexity as the value will be used to determine the test case

prioritization. This study aims on proposing a TCP approach using complexity factor in

order to get a better accuracy in prioritizing the test case for event sequences. The

study use a Branch Coverage Expectation (BCE) complexity measurement that been

proved empirically in the previous research. In this study, an automate tool is

developed to calculate the BCE value using a Visual Basic and Microsoft Access.

Average Percentage Fault Detection metric is used to evaluate the proposed

approach. The fault matrix was build based on the testing done in Junit Eclipse.

Based on the results, it shows that by only using complexity factor solely to determine

the test case prioritization has does not improve the effectiveness of TCP approach. It

is suggests that the proposed approach need to be combined with other factor(s) in

order to improve the effectiveness of TCP.

© C
O

UPM

iv

ABSTRAK

Keutamaan Kes Uji ialah salah satu kaedah untuk mencari dan menjadualkan

sesuatu kes uji yang penting mengikut keutamaan. Teknik ini dibangunkan untuk

menguji lari kes uji yang mempunyai keutamaan yang tinggi untuk meminimumkan

masa, kos dan tenaga semasa fasa pengujian sistem. Kerumitan sistem merupakan

salah satu faktor yang menentukan samada Keutamaan Kes Uji adalah efektif.

Walaubagaimanapun, pendekatan sedia ada untuk mengukur kerumitan sistem

mempunyai beberapa kekangan. Ini adalah disebabkan ketidaktepatan mencari nilai

pemberat bagi kerumitan program dan nilai ini akan digunakan untuk mengenalpasti

keutamaan kes uji. Projek ini bertujuan untuk mencadangkan pendekatan keutamaan

kes uji dengan hanya menggunakan satu faktor sahaja iaitu faktor kerumitan program

di dalam mendapatkan ketepatan yang lebih baik di dalam memberi keutamaan pada

kes ujian bagi fungsi acara berjujukan. Kerumitan program diukur di dalam projek ini

menggunakan pengukuran Branch Coverage Expectation yang telah dibuktikan

secara empirical di dalam kajian sebelum ini. Di dalam projek ini, sebuah aplikasi

automatik dibangunkan dengan menggunakan perisian Visual Basic untuk mengira

nilai Branch Coverage Expectation. Metrik Average Percentage Fault Detection

digunakan untuk membuat penilaian keberkesanan ke atas pendekatan yang

dicadangkan. Perisian Eclipse (Junit) digunakan bagi menjalankan pengujian dan

membina fault matrix. Berdasarkan kepada keputusan yang diperolehi di akhir projek,

didapati nilai bagi kes ujian yang telah disusun mengikut keutamaan adalah lebih

rendah dari kes ujian yang tidak disusun mengikut keutamaan. Ini menunjukkan

bahawa pendekatan yang dicadangkan dengan hanya menggunakan satu faktor tidak

© C
O

UPM

v

dapat membuktikan bahawa ianya lebih berkesan dalam pendekatan keutamaan kes

ujian. Pendekatan yang dicadangkan hendaklah digabungkan bersama faktor-faktor

lain supaya keutamaan kes ujian adalah lebih berkesan.

© C
O

UPM

vi

ACKNOWLEDGEMENT

I would like to express my immense gratitude to Almighty of Allah for the wellness and

mercies for allowing me to complete this project within the timeline. I also would like to

thank my supervisor Dr. Sa'adah Binti Hassan for her guidance, motivation and

patience during my research. Your good deeds will always be in my thoughts and

prayers.

Not to forget to my first supervisor Dr. Salmi Binti Baharom for teaching me and give

me an idea of the software testing and especially on Test Case Prioritization.

My appreciation goes to UPM lecturers, facilitators and staffs who have been involved

directly or indirectly in this project. Besides that I would like to thank my colleagues

and my family for endless support in completing this project. Last but not least, I am

indebted to Public Service Department (JPA) and Government of Malaysia for giving

me an opportunity to further postgraduate study (master level) in Faculty Science

Computer and Information Technology, University of Putra Malaysia.

© C
O

UPM

vii

DECLARATION

I hereby confirm that:

� This thesis is my original work.

� Quotations, illustrations and citations have been duly referenced.

� This thesis has not been submitted previously or concurrently for any other

degree at any other institutions.

� Intellectual property from the thesis and copyright of thesis are fully-owned by

University Putra Malaysia, as according to the University Putra Malaysia

(Research) Rules 2012; written permission must be obtained from supervisor and

the office of Deputy

� Vice-Chancellor (Research and Innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the University

Putra Malaysia (Research) Rules 2012.

� There is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the University Putra Malaysia

� (Graduate Studies) Rules 2003 (Revision 2012-2013) and the University Putra

� Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection

software.

Signature: ...
Date:
Name and Matric No: EMYREEMA BINTI JA’AFAR, GS45409

Signature: ...
DR SA'ADAH BINTI HASSAN (Supervisor)

© C
O

UPM

viii

TABLE OF CONTENTS

 Page
DEDICATION ii

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENT vi

DECLARATION vii

TABLE OF CONTENTS viii

LIST OF FIGURES xi

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 1
INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Objectives And Scope 3

1.4 Contribution 4

1.5 Thesis Organization 4

CHAPTER 2 6
LITERATURE REVIEW 6

2.1 Related Work 6

2.2 Findings 14

2.3 Summary 15

© C
O

UPM

ix

CHAPTER 3 16
RESEARCH METHODOLOGY 16

3.1 Overview 16

3.2 Theoretical Study 17

3.3 Propose an Approach 18

3.4 Tool Development 18

3.5 Implementation and Evaluation 19

3.6 Summary 19

CHAPTER 4 20
A PROPOSED APPROACH 20

4.1 Overview of Complexity Measure 20

4.2 Branch Coverage Expectation 21

4.2.1 Markov Chain 22

4.2.2 Definition of BCE 23

4.2.3 Weightage Value Based On Complexity Of The Events 24

4.2.4 Weightage value for Test Case(TC) 25

4.2.5 Prioritizing the TC 26

4.3 Tool Development 26

4.3.1 Tool Design 27

4.3.2 Tool Development Environment 28

4.3.3 Interface Design 28

4.4 Summary 33

© C
O

UPM

x

CHAPTER 5 34
IMPLEMENTATION AND EVALUATION 34

5.1 Overview 34

5.2 Implementation 34

5.2.1 Experimental Setup 35

5.3 Evaluation 40

5.3.1 Mutation 42

5.3.2 APFD for Non-Prioritization Test Cases (NPTC) 43

5.3.3 APFD for Prioritization Test Cases (PTC) 44

5.3 Result and Discussion 45

CHAPTER 6 47

CONCLUSION AND FUTURE WORKS 47

6.1 Summary 47

6.3 Future works 48

REFERENCES 50

APPENDICES 54

Appendix A 54

Appendix B 56

Appendix C 60

Appendix D 65

Appendix E 70

© C
O

UPM

xi

LIST OF FIGURES

Figure 1 : Algorithm for TCP method……... 9

Figure 2 : Flow Chart of the proposed approach... 11

Figure 3 : Phases in Research Methodology…………………………………………..... 16

Figure 4 : Definition of BCE……………………………………………………................. 24

Figure 5 : Modules in Tool for Input and Output.. 27

Figure 6 : The input page…………………….. 29

Figure 7 : Output for BCE complexity tool... 30

Figure 8 : Event Assign-Weightage... 31

Figure 9 : Test Cases Weightage Calculation... 32

Figure 10 : Test Cases Prioritization Order... 33

Figure 11 : Flowchart of proposed approach implementation..................................... 34

Figure 12 : Input files.. 35

Figure 13 : BCE complexity measurement for ADD event.. 36

Figure 14 : BCE complexity measurement for REMOVE event................................. 37

Figure 15 : BCE complexity measurement for FRONT event.................................... 37

Figure 16 : Event Assigned Weightage... 38

Figure 17 : Test Cases Weightage Summation…………………………………………. 39

Figure 18 : Test Cases Prioritization Order... 40

Figure 19 : Part of fault matrix……………………………………………………………... 43

Figure 20 : Graph on Comparison APFD value for NPTC and PTC ……………..…... 46

© C
O

UPM

xii

LIST OF TABLES

Table 1 : Metric and Related Formula for Clustering Based TCP technique................8

Table 2 : Severity Value... 10

Table 3 : Summary of the Literature Review ……………………………………………..13

Table 4 : Event-weight assignment……………………………………………………..... 25

Table 5 : Jester Mutation Operator.. 42

© C
O

UPM

xiii

LIST OF ABBREVIATIONS

Abbreviations Meaning

TCP Test Case Prioritization

TC Test Case

BCE Branch Coverage Expectation

APFD Average Percentage Fault Detection

NP Non-Prioritization

P Prioritization

© C
OP

UPM

14

CHAPTER 1

INTRODUCTION

1.1 Background

With the number of software users expanding geometrically on daily basis

and the proliferation of more advanced software functionalities in business,

industry, administration and communications to mention but a few, software

engineering development has become more complex and large. Most of the

organizations are taking software testing into consideration as an important

task that needs to be implemented in the development process. Many

researchers have proven that software testing is a critical phase in software

development cycle and consumes significant resources in terms of cost, time

and effort. The objectives of software testing are to validate the software

product, authenticate quality of software product and to discover as much

errors as possible in estimated time.

Test case prioritization (TCP) is one of the research areas in software testing.

According to (Duggal, 2008), TCP prioritize the test cases so as to increase a

test suite's rate of fault detection. Test case prioritization techniques

schedule test cases so that the test cases that are higher in priority are

executed before the test cases that have a lesser priority. TCP techniques

© C
OP

UPM

15

also can reduce time, cost and detecting more fault. This indeed has created

the need to innovate and produce a new or improving algorithm in finding the

best solution of TCP so that it can been implemented faster and cost efficient

with quality. In recent years, there has been an increasing amount of

literature on TCP (Catal & Mishra, 2013) that shows the interest of the

researchers in TCP and how much of enhancement of TCP can be research

and explored. In TCP there are factors that affect the effectiveness of the

TCP technique. The factors are fault, redundancy, complexity, frequency,

requirements, time, distance, cost, permutation and others. In this study, we

only focus on the complexity factor.

Generally, a complex structure of a system is always a main challenge in

software development. This is because the complexity factor always be one

of the important factor in determined the cost, time and effort in the software

development. It is known, the more complex the system, the greater number

of defects will be found. Numerous complexity metrics have been proposed

and published in the previous researches in different area of software

development. The common complexity measure that been used by the

industry and researchers are Mc Cabe’s Cyclomatic Complexity (Marchetto,

Islam, Asghar, Susi, & Scanniello, 2016), Control Flow Graph (CFG) (C. Y.

Huang, Chang, & Chang, 2010) and function point (FP) (Briand, L.C.,

Morasca, S., Basili, V.R, 1996). These are several complexities metric that

can be used in measuring the complexity of the software(Ahmad & Baharom,

2017) .

© C
OP

UPM

16

1.2 Problem Statement

From the previous study (Ahmad & Baharom, 2017), a comparison of

software complexity in measuring the complexity of event sequences been

made and it is to determine the best metric. The result from the study showed

that Unique Complexity Metric (UCM) was the best metric in measuring the

complexity of event sequences. However, the researchers mentioned that

even though UCM is the best metric, UCM still have some restriction where

UCM does not assign the upper and lower bound complexity values in which

it will lead to inaccuracy in finding the weightage value for complexity. Since

this value will be used for determining the test case prioritization, hence, it

must be as accurate as it can. Thus, a different complexity metric measure is

proposed to determine the weightage value.

1.3 Objectives and Scope

The objectives of this study are as below:

a) To propose a technique to prioritize test case using complexity factor;

b) To implement the proposed technique;

c) To evaluate and measure the effectiveness of the proposed technique.

The main scope of this project is focusing on determining the test case

prioritization technique in the area of event sequences. The factor used to

© C
OP

UPM

17

prioritize the test case is complexity factor. Besides that, this project only

uses a java programming codes as a case study.

The evaluation part of this project will use an Average Percentage Fault

Detected (APFD) metric in order to prove the effectiveness of the proposed

approach.

1.4 Contributions

The proposed approach is expected to give a more accurate measurement of

complexity value of the program. This study also emphasis on facilitating

software testing team to elicit test case requirements towards producing a

reliable software product.

1.6 Thesis Organization

This thesis is organized into six (6) chapters that including this chapter which

covers the backgrounds of the study, problem statement, objectives, scope of

the research, contribution and thesis structure. Chapter 2 present a literature

review by covering existing study on test case prioritization, factors and

complexity metric used in the research and also the evaluation metric that

been implemented in the research. Chapters 3 present the methodology that

explains on theoretical approaches and experimental design that were used

© C
OP

UPM

18

to achieve the research objectives. Proper planning to carry out this study is

important to reduce unforeseen problem in the future. Meanwhile, in Chapter

4, the implementation of the proposed approach and prototype development

will be covered. It is followed by evaluation and its results, which will be

elaborated in Chapter 5. Finally, the last chapter, Chapter 6 summarizes the

thesis finding and work that can be done in future.

© C
OP

UPM

62

REFERENCES

Ahmad, J., & Baharom, S. (2017). Comparison of Software Complexity Metrics in

Measuring the Complexity of Event Sequences, Information Science and

Applications 2017, 424. https://doi.org/10.1007/978-981-10-4154-9

Chaurasia, G., Agarwal, S., & Gautam, S. S. (2015). Clustering based novel test case

prioritization technique. 2015 IEEE Students Conference on Engineering and

Systems (SCES), 1–5. https://doi.org/10.1109/SCES.2015.7506447

Demarko, T. (1982). Controlling software projects: management, measurement and

estimation. Controlling software projects Management measurement and

estimation Book N.Y.: Yourdon Press1982

Ferrer, J., Chicano, F., & Alba, E. (2013). Estimating software testing complexity.

Information and Software Technology, 55(12), 2125–2139.

https://doi.org/10.1016/j.infsof.2013.07.007

Henry, S., & Kafura, D. (1981). Software Structure Metrics Based on Information

Flow. IEEE Transactions on Software Engineering, SE-7(5), 510–518.

https://doi.org/10.1109/TSE.1981.231113

Hettiarachchi, C., Do, H., & Choi, B. (2016). Risk-based test case prioritization using

a fuzzy expert system. Information and Software Technology, 69, 1–15.

https://doi.org/10.1016/j.infsof.2015.08.008

Huang, C. Y., Chang, J. R., & Chang, Y. H. (2010). Design and analysis of GUI test-

case prioritization using weight-based methods. Journal of Systems and

Software, 83(4), 646–659. https://doi.org/10.1016/j.jss.2009.11.703

Huang, R., Chen, J., Towey, D., Chan, A. T. S., & Lu, Y. (2015). Aggregate-strength

© C
OP

UPM

63

interaction test suite prioritization. Journal of Systems and Software, 99, 36–51.

https://doi.org/10.1016/j.jss.2014.09.002

Krishnamoorthi, R., & Sahaaya Arul Mary, S. A. (2009). Factor oriented requirement

coverage based system test case prioritization of new and regression test cases.

Information and Software Technology, 51(4), 799–808.

https://doi.org/10.1016/j.infsof.2008.08.007

Kumar, H., & Chauhan, N. (2016). A Novel Approach for Selecting an Effective,

1122–1125. 2016 International Conference on Computing for Sustainable

Global Development (INDIACom) .

Marchetto, A., Islam, M. M., Asghar, W., Susi, A., & Scanniello, G. (2016). A

Multi-Objective Technique to Prioritize Test Cases. IEEE Transactions on

Software Engineering, 42(10), 918–940.

https://doi.org/10.1109/TSE.2015.2510633

Nayak, S., Kumar, C., & Tripathi, S. (2016). Effectiveness of prioritization of test

cases based on Faults. 2016 3rd International Conference on Recent Advances

in Information Technology, RAIT 2016, 657–662.

https://doi.org/10.1109/RAIT.2016.7507977

Noor, T. Bin, & Hemmati, H. (2015). A similarity-based approach for test case

prioritization using historical failure data. 2015 IEEE 26th International

Symposium on Software Reliability Engineering (ISSRE), 58–68.

https://doi.org/10.1109/ISSRE.2015.7381799

Srivastava, P. R., & Science, C. (2008). Test case prioritization, 178–181.

Wang, Y., Zhao, X., & Ding, X. (2015). An effective test case prioritization method

based on fault severity. Software Engineering and Service. Retrieved from

© C
OP

UPM

64

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7339162

Chen, T. Y., Kuo, F.-C., Liu, H., & Wong, W. E. (2013). Code Coverage of Adaptive

Random Testing. IEEE Transactions on Reliability, 62(1), 226–237.

http://doi.org/10.1109/TR.2013.2240898

Eroglu S., Toprak S., Urgan O, MD, Ozge E. Onur, MD, Arzu Denizbasi, MD,

Haldun Akoglu, MD, Cigdem Ozpolat, MD, Ebru Akoglu, M. (2012). Test Case

Prioritization Incorporating Ordered Sequence of Program Elements. Saudi Med

J, 33, 3–8. http://doi.org/10.1073/pnas.0703993104

Ghandehari, L. S. G., Bourazjany, M. N., Lei, Y., Kacker, R. N., & Kuhn, D. R.

(2013). Applying Combinatorial Testing to the Siemens Suite. 2013 IEEE Sixth

International Conference on Software Testing, Verification and Validation

Workshops, 362–371. http://doi.org/10.1109/ICSTW.2013.47

He, Z., & Bai, C.-G. (2015). GUI Test Case Prioritization by State-coverage

Criterion. 2015 IEEE/ACM 10th International Workshop on Automation of

Software Test. http://doi.org/10.1109/AST.2015.11

Islam, M. M., Marchetto, A., Susi, A., & Scanniello, G. (2012). A Multi-Objective

Technique to Prioritize Test Cases Based on Latent Semantic Indexing. 2012

16th European Conference on Software Maintenance and Reengineering, (3),

21–30. http://doi.org/10.1109/CSMR.2012.13

Jiang, B., Zhang, Z., Chan, W. K., & Tse, T. H. (2009). Adaptive Random Test Case

Prioritization. 2009 IEEE/ACM International Conference on Automated

Software Engineering, 233–244. http://doi.org/10.1109/ASE.2009.77

Karambir, K., & Kaur, K. (2013). Survey of Software Test Case Generation

Techniques, 3(6), 937–942. Retrieved from http://www.ijarcsse.com/

© C
OP

UPM

65

Kosindrdecha, N., & Daengdej, J. (2010). A Test Case Generation Technique and

Process. Proceedings of the First International Workshop on Evolution Support

for Model-Based Development and Testing (EMDT’10), 59–66. Retrieved from

http://ceur-ws.org/Vol-646/DERIS2010_EMDT2010Proceedings.pdf#page=59

Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., & Zhou, Y. (2005). BugBench: Benchmarks

for Evaluating Bug Detection Tools. Proc of the Workshop on the Evaluation of

Software Defect Detection Tools, (3), 1–5. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Bugbench:+B

enchmarks+for+evaluating+bug+detection+tools#0

Ma, Z., & Zhao, J. (2008). Test Case Prioritization Based on Analysis of Program

Structure. 2008 15th Asia-Pacific Software Engineering Conference, 471–478.

http://doi.org/10.1109/APSEC.2008.63

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M. (2011). AutoBlackTest: a tool

for automatic black-box testing. Software Engineering (ICSE), 2011 33rd

International Conference on, 1013–1015.

Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A

Practical Guide. Cebma.Org. http://doi.org/10.1027/1016-9040.11.3.244

Roongruangsuwan, S., & Daengdej, J. (2010). Test case prioritization techniques.

Journal of Theoretical and Applied Information Technology, 45–60.

Saha, R. K. (2015). An Information Retrieval Approach for Regression Test

Prioritization Based on Program Changes. Proceeding of the 37th International

Conference on Software Engineering (ICSE 2015), 268–279.

http://doi.org/10.1109/ICSE.2015.47

© C
OP

UPM

66

Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering

measurement. IEEE Trans. Softw. Eng. 22(1), 68–86 (1996).

doi:10.1109/32.481535

Shete, N. (2014). An Empirical Study of Test Cases in Software Testing, (1978).

