UNIVERSITI PUTRA MALAYSIA

TEST CASE PRIORITIZATION APPROACH FOR SEQUENCE OF EVENTS USING COMPLEXITY FACTOR

EMYREEMA BINTI JA’AFAR

FSKTM 2018 32
TEST CASE PRIORITIZATION APPROACH FOR SEQUENCE OF EVENTS USING COMPLEXITY FACTOR

By

EMYREEMA BINTI JA’AFAR

Thesis Submitted to School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Computer Science

January, 2018
DEDICATION

Alhamdulillah, my grateful and praises to the Almighty of Allah who has inspired, strengthened, guided and ease the implementation of this project. I dedicate this dissertation especially to my mum, Amnah Binti Md Salleh for her prayers and supervisor for their countless supports through this journey to finish up the thesis as part of requirement fulfillment for Master of Computer Science. I also would like to express appreciation from my deepest heart to all my family members, lecturers and friends who have assisted directly or indirectly and supported me during this postgraduate study.
ABSTRACT

Test case prioritization (TCP) is a method to prioritize and schedule test cases. The technique is developed in order to run test cases of higher priority for minimizing the time, cost and effort during software testing phase. Complexity is one of the factors that affect the effectiveness of the TCP. However, the existing techniques for measuring complexity have some limitations. This is due to inaccuracy in finding the weightage value for complexity as the value will be used to determine the test case prioritization. This study aims on proposing a TCP approach using complexity factor in order to get a better accuracy in prioritizing the test case for event sequences. The study uses a Branch Coverage Expectation (BCE) complexity measurement that been proved empirically in the previous research. In this study, an automate tool is developed to calculate the BCE value using a Visual Basic and Microsoft Access. Average Percentage Fault Detection metric is used to evaluate the proposed approach. The fault matrix was build based on the testing done in Junit Eclipse. Based on the results, it shows that by only using complexity factor solely to determine the test case prioritization has does not improve the effectiveness of TCP approach. It is suggests that the proposed approach need to be combined with other factor(s) in order to improve the effectiveness of TCP.
ABSTRAK

dapat membuktikan bahawa ianya lebih berkesan dalam pendekatan keutamaan kes ujian. Pendekatan yang dicadangkan hendaklah digabungkan bersama faktor-faktor lain supaya keutamaan kes ujian adalah lebih berkesan.
ACKNOWLEDGEMENT

I would like to express my immense gratitude to Almighty of Allah for the wellness and mercies for allowing me to complete this project within the timeline. I also would like to thank my supervisor Dr. Sa’adah Binti Hassan for her guidance, motivation and patience during my research. Your good deeds will always be in my thoughts and prayers.

Not to forget to my first supervisor Dr. Salmi Binti Baharom for teaching me and give me an idea of the software testing and especially on Test Case Prioritization.

My appreciation goes to UPM lecturers, facilitators and staffs who have been involved directly or indirectly in this project. Besides that I would like to thank my colleagues and my family for endless support in completing this project. Last but not least, I am indebted to Public Service Department (JPA) and Government of Malaysia for giving me an opportunity to further postgraduate study (master level) in Faculty Science Computer and Information Technology, University of Putra Malaysia.
DECLARATION

I hereby confirm that:

- This thesis is my original work.
- Quotations, illustrations and citations have been duly referenced.
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions.
- Intellectual property from the thesis and copyright of thesis are fully-owned by University Putra Malaysia, as according to the University Putra Malaysia (Research) Rules 2012; written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the University Putra Malaysia (Research) Rules 2012.
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the University Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the University Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ..
Date:
Name and Matric No: EMYREEMA BINTI JA'AFAR, GS45409

Signature: ..
DR SA'ADAH BINTI HASSAN (Supervisor)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objectives And Scope</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Contribution</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Thesis Organization</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>6</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Related Work</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Findings</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Summary</td>
<td>15</td>
</tr>
</tbody>
</table>
CHAPTER 3

RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Overview</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Theoretical Study</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Propose an Approach</td>
<td>18</td>
</tr>
<tr>
<td>3.4 Tool Development</td>
<td>18</td>
</tr>
<tr>
<td>3.5 Implementation and Evaluation</td>
<td>19</td>
</tr>
<tr>
<td>3.6 Summary</td>
<td>19</td>
</tr>
</tbody>
</table>

CHAPTER 4

A PROPOSED APPROACH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Overview of Complexity Measure</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Branch Coverage Expectation</td>
<td>21</td>
</tr>
<tr>
<td>4.2.1 Markov Chain</td>
<td>22</td>
</tr>
<tr>
<td>4.2.2 Definition of BCE</td>
<td>23</td>
</tr>
<tr>
<td>4.2.3 Weightage Value Based On Complexity Of The Events</td>
<td>24</td>
</tr>
<tr>
<td>4.2.4 Weightage value for Test Case(TC)</td>
<td>25</td>
</tr>
<tr>
<td>4.2.5 Prioritizing the TC</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Tool Development</td>
<td>26</td>
</tr>
<tr>
<td>4.3.1 Tool Design</td>
<td>27</td>
</tr>
<tr>
<td>4.3.2 Tool Development Environment</td>
<td>28</td>
</tr>
<tr>
<td>4.3.3 Interface Design</td>
<td>28</td>
</tr>
<tr>
<td>4.4 Summary</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 : Algorithm for TCP method... 9
Figure 2 : Flow Chart of the proposed approach... 11
Figure 3 : Phases in Research Methodology.. 16
Figure 4 : Definition of BCE... 24
Figure 5 : Modules in Tool for Input and Output... 27
Figure 6 : The input page.. 29
Figure 7 : Output for BCE complexity tool.. 30
Figure 8 : Event Assign-Weightage... 31
Figure 9 : Test Cases Weightage Calculation.. 32
Figure 10 : Test Cases Prioritization Order.. 33
Figure 11 : Flowchart of proposed approach implementation........................ 34
Figure 12 : Input files... 35
Figure 13 : BCE complexity measurement for ADD event............................. 36
Figure 14 : BCE complexity measurement for REMOVE event...................... 37
Figure 15 : BCE complexity measurement for FRONT event......................... 37
Figure 16 : Event Assigned Weightage.. 38
Figure 17 : Test Cases Weightage Summation.. 39
Figure 18 : Test Cases Prioritization Order.. 40
Figure 19 : Part of fault matrix... 43
Figure 20 : Graph on Comparison APFD value for NPTC and PTC 46
LIST OF TABLES

Table 1 : Metric and Related Formula for Clustering Based TCP technique 8
Table 2 : Severity Value .. 10
Table 3 : Summary of the Literature Review ... 13
Table 4 : Event-weight assignment .. 25
Table 5 : Jester Mutation Operator .. 42
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Test Case Prioritization</td>
</tr>
<tr>
<td>TC</td>
<td>Test Case</td>
</tr>
<tr>
<td>BCE</td>
<td>Branch Coverage Expectation</td>
</tr>
<tr>
<td>APFD</td>
<td>Average Percentage Fault Detection</td>
</tr>
<tr>
<td>NP</td>
<td>Non-Prioritization</td>
</tr>
<tr>
<td>P</td>
<td>Prioritization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

With the number of software users expanding geometrically on daily basis and the proliferation of more advanced software functionalities in business, industry, administration and communications to mention but a few, software engineering development has become more complex and large. Most of the organizations are taking software testing into consideration as an important task that needs to be implemented in the development process. Many researchers have proven that software testing is a critical phase in software development cycle and consumes significant resources in terms of cost, time and effort. The objectives of software testing are to validate the software product, authenticate quality of software product and to discover as much errors as possible in estimated time.

Test case prioritization (TCP) is one of the research areas in software testing. According to (Duggal, 2008), TCP prioritize the test cases so as to increase a test suite's rate of fault detection. Test case prioritization techniques schedule test cases so that the test cases that are higher in priority are executed before the test cases that have a lesser priority. TCP techniques
also can reduce time, cost and detecting more fault. This indeed has created
the need to innovate and produce a new or improving algorithm in finding the
best solution of TCP so that it can been implemented faster and cost efficient
with quality. In recent years, there has been an increasing amount of
literature on TCP (Catal & Mishra, 2013) that shows the interest of the
researchers in TCP and how much of enhancement of TCP can be research
and explored. In TCP there are factors that affect the effectiveness of the
TCP technique. The factors are fault, redundancy, complexity, frequency,
requirements, time, distance, cost, permutation and others. In this study, we
only focus on the complexity factor.

Generally, a complex structure of a system is always a main challenge in
software development. This is because the complexity factor always be one
of the important factor in determined the cost, time and effort in the software
development. It is known, the more complex the system, the greater number
of defects will be found. Numerous complexity metrics have been proposed
and published in the previous researches in different area of software
development. The common complexity measure that been used by the
industry and researchers are Mc Cabe’s Cyclomatic Complexity (Marchetto,
Islam, Asghar, Susi, & Scanniello, 2016), Control Flow Graph (CFG) (C. Y.
Huang, Chang, & Chang, 2010) and function point (FP) (Briand, L.C.,
Morasca, S., Basili, V.R, 1996). These are several complexities metric that
can be used in measuring the complexity of the software(Ahmad & Baharom,
2017).
1.2 Problem Statement

From the previous study (Ahmad & Baharom, 2017), a comparison of software complexity in measuring the complexity of event sequences been made and it is to determine the best metric. The result from the study showed that Unique Complexity Metric (UCM) was the best metric in measuring the complexity of event sequences. However, the researchers mentioned that even though UCM is the best metric, UCM still have some restriction where UCM does not assign the upper and lower bound complexity values in which it will lead to inaccuracy in finding the weightage value for complexity. Since this value will be used for determining the test case prioritization, hence, it must be as accurate as it can. Thus, a different complexity metric measure is proposed to determine the weightage value.

1.3 Objectives and Scope

The objectives of this study are as below:

a) To propose a technique to prioritize test case using complexity factor;

b) To implement the proposed technique;

c) To evaluate and measure the effectiveness of the proposed technique.

The main scope of this project is focusing on determining the test case prioritization technique in the area of event sequences. The factor used to
prioritize the test case is complexity factor. Besides that, this project only uses a java programming codes as a case study.

The evaluation part of this project will use an Average Percentage Fault Detected (APFD) metric in order to prove the effectiveness of the proposed approach.

1.4 Contributions

The proposed approach is expected to give a more accurate measurement of complexity value of the program. This study also emphasis on facilitating software testing team to elicit test case requirements towards producing a reliable software product.

1.6 Thesis Organization

This thesis is organized into six (6) chapters that including this chapter which covers the backgrounds of the study, problem statement, objectives, scope of the research, contribution and thesis structure. Chapter 2 present a literature review by covering existing study on test case prioritization, factors and complexity metric used in the research and also the evaluation metric that been implemented in the research. Chapters 3 present the methodology that explains on theoretical approaches and experimental design that were used
to achieve the research objectives. Proper planning to carry out this study is important to reduce unforeseen problem in the future. Meanwhile, in Chapter 4, the implementation of the proposed approach and prototype development will be covered. It is followed by evaluation and its results, which will be elaborated in Chapter 5. Finally, the last chapter, Chapter 6 summarizes the thesis finding and work that can be done in future.
REFERENCES

