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ABSTRACT 

 

Test case prioritization (TCP) is a method to prioritize and schedule test cases. 

The technique is developed in order to run test cases of higher priority for minimizing 

the time, cost and effort during software testing phase. Complexity is one of the factors 

that affect the effectiveness of the TCP. However, the existing techniques for 

measuring complexity have some limitations. This is due to inaccuracy in finding the 

weightage value for complexity as the value will be used to determine the test case 

prioritization. This study aims on proposing a TCP approach using complexity factor in 

order to get a better accuracy in prioritizing the test case for event sequences. The 

study use a Branch Coverage Expectation (BCE) complexity measurement that been 

proved empirically in the previous research. In this study, an automate tool is 

developed to calculate the BCE value using a Visual Basic and Microsoft Access. 

Average Percentage Fault Detection metric is used to evaluate the proposed 

approach. The fault matrix was build based on the testing done in Junit Eclipse.  

Based on the results, it shows that by only using complexity factor solely to determine 

the test case prioritization has does not improve the effectiveness of TCP approach. It 

is suggests that the proposed approach need to be combined with other factor(s) in 

order to improve the effectiveness of TCP. 
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ABSTRAK 

Keutamaan Kes Uji ialah salah satu kaedah untuk mencari dan menjadualkan 

sesuatu kes uji yang penting mengikut keutamaan. Teknik ini dibangunkan untuk 

menguji lari kes uji yang mempunyai keutamaan yang tinggi untuk meminimumkan 

masa, kos dan tenaga semasa fasa pengujian sistem. Kerumitan sistem merupakan 

salah satu faktor yang menentukan samada Keutamaan Kes Uji adalah efektif. 

Walaubagaimanapun, pendekatan sedia ada untuk mengukur kerumitan sistem 

mempunyai beberapa kekangan. Ini adalah disebabkan ketidaktepatan mencari nilai 

pemberat bagi kerumitan program dan nilai ini akan digunakan untuk mengenalpasti 

keutamaan kes uji. Projek ini bertujuan untuk mencadangkan pendekatan keutamaan 

kes uji dengan hanya menggunakan satu faktor sahaja iaitu faktor kerumitan program 

di dalam mendapatkan ketepatan yang lebih baik di dalam memberi keutamaan pada 

kes ujian bagi fungsi acara berjujukan. Kerumitan program diukur di dalam projek ini 

menggunakan pengukuran Branch Coverage Expectation yang telah dibuktikan 

secara empirical di dalam kajian sebelum ini.  Di dalam projek ini, sebuah aplikasi 

automatik dibangunkan dengan menggunakan perisian Visual Basic untuk mengira 

nilai Branch Coverage Expectation. Metrik Average Percentage Fault Detection 

digunakan untuk membuat penilaian keberkesanan ke atas pendekatan yang 

dicadangkan. Perisian Eclipse (Junit) digunakan bagi menjalankan pengujian dan 

membina fault matrix. Berdasarkan kepada keputusan yang diperolehi di akhir projek, 

didapati nilai bagi kes ujian yang telah disusun mengikut keutamaan adalah lebih 

rendah dari kes ujian yang tidak disusun mengikut keutamaan. Ini menunjukkan 

bahawa pendekatan yang dicadangkan dengan hanya menggunakan satu faktor tidak 
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dapat membuktikan bahawa ianya lebih berkesan dalam pendekatan keutamaan kes 

ujian. Pendekatan yang dicadangkan hendaklah digabungkan bersama faktor-faktor 

lain supaya keutamaan kes ujian adalah lebih berkesan.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

 

With the number of software users expanding geometrically on daily basis 

and the proliferation of more advanced software functionalities in business, 

industry, administration and communications to mention but a few, software 

engineering development has become more complex and large. Most of the 

organizations are taking software testing into consideration as an important 

task that needs to be implemented in the development process. Many 

researchers have proven that software testing is a critical phase in software 

development cycle and consumes significant resources in terms of cost, time 

and effort. The objectives of software testing are to validate the software 

product, authenticate quality of software product and to discover as much 

errors as possible in estimated time.    

 

Test case prioritization (TCP) is one of the research areas in software testing. 

According to (Duggal, 2008), TCP prioritize the test cases so as to increase a 

test suite's rate of fault detection. Test case prioritization techniques 

schedule test cases so that the test cases that are higher in priority are 

executed before the test cases that have a lesser priority. TCP techniques 
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also can reduce time, cost and detecting more fault. This indeed has created 

the need to innovate and produce a new or improving algorithm in finding the 

best solution of TCP so that it can been implemented faster and cost efficient 

with quality. In recent years, there has been an increasing amount of 

literature on TCP (Catal & Mishra, 2013) that shows the interest of the 

researchers in TCP and how much of enhancement of TCP can be research 

and explored. In TCP there are factors that affect the effectiveness of the 

TCP technique. The factors are fault, redundancy, complexity, frequency, 

requirements, time, distance, cost, permutation and others. In this study, we 

only focus on the complexity factor. 

 

Generally, a complex structure of a system is always a main challenge in 

software development. This is because the complexity factor always be one 

of the important factor in determined the cost, time and effort in the software 

development. It is known, the more complex the system, the greater number 

of defects will be found. Numerous complexity metrics have been proposed 

and published in the previous researches in different area of software 

development. The common complexity measure that been used by the 

industry and researchers are Mc Cabe’s Cyclomatic Complexity (Marchetto, 

Islam, Asghar, Susi, & Scanniello, 2016), Control Flow Graph (CFG) (C. Y. 

Huang, Chang, & Chang, 2010) and function point (FP) (Briand, L.C., 

Morasca, S., Basili, V.R, 1996). These are several complexities metric that 

can be used in measuring the complexity of the software(Ahmad & Baharom, 

2017) . 
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1.2 Problem Statement 

  

From the previous study (Ahmad & Baharom, 2017), a comparison of 

software complexity in measuring the complexity of event sequences been 

made and it is to determine the best metric. The result from the study showed 

that Unique Complexity Metric (UCM) was the best metric in measuring the 

complexity of event sequences. However, the researchers mentioned that 

even though UCM is the best metric, UCM still have some restriction where 

UCM does not assign the upper and lower bound complexity values in which 

it will lead to inaccuracy in finding the weightage value for complexity. Since 

this value will be used for determining the test case prioritization, hence, it 

must be as accurate as it can. Thus, a different complexity metric measure is 

proposed to determine the weightage value. 

 

 

1.3 Objectives and Scope 

The objectives of this study are as below: 

 

a) To propose a technique to prioritize test case using complexity factor; 

b) To implement the proposed technique; 

c) To evaluate and measure the effectiveness of the proposed technique. 

  

The main scope of this project is focusing on determining the test case 

prioritization technique in the area of event sequences.  The factor used to 
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prioritize the test case is complexity factor. Besides that, this project only 

uses a java programming codes as a case study. 

 

The evaluation part of this project will use an Average Percentage Fault 

Detected (APFD) metric in order to prove the effectiveness of the proposed 

approach. 

1.4 Contributions 

  

The proposed approach is expected to give a more accurate measurement of 

complexity value of the program. This study also emphasis on facilitating 

software testing team to elicit test case requirements towards producing a 

reliable software product. 

 

 

1.6 Thesis Organization 

  

This thesis is organized into six (6) chapters that including this chapter which 

covers the backgrounds of the study, problem statement, objectives, scope of 

the research, contribution and thesis structure. Chapter 2 present a literature 

review by covering existing study on test case prioritization, factors and 

complexity metric used in the research and also the evaluation metric that 

been implemented in the research. Chapters 3 present the methodology that 

explains on theoretical approaches and experimental design that were used 
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to achieve the research objectives. Proper planning to carry out this study is 

important to reduce unforeseen problem in the future. Meanwhile, in Chapter 

4, the implementation of the proposed approach and prototype development 

will be covered. It is followed by evaluation and its results, which will be 

elaborated in Chapter 5. Finally, the last chapter, Chapter 6 summarizes the 

thesis finding and work that can be done in future. 
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