

UNIVERSITI PUTRA MALAYSIA

OPERATING SYSTEM KERNEL MALWARE CHARACTERIZATION
USING DATA-CENTRIC APPROACH

HARMI ARMIRA BT. MOHAMAD HAR

FSKTM 2018 29

© C
OPYRIG

HT U
PM

OPERATING SYSTEM KERNEL MALWARE CHARACTERIZATION

USING DATA-CENTRIC APPROACH

By

HARMI ARMIRA BT. MOHAMAD HAR

Thesis submitted to the Faculty of Computer Science and Information

Technology, Universiti Putra Malaysia, in fulfillment of the requirements for

the Master of Information Security

JANUARY 2018

© C
OPYRIG

HT U
PM

i

COPYRIGHT PAGE

All material contained within the thesis, including without limitation text, logos,

icons, photographs and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained within

the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of

Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATIONS

“This sweet dedication goes to respected lecturers, thoughtful friends and supportive

family”

© C
OPYRIG

HT U
PM

iii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Master of Information Security

OPERATING SYSTEM KERNEL MALWARE CHARACTERIZATION

USING DATA-CENTRIC APPROACH

By

HARMI ARMIRA BINTI MOHAMAD HAR

JANUARY 2018

Supervisor: Dr. Mohd Yunus Sharum

Faculty: Faculty of Computer Science and Information Technology

Malicious software or malware is any malicious code in software that can be used to

compromise computer operations, gather sensitive information, gain access to private

computer resources and do any illegitimate action on data, host or networks. In this

modern technology, malware is rapidly evolved through various stealth techniques to

avoid detection. Malware is able to infect and exploit resource from various system

platforms. Those evolvements and advanced trick caused code-centric approach

becomes less-effective. Especially when the code-centric approach is used to detect

OS kernel malware, the approach becomes inflexible as they are good in hiding

themselves and cover up their track. Moreover, OS kernel malware also is able to

circumvent detection by varying the pattern of code execution. Therefore, this project

is proposing a quite brand new approach which is data-centric approach by

characterizing the OS kernel malware. This approach tries to detect OS rootkits

based on trace pattern found in memory dump content. In order to implement this

approach, a Data-Centric OS Kernel Malware Characterization framework is being

used. This framework consists of two main components. The first component in this

framework is a Dataset of Rootkits Characterization that will create dataset by

identifying memory dump content that indicates the trace of rootkits. The second

© C
OPYRIG

HT U
PM

iv

component which is Determine the Rootkits Presence that able to detect rootkits

based on signature created on component one. By collecting the benign and

malicious sample, an analysis is being done to create the rootkits signature. This

approach is able to detect and calculate the percentage of unknown samples. As for

future enhancement, it is better to use more benign and malicious sample to be

analyzed. This will increase the accuracy of the result and get more valid rootkits

signature.

© C
OPYRIG

HT U
PM

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai

memenuhi keperluan untuk Ijazah Sarjana Keselamatan Maklumat

PENCIRIAN PERISIAN HASAD TERAS SISTEM PENGOPERASIAN

MENGUNAKAN PENDEKATAN BERTERASKAN DATA

Oleh

HARMI ARMIRA BINTI MOHAMAD HAR

JANUARY 2018

Penyelia: Dr. Mohd Yunus Sharum

Fakulti: Fakulti Sains Komputer dan Teknologi Maklumat

Perisian berniat jahat ataupun dikenali sebagai “malware” adalah kod berniat jahat

dalam perisian yang digunakan untuk mengkompromikan operasi komputer,

mengumpulkan informasi sensitif, mendapatkan akses ke sumber komputer peribadi

dan melakukan tindakan tidak sah pada data, tuan rumah atau rangkaian. Dalam

teknologi moden ini, “malware” berkembang pesat melalui pelbagai teknik bagi

mengelakkan dikesan. “Malware” boleh menjangkiti dan mengeksploitasi sumber

dari pelbagai platform sistem. Perkembangan dan kemajuan strategi yang digunakan

oleh “malware” menyebabkan pendekatan kod-sentrik menjadi kurang berkesan.

Terutamanya apabila pendekatan kod-centric digunakan untuk mengesan “malware”

yang mengjangkiti teras sistem pengoperasian. Pendekatan itu menjadi tidak

fleksibel disebabkan kelicikan “malware” dalam menyembunyikan diri dan

mengaburi kesan mereka. Selain itu, “malware” jenis sistem pengoperasian ini juga

dapat mengelak dari dikesan dengan mengubah corak pelaksanaan kod. Oleh itu,

projek ini mencadangkan pendekatan yang agak baru iaitu pendekatan data-sentrik

dengan mencirikan “malware” jenis teras sistem pengoperasian ini. Pendekatan ini

akan mengesan “malware” jenis teras sistem pengoperasian ini berdasarkan pola

© C
OPYRIG

HT U
PM

vi

jejak yang terdapat dalam kandungan memori terbuang (memory dump). Bagi

melaksanakan pendekatan ini, kerangka Penciptaan “Malware OS Data-Centric”

digunakan. Rangka kerja ini terdiri daripada dua komponen utama. Komponen

pertama dalam rangka kerja ini adalah “Dataset of Rootkits Characterization” yang

akan menjana set data dengan mengenal pasti kandungan “memory dump” bagi

mendedahkan kesan atau aktiviti “malware” jenis teras sistem pengoperasian .

Komponen kedua yang menentukan kehadiran “malware” jenis teras sistem

pengoperasian ialah berdasarkan tandatangan yang dibuat pada komponen pertama.

Dengan mengumpul sampel yang bersih (benign) dan yang dijangkiti (infected),

analisis akan dilakukan untuk mencipta tandatangan“malware” jenis teras sistem

pengoperasian. Pendekatan ini dapat mengesan dan mengira peratusan sampel yang

tidak diketahui. Bagi peningkatan masa depan, adalah lebih baik menggunakan lebih

banyak sampel untuk dianalisis. Ini akan meningkatkan ketepatan keputusan dan

mendapatkan tandatangan “malware” jenis teras sistem pengoperasian yang lebih

sah.

© C
OPYRIG

HT U
PM

vii

ACKNOWLEDGEMENT

I feel grateful and thanks Allah SWT because of His bless and mercy. During this

period, I am able to learn so many new things especially related to security in

Information Technology. First of all, I would like to dedicate this appreciation to my

parent Encik Mohamad Har B. Md Ali and Puan Hamlah Haron, who always gives

me endless moral support and encouragement. Always give the advice to keep me

strong. Next, my appreciation goes to my supervisor, Dr. Mohd Yunus Sharum who

always patient in helping me and giving guidelines for improvements. I am very

thankful towards his effort and sharing of knowledge to support me until the end of

this project. Not to be forgotten, thanks to my fellow friends who are not tired of

giving opinion and constructive comments that able to improve my project. May

Allah bless all of you.

© C
OPYRIG

HT U
PM

viii

APPROVAL FORM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfillment of the requirement for the degree of Master Information

Security. The members of the Supervisory Committee were as follows:

DR. MOHD YUNUS SHARUM

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Supervisor)

Date: January 2018

© C
OPYRIG

HT U
PM

ix

DECLARATION FORM

Declaration by graduate student

I hereby confirm that:

 This thesis is my original work

 Quotations, illustrations and citations have been duly referenced

 This thesis has not been submitted previously or concurrently for any other

degree at any other institutions

 Intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia (UPM)

 Written permission must be obtained from supervisor and Deputy Vice-

Chancellor (Research and Innovation) before thesis is published in book form

 There is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity was upheld as according to Rule 59 in Rules 2003 (Revision 2013-

2014). The thesis has undergone plagiarism detection software

Signature: _______________________ Date: __________________

Name and Matric No.: HARMI ARMIRA BT. MOHAMAD HAR (GS 47461)

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Copyright page .. i

Dedications .. ii

Abstract .. iii

Abstrak ..v

Acknowledgement .. vii

Approval form ... viii

Declaration form ... ix

Table of content ...x

List of Table ... xi

List of Figure .. xii

CHAPTER

 1 INTRODUCTION ..1

 1.1 Background Research ..1

1.2 Problem Statement ...8

 1.3 Research Objective ..9

 1.4 Research Scope ..10

 1.5 Research Schedule ...11

 1.6 Thesis Structure ...11

 2 LITERATURE REVIEW ..14

 2.1 Kernel Malware: Rootkits are stealth malware ..14

 2.2 Approaches used to Detect OS Kernel Malware Attack15

 2.3 Technique to Trace Rootkits Footprints ..16

 2.4 Malware Detection Based on Memory Analysis approach18

 2.5 Literature Review Conclusion ...20

 3 RESEARCH METHODOLOGY ...23

 3.1 Project Methodology ...23

 3.2 Framework ...26

 3.3 Hardware and Software Requirements ..29

 4 IMPLEMENTATION..31

© C
OPYRIG

HT U
PM

xi

 4.1 Implementation of the Framework ..31

 4.2 Overall Framework Process Flow ...39

 5 RESULT AND DISCUSSION ..41

 5.1 Component 1: Dataset of Rootkits Characterization ..41

 5.2 Component 2: Determine the Rootkits Presence ..53

 6 CONCLUSION ..58

 6.0 Conclusion ...58

 6.1 Future Enhancement ..60

REFERENCES ..61

LIST OF TABLE

Table 1: Literature Review Summary …………………………….……….……..………...21

Table 2: Hardware & Software Requirement ………………………….…………..............30

Table 3: Signature for each sample…………………………………….…….……….....….53

Table 4: Test Result for Unknown Sample …………………………….…………...……...54

© C
OPYRIG

HT U
PM

xii

LIST OF FIGURE

Figure 1: Malware Detection System……………………………………………...… 4

Figure 2: Malware Analysis Method………………………………………………… 5

Figure 3: Waterfall Model…………………………………………………………… 22

Figure 4: Data-Centric OS Kernel Malware Characterization Framework………….. 27

Figure 5: Weightage Average Formula……………………………………………… 36

Figure 6: Data Aggregator Home Interface………………………………………….. 37

Figure 7: Data Aggregator DBP Setting Interface…………………………………… 35

Figure 8: Data Aggregator Data Analyzer Interface………………………………… 38

Figure 9: Flow Chart of Component 1……………………………………………….. 39

Figure 10: Flow Chart of Component 2……………………………………………… 40

Figure 11: Snapshot of additional instruction of Malicious Sample 2 (MS2)……….. 42

Figure 12: Snapshot of additional instruction of Malicious Sample 3 (MS3)……….. 43

Figure 13: Snapshot of additional instruction of Malicious Sample 4 (MS4) ………. 44

Figure 14: Snapshot of hidden service of Malicious Sample 2 (MS2)………………. 45

Figure 15: Snapshot of additional service of Malicious Sample 3 & 4 (MS3, MS4)... 45

Figure 16: Snapshot of changing service state of Malicious Sample 1 & 2…………. 46

Figure 17: Snapshot of changing service state of Malicious Sample 3 & 4…………. 46

Figure 18: Snapshot of suspicious binary path of Malicious Sample 2 (MS2) …….. 47

Figure 19: Snapshot of hidden binary path of Malicious Sample 3 (MS3)…………. 47

Figure 20: Snapshot of suspicious process of Malicious Sample 4 (MS4)……….… 48

Figure 21: Snapshot of suspicious driver of Malicious Sample 1 (MS1) …………… 49

Figure 22: Snapshot of suspicious driver of Malicious Sample 2 (MS2)……………. 50

Figure 23: Snapshot of suspicious driver of Malicious Sample 4 (MS4) …………… 50

Figure 24: Snapshot of Unknown module of Malicious Sample 2 (MS2)………….. 51

Figure 25: Snapshot of Unknown module of Malicious Sample 3 (MS3)………….. 52

Figure 26a: Unknown Sample 1 being analyzed…………………………………….. 55

Figure 26b: Alert message with percentage of rootkits presence…………………… 55

Figure 27a: Unknown Sample 2 being analyzed…………………………………….. 56

Figure 27b: Alert message with percentage of rootkits presence…………………… 56

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.0 Introduction

As for the introduction, this chapter will briefly explained the research background,

highlight the problem statement, research objective, research scope, research

schedule and a brief description of thesis structure.

1.1 Background Research

In this background research, there is a brief description about the related field of

study for this project. Background research is mainly to collect information to have

understanding in-depth about the related subject. For this project, understanding

about malware especially rootkits nature is a foundation to have the overall overview

about this project. Besides, study about malware detection system is also important

in order to know how malware analysis is being done. Lastly, as this project is using

memory analysis to gather information, knowing what is memory analysis and how

can it be used in this project is very helpful.

1.1.1 Malware

Malicious software or malware is any malicious code in software that can be

used to compromise computer operations, gather sensitive information, gain access

to private computer resources and do any illegitimate action on data, host or

networks. Malware is able to infect and exploit resource from various system

© C
OPYRIG

HT U
PM

2

platforms. There are various classes of malware such as virus, worms, Trojans, bots,

backdoors, rootkits and etc. Malware is considered as dangerous as it has the ability

to attack main security goals which are confidentiality, integrity and availability.

In this modern technology, malware also rapidly evolve through various

stealth techniques to avoid detection. By only depends on the signatures and

anomaly-based techniques are not really reliable. Therefore, as a researcher, we need

to focus more on finding the generalized and scalable features of malware.

Nowadays, malware creator also works on anti-antivirus techniques to give a

complex challenge for anti-malware researcher to detect malware. This is because

most of anti-antivirus is aims to bypass existing antivirus system. Those are few

example of methodologies use by malware creators to avoid anti-virus detection

[David et al, 2012].

a) Code Obfuscation: Malware code try to look tangled and causing the signature-

based approach failed by includes some unnecessary jumps, replacing unused

registers, no-op instructions and others.

b) Encryption: Encrypted malware consists of encrypted part that able to beat

easily signature-based approach

c) Polymorphism & Metamorphism: Polymorphism makes use of payload while

metamorphism is able to change itself or do self-mutating. These two

methodologies are powerful and difficult to be detected.

© C
OPYRIG

HT U
PM

3

1.1.2 Operating System Malware (Rootkits)

 Rootkit is one kind of malware that normally related to OS. With a term that

made up of two words which „root‟ is commonly giving user full administrative over

the system, while „kit‟ is set of application that carries out task or administrative

process [Hili et al, 2010]. There is various type of rootkit available and type rootkits

suit are depends on the specific system of the OS. Rootkits are considered as one of

stealth malware as it is very difficult to be detected. Moreover, it is able to modify

and manipulate OS modules once infected and is also able to cover its tracks. Some

rootkits are able to attack kernel level which gives them complete control over the

OS.

 There are common approaches used by the attacker to distribute rootkits. One

of them is by infect existing and legitimate web server that cause user unaware of the

risk they confront. Another approach is where the attacker creates a common

application or common files which appear as legitimate yet contain harmful script

once executed. The reasons why rootkits are difficult and complex to be detected are

the attack methods evolve along the time. Rootkits are able to alter the output of

common system administrative command such as a list of running process and all the

opened port [Prakash et al, 2013]. They will give an inaccurate report that indicates

everything is clean. Even though there are several methods that helps in detecting

rootkits, but still it may lead to false results. The main things about rootkits are they

able to modify software application that may lead to report fake results. In addition,

rootkits are designed to be remaining undetected, so they are expert on how to cover

their track and hiding themselves. Among all the common method on detecting

© C
OPYRIG

HT U
PM

4

rootkits, behavioral analysis is more reliable. However, it is time-consuming and

needs specific knowledge as it needs some analyze process.

 Rootkits can be divided into two types generally which are application rootkit

and kernel rootkit. Application rootkits is a rootkit that establish at the application

layer, while kernel rootkits is a rootkits that is able to infect deep into kernel layer.

This project focuses more on kernel rootkits which are more powerful as they are

difficult to be detected. Normally kernel rootkits are able to hide a process and files,

hiding network connection, able to redirect file execution and etc. However, the

activity or the behavior of rootkit leaves a footprint that later can be used as a pattern

to detect their presence.

1.1.3 Malware Detection System

Figure 1: Malware Detection System

© C
OPYRIG

HT U
PM

5

Malware detection technique needs to be periodically updated and must

always one step further than those entire anti-antimalware products. As shown in

Figure 1, Malware Detection System consists of three main parts which are analysis

technique or as known as malware analysis, detection approach and deployment

approach [Faizal et al, 2016]. Malware analysis is the important part need to be

considered in order to achieve an effective technique and approach. Malware analysis

is a process to perform analysis and study the components of malware‟s code and

identify the characteristic of their behavior. Besides, as shown in Figure 2, in

malware analysis there are three main techniques can be used which is static

technique, dynamic technique and hybrid. The static technique is being done without

running the malware while dynamic technique will execute malware. Hybrid is the

combination of Static and dynamic technique [Sie, 2015].

 Figure 2: Malware Analysis Method

© C
OPYRIG

HT U
PM

6

This project will use a dynamic technique. There is two type of dynamic

technique which is basic dynamic analysis and advanced dynamic analysis. Basic

dynamic will use a virtual machine to do malware analysis and monitor the process

and the behavior of malware, while the advanced dynamic will further analyze in

depth about the malware. The second part of malware detection system is detection

approach. Detection approach can be used are anomaly, signature or hybrid.

As for deployment approach, there are host-based, network-based or hybrid

based. This project is to implement advanced dynamic analysis as it will monitor the

behavior of the malware and do some further analysis. The analysis in this project is

being done towards memory dump. Further detail on the process flow and other

important processes will be explained in Chapter 3. In addition, these projects also

use the combination of anomaly and signature for detection approach and use host-

based for deployment. By monitor the trace of anomaly behavior of the rootkits in

the memory dump, a signature is created in order to use as detection approach.

1.1.4 Rootkit Detection based on Volatility Information in RAM

 Memory analysis is using memory image (memory dump) to determine about

the running program, operating system information and overall state of the computer

[memory forensic rootkit]. A raw memory dump is a complete snapshot of memory

that records content of system memory, data from processes that were running when

the memory dump was collected.

© C
OPYRIG

HT U
PM

7

 Normally memory dump is used as evidence in court as it consist volatile

information [Amari, 2009]. The memory image can be used to determine information

about running programs, operating system states and also to locate deleted or

temporary information as long as the machine is on. This because memory dump

consist of volatile data which be recorded when the machine is on and will be lost

when the machine is off. There are several forensics tools that are able to acquire

memory dump such as FTK Imager. In this project, FTK imager is used to acquire

the memory dump from Windows 7. Moreover, there are several software and tools

that can be used to analyze the sample of memory dump. One of them is a tool in

Kali Linux (Volatility Framework).

 As mention previously, memory dump are normally used as evidence as it may

consist valuable information that may help in investigation. However, there is a

plugin in Volatility Framework that can be used to trace the footprint of rootkits

[Halleigh et al, 2014]. There are supported plugin for MS Windows, Linux and Mac

OS memory dump. They are many of available plugins such as process memory,

kernel memory and objects, networking, registry, malware and file system. Thus, we

need to identify which plugin is suitable to be used and are able to show a significant

result to trace rootkits activities and behavior. The detail on chosen plugin will be

explained in Chapter 3.

© C
OPYRIG

HT U
PM

8

1.2 Problem Statement

Modern malware tends to become tricky and confusing the malware scanner as

they able to combine several characteristics of the undesirable program from

different classes [Hili et al, 2010]. Besides, they are also evolved rapidly in every

aspect especially on advancing their attack strategies [Rhee et al, 2014]. To avoid

detection, there is some malware that use obfuscating techniques such as reuse a

legal code, capable to modify their structure (polymorphism) and also able to replace

some routine of the targeted resource (stealth virus) [Ford & Howard, 2007]. Those

evolvements and advanced trick cause code-centric approach become ineffective.

Especially on OS environment, it is very difficult to detect malware such as rootkit as

they able to modify and replaced OS module to cover their track [Guri & Poliak,

2015].

Code-centric becomes more unreliable to deploy on detection of OS kernel

malware as they good in hiding themselves [Musavi & Kharrazi, 2014]. Moreover,

not only able to trick code-centric approach, OS kernel malware also able to

circumvent detection by varying the pattern code execution that will confuse

behavior-based malware detectors [Sharif et al, 2008]. This shows that several

approaches like code-centric and malware-based behavior tend to become unreliable

with the evolvement of malware.

The main problems that need to be explored are OS malware which is normally

known as rootkits are they are expert in hiding their presence and able to subvert

© C
OPYRIG

HT U
PM

9

normal operating system behavior. There are several techniques used by rootkits to

subvert OS behavior such as hooking OS APIs and system call table (SDT), hiding in

unused space on machine‟s hard disk and infecting the master boot record (MBR)

[Respon & 2010]. SDT contains a data structure that is able to process system call.

By manipulating this table, rootkits are able to insert malicious instructions. Kernel

rootkits are not only able to add new code but also have the capability to delete and

replace operating system code. This capability makes kernel rootkits becomes

inevitable once infect the operating system. Therefore by only depends on code-

centric approach, it could be impossible to detect kernel rootkits. Besides, a code-

centric approach normally used specific characteristics for each rootkit. This makes it

less flexible when it comes to unknown or new rootkits attack.

1.3 Research Objective

 The objective of this project generally is to develop a model based on a data-

centric approach that is able to detect operating system rootkits based on trace pattern

found in the memory dump. The objectives are specifically defined as below;

1.3.1 Create a standard and general signature of operating system rootkits

based on characteristic and pattern found in the memory dump.

As mention previously in problem statement section, there are a lot of previous

work that proposes on OS rootkit signature based on either code-centric or data-

centric approach. However, most of researcher proposed a signature that mainly for

specific rootkits or even for specific behavior [Lin et al, 2011][Davide et al,

© C
OPYRIG

HT U
PM

10

2010][Case & Iii, 2015][Case & Richard, 2016][Korkin & Nesterov, 2014]. This

specific rootkits signature are vulnerable against evolve or advanced rootkits attack

as they create a fix signature. With the evolution of rootkits structure, attack strategy

and behavior, the fixed and specific signature becomes less flexible to detect their

presence. Thus, to encounter this problem, the first objective is proposed.

3.1.2 Able to detect operating system rootkits by using signature created.

The second objective aims to use the created signature in first objective to detect

rootkits with variance type. As this project proposes a standard and general signature

of rootkits, we aim to detect rootkits presence without depends on specific rootkits

structure, attack strategy and behavior. The general rootkits signature is proposed

based on the characteristics and pattern found in the memory dump content. The

characteristics and pattern are collected from various types of rootkits. This is to

standardize the signature and is applicable towards various rootkits.

1.4 Research Scope

As for this project, there is two operating system involve which is Windows 7

(SP0). Windows 7 is being chosen as operating system as a medium to collect

memory dump sample. There are two types of memory dump that will be collected

from Windows 7 which is a benign sample (clean) and malicious sample (infected).

Besides, we are used Kali Linux is to provide analysis tool which is Volatility

Framework. Memory Dump that is collected by using FTK Imager (forensic tool)

will be analyzed in Volatility Framework. VMware Workstation is a virtual boxes

© C
OPYRIG

HT U
PM

11

that being used to create new virtual machine where Windows 7 (SP0) and Kali

Linux are installed. There are also existing text editor tool which is DiffMerger that

are being used to perform static analysis on the output of memory dump.

In addition, in this project there 6 selected rootkits being used. Those rootkits

are being executed in Windows 7 (SP0). In addition, in this project, it is must to

know on how to implement data-centric approach in order to generate malware

signatures based on the characteristics and pattern found in memory dump content.

This project also covers on static data analysis where further analysis of data obtains

in order to get a trace pattern of OS kernel malware behavior. As for the malware

detection system, this project using advanced dynamic technique for overall malware

analysis. This project involved further analyze against the rootkits behavior‟s pattern

in memory dump content. This project used hybrid detection approach where an

anomaly behavior is being monitored and analyzed to create a signature. Lastly,

project only covers on host-based for deployment approach and not for either

network based or hybrid based.

1.5 Research Schedule

This project is one year period which starts in January 2017 and expected to

finish in January 2018. Generally, this project has six activities which are project

implementation plan, knowledge gathering, experimentation design, implementation

and development, testing and evaluation and lastly report write up. Each project

activities have their own milestones that need to be achieved. The details for project

activities milestones are explained in Chapter 3.

© C
OPYRIG

HT U
PM

12

1.6 Thesis Structure

The structure of this thesis consists of six chapters including Introduction,

Literature Review, Methodology, Project Implementation, Result and Discussion and

last chapter is Conclusion.

Chapter 1 is briefly explaining the introduction of background study of the

related subject towards this project. Besides, this chapter also consist problem

statement, research objective, research scope, research result expectation and thesis

structure. Research objectives are derived from problem statement and expected to

be achieved at the end of this project. Research scope and research schedule are to

highlight the scope of this project and to ensure this project is on the right track

according to schedule stated.

Chapter 2 is a list of literature review for this project. A literature review is a

source of research article and journal that being used to give more understanding

about related topic. This chapter is important as it is to ensure this project is possible

to be done and to avoid any duplication of previous work (research gap). Besides,

this chapter act as knowledge resource that helps to do improvement, tips, proof of

concept based on previous research. This is able to help to increase the success rate

for this project.

Chapter 3 is the chapter that explained methodology that being used to develop

this project. A methodology is one of essential elements in every project as it to

© C
OPYRIG

HT U
PM

13

ensure the project is properly plans and can be executed smoothly. In this chapter

also explained the framework that being used in this project.

Chapter 4 is project implementation and development. In this chapter, the

approach used is being explained in detail. Besides, the design and the functionalities

of the approach also are highlighted. This chapter provides overall and process flow

chart for this project. All the detail according to the implementation of the approach

also can be found in this chapter.

Chapter 5 is a explaining the result. In this chapter, all the result and finding

related to this project will be provided here. An evaluation of the result and the

discussion are explained in this chapter.

Chapter 6 is the chapter of conclusion for this project. Besides, there is also

suggestion for future enhancements that can be done. This chapter also concludes the

whole project, result and the achievement while doing this project.

© C
OPYRIG

HT U
PM

61

REFERENCES

[1] David, E., Agusti, S.., & Antoni, M. (2012).Computational Intelligence for

Privacy and Security (Vol.394). 3642252370, 9783642252372

[2] Hili, G., Mayes, K., & Markantonakis, K. (n.d.). The BIOS and Rootkits, 369–

381. https://doi.org/10.1007/978-1-4614-7915-4

[3] Prakash, A., Venkataramani, E., Yin, H., & Lin, Z. (2013). Manipulating

Semantic Values in Kernel Data Structures : Attack Assessments and Implications.

[4] Faizal, M., Razak, A., Badrul, N., Salleh, R., & Firdaus, A. (2016). Journal of

Network and Computer Applications The rise of “malware” : Bibliometric analysis

of malware study. Journal of Network and Computer Applications, 75, 58–76.

https://doi.org/10.1016/j.jnca.2016.08.022

[5] S, S. Y. (2015), Implementation of Malware Analysis using Static and Dynamic

Analysis Method, 117(6), 11–15.

[6] Amari, K., (2009), Techniques and Tools for Recovering and Analyzing Data

from Volatile Memory, SANS Institute

[7] Halleigh, M., Case, A., Levy, J.,& Walters, A.,(2014) The Art of Memory

Forensics: Detecting Malware and Threats in Windows, Linux and Mac Memory,

John Wiley & Sons, Inc

[8] Rhee, J., Riley, R., & Lin, Z. (2014). Data-Centric OS Kernel Malware

Characterization, 9(1), 72–87.

[9] Ford, E. R., & Howard, M. (2007), How Not To Be Seen, 67–69.

https://doi.org/10.1007/978-1-4614-7915-4

© C
OPYRIG

HT U
PM

62

[10] Guri, M., & Poliak, Y. (2015). JoKER : Trusted Detection of Kernel Rootkits in

Android Devices via JTAG Interface. https://doi.org/10.1109/Trustcom.2015.358

[11] Musavi, S. A., & Kharrazi, M. (2014). Back to Static Analysis for Kernel-Level

Rootkit Detection, 9(9), 1465–1476.

[12] M.Sharif, A. Lanzi, J. Giffin,. W. Lee, “Impeding Malware Analysis using

conditional code obfuscation”, in Proc. 15th Annu. NDSS, 2008, pp. 1-30

[13] Response, S. (n.d.). Rootkits What are Rootkits ?, (figure 1), 1–9.

[14] Lin, Z., Rhee, J., Zhang, X., Xu, D., & Jiang, X. (2011.). SigGraph : Brute Force

Scanning of Kernel Data Structure Instances Using Graph-based Signatures.

[15] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel,

Engin Kirda, sand Giovanni Vigna. Efficient Detection of Split Personalities in

Malware. In Proceedings of the 17th Annual Network and Distributed System

Security Symposium (NDSS‟10),(2010).

[16] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Impeding

Malware Analysis Using Conditional Code Obfuscation. In Proceedings of the 15th

Annual Network and Distributed System Security Symposium (NDSS‟08),(2008).

[17] Case, A., & Iii, G. G. R. (2015). Advancing Mac OS X rootkit detection. Digital

Investigation, 14, S25–S33. https://doi.org/10.1016/j.diin.2015.05.005

[18] Case, A., & Richard, G. G. (2016). Detecting objective-C malware through

memory forensics. Digital Investigation, 18, S3–S10.

https://doi.org/10.1016/j.diin.2016.04.017

[19] Ford, E. R. (2007)., How Not to Be Seen II, 65–68.

https://doi.org/10.1109/Trustcom.2015.358
https://doi.org/10.1109/Trustcom.2015.358
https://doi.org/10.1016/j.diin.2016.04.017

© C
OPYRIG

HT U
PM

63

[20] D.-H. You and B.-N. Noh, "Android platform based linux kernel rootkit," in

Malicious and UnwantedSoftware (MALWARE), Fajaro, 2011.

[21] H. S. K. W. Y. J. J. &. J. S. Sun, "TrustDump: Reliable Memory Acquisition on

Smartphones," in ESORICS, 2014.

[22] Kane, P. O., Sezer, S., Mclaughlin, K., & Im, E. G. (2013)., SVM Training

Phase Reduction Using Dataset Feature Filtering for Malware Detection, 8(3), 500–

509.

[23] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., and JIANG, X.

Mapping kernel objects to enable systematic integrity checking. In Proceedings of

the 16th ACM Conference on Computer and Communications Security (CCS)

(November 2009).

[24] Cui, W., Peinado, M., & Chan, E. (2011.). Tracking Rootkit Footprints with a

Practical Memory Analysis System.

[25] Denzel, M., Stüttgen, J., & Stefan, V. (2015). Acquisition and analysis of

compromised firmware using memory forensics, 12, 50–60.

https://doi.org/10.1016/j.diin.2015.01.010

[26] Spainhower, M. (2008). Feasibility Analysis of DTrace for Rootkit Detection,

(March).

[27] Shahzad,F., Farooq, M., (2013). In-Execution dynamic malware analysis and

detection by mining information in process control block of Linux OS, Information

Sciences, 231, S45-63

https://doi.org/10.1016/j.diin.2015.01.010

© C
OPYRIG

HT U
PM

64

[28] Muthumanickam,K., Ilavarasasan,E., (2015). CoPDA: Concealed Process and

Service Discovery Algorithm to Reveal Rootkit Footprints . pp 1 - 15, 28(1), 1–15.

[29] Bill Blunden, The rootkit arsenal, by Jones & Bartlett Publishers, edition 1, May

4, 2009, pp 138-139.

[30] Romana, S., Jha, A. K., Pareek, H., & Eswari, P. R. L. (2013.). Evaluation of

Open Source Anti-Rootkit Tools.

 [31] Fu, D., Zhou, S., Cao, C., &, A. R. (2010). A Windows Rootkit Detection

Method Based on Cross-View, 1–3.

[32] Voitovych, O., Kupershtein, L., & Pavlenko, I., (2017) Hidden Process

Detection for Windows Operating Systems (PICS&T), 461-464

[33] Shahzad, F., Shahzad, M., & Farooq, M. (2013)., In-execution dynamic malware

analysis and detection by mining information in process control blocks of Linux

OS. Information Sciences, 231, 45–63.

[34] Xie, X., & Wang, W. (2013). Rootkit Detection on Virtual Machines through

Deep Information Extraction at Hypervisor-level, 498–503.

[35] Cao, Y., Miao, Q., Liu, J., & Li, W. (2013). Osiris : A Malware Behavior

Capturing System Implemented at Virtual Machine Monitor Layer, 2013.

