PREVALENCE OF *Salmonella* spp. IN CHICKEN MEAT AND ITS PRODUCTS, AND DEVELOPMENT OF PCR-ELISA FOR DETECTION OF *Salmonella Enteritidis*

MOHD AFENDY BIN ABDUL TALIB

FSTM 2018 14
PREVALENCE OF *Salmonella* spp. IN CHICKEN MEAT AND ITS PRODUCTS, AND DEVELOPMENT OF PCR-ELISA FOR DETECTION OF *Salmonella* Enteritidis

By

MOHD AFENDY BIN ABDUL TALIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2017
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated to my beloved mum (Azizah Md. Said), family members, colleagues in MARDI and friends in UPM for their understanding and support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREVALENCE OF Salmonella spp. IN CHICKEN MEAT AND ITS PRODUCTS, AND DEVELOPMENT OF PCR-ELISA FOR DETECTION OF Salmonella Enteritidis

By

MOHD AFENDY BIN ABDUL TALIB

November 2017

Chairman: Son Radu, PhD
Faculty: Food Science and Technology

The increase in Salmonella infections necessitate the development of methods for the pathogen detection. Conventional culture for Salmonella detection is laborious and time-consuming. This has encourage the use of Polymerase Chain Reaction (PCR) and PCR-enzyme-linked immunosorbent assay (ELISA) that offer faster result and better sensitivity. To date, there was no published data on the prevalence and quantities of Salmonella spp., S. Enteritidis and S. Typhimurium in raw, processed and ready-to-eat (RTE) chicken samples by most probable number (MPN)-mPCR & MPN-plating and no published data on the effect of two different matrices of raw chicken meat and chicken sausages towards PCR-ELISA performance. Thus, this study is aimed to discover these gaps.

The multiplex polymerase chain reaction (mPCR) method was established. Three primer sets were successfully designed to simultaneously identify Salmonella spp., S. Enteritidis and S. Typhimurium. The mPCR containing S. Typhimurium generated 650 bp and 500 bp amplicons, S. Enteritidis generated 500 bp and 103 bp amplicons and S. Typhi produced a 500 bp amplicon.

Subsequently, MPN-mPCR was used to determine the prevalence and quantity of Salmonella spp., S. Typhimurium and S. Enteritidis in 130 samples of chicken meat and its products. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium obtained is 25.38%, 10% and 6.92%
respectively. The prevalence of *Salmonella* spp. in raw chicken meat was the highest at 45% followed by RTE food at 30% while *S. Enteritidis* is 22.5% and 8% respectively. No contamination was detected in processed chicken meat products. The estimated quantity of *Salmonella* spp., *S. Enteritidis* and *S. Typhimurium* varied from 3 MPN/g to the 1100 MPN/g. Quantity of *Salmonella* spp. was found highest in chicken breast and thigh (1100 MPN/g), *S. Typhimurium* was highest detected in RTE chicken curry (210 MPN/g), while *S. Enteritidis* was highest detected in chicken breast (93 MPN/g).

In subsequent chapter, PCR-ELISA was successfully established and compared with PCR to detect *S. Enteritidis* in raw chicken meat & chicken sausages. The limit of detection (LOD) by PCR-ELISA is 9.4 CFU/mL in raw chicken meat and 2.46 CFU/mL in chicken sausage while PCR detected 9.4 X 10^3 CFU/mL and 2.46 X 10^3 CFU/mL respectively, indicating that the PCR-ELISA is 10-fold more sensitive than the conventional PCR. In fact, the LOD of PCR-ELISA calculated by GraphPad Prism is 15.23 CFU/mL for chicken sausage and 3.28 CFU/mL for raw chicken meat.

The prevalence and quantity of *Salmonella* spp., *S. Typhimurium* and *S. Enteritidis* in the samples discovered in this study indicated that the contaminated chicken samples posed a risk to consumer as it contained high level of contamination which some exceeded the infectious dose (10^3 CFU/mL) of *Salmonella* to human. Meanwhile, PCR-ELISA offer as an alternative and improved assay to the PCR and real-time PCR for detection of *S. Enteritidis* in semi-quantitative and high-throughput manner. The PCR, MPN-mPCR and PCR-ELISA method established in this study, could be used selectively as a screening tools for surveillance and monitoring of foodborne pathogen contamination so that appropriate actions could be taken by the relevant parties.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PREVALENS Salmonella spp. DALAM DAGING AYAM DAN PRODUKNYA, DAN PEMBANGUNAN PCR-ELISA UNTUK PENGESANAN Salmonella Enteritidis

Oleh

MOHD AFENDY BIN ABDUL TALIB

November 2017

Pengerusi: Son Radu, PhD
Fakulti: Sains dan Teknologi Makanan

Peningkatan jangkitan Salmonella memerlukan perkembangan kaedah untuk mengesan patogen tersebut. Kultur konvensional untuk mengesan Salmonella memakan masa yang lama. Ini telah menggalakkan penggunaan tindakbalas berantai polimerase (PCR) dan PCR-asai imunoserapan terangkai enzim (ELISA) yang menawarkan keputusan yang lebih cepat dengan dan lebih sensitif. Sehingga kini, tiada data yang diterbitkan berkenaan dengan prevalens dan kuantiti Salmonella spp., S. Enteritidis and S. Typhimurium dalam sampel ayam mentah, diproses dan sedia-untuk-dimakan (RTE) menggunakan angka kebarangkalian kebanyakan (MPN)-mPCR & MPN-pemplatan dan tiada data yang diterbitkan mengenai kesan dua matriks yang berbeza, daging ayam mentah dan sosej ayam terhadap prestasi ELISA. Oleh itu, kajian ini bertujuan untuk mengetahui jurang masalah ini.

Kaedah tindakbalas berantai polimerase multipleks (mPCR) telah dibangunkan. Tiga set primer telah berjaya direka untuk mengenal pasti Salmonella spp., S. Enteritidis dan S. Typhimurium secara serentak. mPCR yang mengandungi S. Typhimurium menghasilkan 650 bp dan 500 bp amplikon, S. Enteritidis menghasilkan 500 bp dan 103 bp amplikon dan S. Typhi menghasilkan 500 bp amplikon.

Seterusnya, MPN-mPCR digunakan untuk menentukan prevalens dan kuantiti Salmonella spp., S. Enteritidis and S. Typhimurium dalam 130 sampel,
daripada daging ayam mentah dan produk berasaskan ayam. Prevalens *Salmonella* spp., *S. Enteritidis* and *S. Typhimurium* masing-masing adalah 25.38%, 10% dan 6.92%. Prevalens *Salmonella* spp. dalam daging ayam mentah adalah yang paling tinggi pada 45% diikuti oleh makanan RTE pada 30% manakala prevalens *S. Enteritidis* adalah 22.5% dan 8% masing-masing. Tiada pencemaran yang dikesan dalam produk daging ayam yang diproses. Kuantiti *Salmonella* spp., *S. Enteritidis* dan *S. Typhimurium* berbeza daripada 3 MPN/g hingga 1100 MPN/g. Kuantiti *Salmonella* spp. didapati paling tinggi dalam dada dan paha ayam (1100 MPN/g), *S. Typhimurium* dikesan paling tinggi dalam kari ayam RTE (210 MPN/g), manakala *S. Enteritidis* dikesan paling tinggi dalam dada ayam (93 MPN/g).

Dalam bab yang berikutnya, PCR-ELISA telah berjaya dibangunkan dan dibandingkan dengan PCR untuk mengesan *S. Enteritidis* dalam daging ayam mentah dan sosej ayam. Had pengesanan (LOD) oleh PCR-ELISA ialah 9.4 CFU/mL dalam daging ayam mentah dan 2.46 CFU/mL dalam sosej ayam, manakala PCR mengesan 9.4 X 10^1 CFU/mL dan 2.46 X 10^1 CFU/mL masing-masing, menunjukkan bahawa PCR-ELISA adalah 10 kali lebih sensitif berbanding PCR konvensional. LOD sebenar PCR-ELISA yang dikira menggunakan GraphPad Prism adalah 15.23 CFU/mL untuk sosej ayam dan 3.28 CFU/mL untuk daging ayam mentah.

Prevalens dan kuantiti *Salmonella* spp., *S. Typhimurium* and *S. Enteritidis* dalam sampel yang ditemui dalam kajian ini menunjukkan bahawa sampel ayam yang tercemar mendatangkan risiko kepada pengguna kerana ia mengandungi kandungan tahap pencemaran yang tinggi yang mana beberapa daripadanya melebihi dos jangkitan (10^3 CFU/mL) *Salmonella* kepada manusia. Sementara itu, PCR-ELISA menawarkan asal alternatif dan ditambahbaik berbanding PCR dan PCR masa-nyata untuk pengesanan *S. Enteritidis* secara semi-kuantitatif dan jumlah sampel yang besar. Kaedah PCR, MPN-mPCR dan PCR-ELISA yang dibangunkan dalam kajian ini boleh digunakan secara selektif sebagai alat saringan untuk pemantauan pencemaran patogen bawaan makanan supaya tindakan yang bersesuaian dapat diambil oleh pihak yang berkaitan.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in me to finally completing this thesis. The challenges throughout the study really thought me well to bring myself forward.

I would like to convey my heartfelt gratitude and sincere appreciation to all people who have helped and inspired me during my master study. This thesis would not have been possible without those supports from many people.

I would like to express my sincere and immense gratitude to Professor Dr. Son Radu, my main supervisor for the invaluable guidance and support throughout my study. Thank you very much for the very advice and motivation. Thanks for being patience with me and being the coolest supervisor, I have ever met.

My warmest thanks also goes to my co-supervisors, Associate Professor Dr. Cheah Yoke Kqueen from Faculty of Medicine and Health Sciences and Dr. Farinazleen Mohamad Ghazali from Faculty of Food Science and Technology for the advice and helps throughout my study.

My sincere appreciation to my employer, Malaysian Agricultural Research and Development Institute (MARDI) for giving me scholarship to further my study in Master of Science in UPM. Special thanks to Datuk Dr. Umi Kalsom Abu Bakar for giving me the permission to do the labworks in the Molecular Diagnostics lab in Biotechnology Research Centre, MARDI. Special thanks to my dear labmates (Wei San, Chai Fung, Tuan Zainazor Tuan Chilek) for the help and assistance given to me.

My heartfelt thanks to Dr. Azlina Masdor for her honest and helpful tips, tremendous assistance and motivation. Not to forget, all my dearest friends at MARDI especially Dr. Faridah Salam, Dr. Azlina Mansor, Dang Lelamurni Abdul Razak, Maya Izar and others who I couldn’t mention here for the true friendship, emotional support and helps through the difficult times. Without their encouragement and understanding, it would have been impossible for me to finish this work.
This thesis is especially dedicated to my dearest mother, Azizah Mohd Said who brought me up until at this level and also to my family members especially my younger sister, Atika Diyana Abdul Talib. Thank you very much for everything and endless love for me. Sincere apologize from me for sacrifices I made to make way for my study. Without your support, I will never achieve this far in my life. Thanks mum!
I certify that a Thesis Examination Committee has met on 15 November 2017 to conduct the final examination of Mohd Afendy bin Abdul Talib on his thesis entitled "Prevalence of Salmonella spp. in Chicken Meat and its Products, and Development of PCR-ELISA for Detection of Salmonella Enteritidis" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yaya Rukayadi, PhD
Associate Professor
Faculty of Food Science and Technology
Univrsiti Putra Malaysia
(Chairman)

Zunita binti Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Clemente Michael Wong Vui Ling, PhD
Senior Lecturer
Universiti Malaysia Sabah
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 29 January 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Member)

Farinazleen Mohamad Ghazali, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisory Committee: ______________________

Signature: ______________________
Name of Member of Supervisory Committee: ______________________

Signature: ______________________
Name of Member of Supervisory Committee: ______________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION
1.1 Background
1.2 Problem statements
1.3 Objectives

2 LITERATURE REVIEW
2.1 Salmonella spp.
2.1.1 History background
2.1.2 Classification and nomenclature
2.1.3 Characteristic
2.1.4 Clinical manifestation
2.1.5 Epidemiology
2.1.6 Pathogenicity
2.1.7 Route of contamination by Salmonella
2.2 Salmonella detection methods
2.2.1 Conventional culturing
2.2.2 Rapid detection methods for Salmonella

3 OPTIMIZATION OF MULTIPLEX PCR FOR THE DETECTION OF Salmonella spp., S. Enteritidis AND S. Typhimurium
3.1 Introduction
3.2 Materials and methods
3.2.1 Bacterial strains and culture conditions
3.2.2 DNA Extraction
3.2.3 Oligonucleotide primers design
3.2.4 Singleplex PCR optimization of annealing temperature

3.2.5 Multiplex PCR

3.2.6 Optimization of multiplex PCR

3.2.7 Specificity test of the designed primers in multiplex PCR

3.2.8 Comparison of multiplex PCR with pure and crude DNA template

3.2.9 Agarose gel electrophoresis

3.3 Results & Discussion

3.4 Conclusion

4 PREVALENCE AND QUANTITY OF *Salmonella* spp., *S. Enteritidis* AND *S. Typhimurium* IN CHICKEN MEAT AND PRODUCTS IN PUTRAJAYA AND SELANGOR BY USING MPN-mPCR

4.1 Introduction

4.2 Materials and Methods

4.2.1 Sample collection

4.2.2 Most probable number (MPN) 3 tubes method

4.2.3 Plating method

4.2.4 Crude DNA extraction

4.2.5 Multiplex PCR

4.2.6 Statistical analysis

4.3 Results & Discussion

4.4 Conclusion

5 DEVELOPMENT OF PCR-ELISA FOR DETECTING *S. Enteritidis*-SPIKED IN RAW CHICKEN MEAT AND CHICKEN SAUSAGE MODEL AND COMPARISON WITH CONVENTIONAL PCR

5.1 Introduction

5.2 Materials and Methods

5.2.1 Bacterial strains and culture conditions

5.2.2 Inoculation of raw chicken meat samples

5.2.3 Enrichment and crude DNA extraction

5.2.4 Primers for DIG-labelling in PCR

5.2.5 Oligonucleotide capture probes for PCR-ELISA

5.2.6 DIG-Labelling of amplicons by PCR

5.2.7 DIG Detection of the DIG-labelled amplicons for detection of *S. Enteritidis* in artificially-contaminated raw chicken meat

56 Conclusion
5.2.8 Comparison of PCR-ELISA with Conventional PCR for detecting S. Enteritidis 81
5.3 Results & Discussion 81
5.4 Conclusion 89

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 91
6.1 Summary and general conclusion 91
6.1.1 Optimization of multiplex PCR for the detection of Salmonella spp., S. Enteritidis and S. Typhimurium in chicken meat and chicken-based products 91
6.1.2 Prevalence and quantity of Salmonella spp., S. Enteritidis and S. Typhimurium in chicken meat and products using MPN-mPCR 92
6.1.3 Development of PCR-ELISA for detecting S. Enteritidis-spiked in raw chicken meat and chicken sausage model and comparison with conventional PCR 93
6.2 Recommendation for future research 94
6.2.1 Testing with other foodborne pathogens for the cross-reactivity test 95
6.2.2 Testing for other food sample matrices 95

REFERENCES 96
APPENDICES 114
BIODATA OF STUDENT 117
LIST OF PUBLICATIONS 121
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Salmonella nomenclature (adapted from Lin-Hui & Cheng-Hsun, 2007)</td>
</tr>
<tr>
<td>2</td>
<td>Biochemical characteristics of Salmonella species and subspecies</td>
</tr>
<tr>
<td>3</td>
<td>Host range of Salmonella enterica subsp. enterica serovars (adapted from Uzzau et al., 2000 and Edwards et al., 2002)</td>
</tr>
<tr>
<td>4</td>
<td>Commercially available detection for Salmonella spp.</td>
</tr>
<tr>
<td>5</td>
<td>List of Designed primer sets used in singleplex and multiplex PCR assay for the detection of Salmonella spp., S. Typhimurium and S. Enteritidis</td>
</tr>
<tr>
<td>6</td>
<td>In silico PCR amplification of primers in this study with Salmonella genera</td>
</tr>
<tr>
<td>7</td>
<td>In silico PCR amplification of primers in this study with Escherichia genera</td>
</tr>
<tr>
<td>8</td>
<td>In silico PCR amplification of primers in this study with Listeria genera</td>
</tr>
<tr>
<td>9</td>
<td>BLAST results of primer sequences aligned with nucleotide database with Query value of 100%</td>
</tr>
<tr>
<td>10</td>
<td>List of samples and its categories for determination of prevalence and quantity estimation of S. Enteritidis, S. Typhimurium and Salmonella spp.</td>
</tr>
<tr>
<td>11</td>
<td>The prevalence of Salmonella spp., S. Typhimurium and S. Enteritidis in raw chicken meat/part and processed chicken meat products samples in hypermarket A and B</td>
</tr>
<tr>
<td>12</td>
<td>The prevalence of Salmonella spp., S. Typhimurium and S. Enteritidis in RTE food samples in Hawker stall A and B</td>
</tr>
</tbody>
</table>
13 Estimated quantity (MPN/g) of *Salmonella* spp., *S. Typhimurium* and *S. Enteritidis* in positive raw chicken and chicken-based products samples

14 Comparison of sensitivity results between MPN-mPCR and MPN-plating for the detection of *Salmonella* spp., *Salmonella Enteritidis* and *Salmonella Typhimurium* in raw chicken and chicken-based products samples

15 Results of PCR-ELISA OD\(_{450}\) values of chicken sausage and raw chicken meat samples spiked with serial concentration of *S. Enteritidis* and different *Salmonella* serovars

16 Comparison of PCR and PCR-ELISA sensitivity in detecting *S. Enteritidis* in raw chicken meat and chicken sausage samples
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic diagram showing important structural components of Salmonella Typhi (Source: Hu & Kopecko, 2003)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Summary of relationship phylogenetic tree among Salmonella subspecies and other bacterial species (adapted from McQuiston et al., 2008)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Various points in food chain where Salmonella contamination could occur (Source: Programa, 1998)</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Summary of steps for Salmonella culture method (adapted from Lee, 2015)</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Lateral flow Immunoassay for the detection of Salmonella (Source: MicroTEZ kit by MARDI)</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Schematic diagram of PCR principles</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>Schematic illustration of PCR-ELISA steps</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Development of multiplex PCR for the detection of Salmonella spp., S. Typhimurium and S. Enteritidis</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>Optimization of annealing temperature (Ta) of singleplex PCR by gradient PCR of designed primers with respective pure DNA template of S. Typhimurium, S. Typhi and S. Enteritidis</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Optimization of multiplex PCR with different MgCl<sub>2</sub> concentration with selected Ta of 54.0°C and 56.0°C with mixture of DNA template S. Typhimurium, S. Typhi and S. Enteritidis</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Optimization of multiplex PCR with 0.6, 0.8 and 1.0 µM ENT_66/ENT168 primer concentration, Ta at 54.0°C and 2.5 mM MgCl<sub>2</sub> with mixture of DNA template S. Typhimurium, S. Typhi and S. Enteritidis</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>Optimization of multiplex PCR with 0.1, 0.2 and 0.3 µM of STM_1/STM_650 AND invA_3/invA_502 primers</td>
<td></td>
</tr>
</tbody>
</table>
concentration with mixture of DNA template S. Typhimurium, S. Typhi and S. Enteritidis

Specificity test of multiplex PCR with optimized condition using pure and crude DNA of S. Typhimurium, S. Enteritidis and S. Typhi, E. coli O157:H7 and L. monocytogenes

Salmonella colonies on (a) chromogenic agar (BBL CHROMagar *Salmonella*) and (b) XLD agar (Oxoid)

Representative multiplex PCR showing amplification of targeted amplicons of 650 bp, 500 bp and 103 bp when either S. Typhimurium, S. Enteritidis or S. Typhi included in a tube

Representative multiplex PCR showing amplification of targeted amplicons of 650 bp, 500 bp and 103 bp when S. Typhimurium, S. Enteritidis or S. Typhi all included in a tube

Prevalence of *Salmonella* spp., S. Enteritidis and S. Typhimurium in the 130 samples detected by MPN-PCR

The *sdfI* gene sequences of *S. Enteritidis* str. P125109 genome

Analysis result of the designed ENT capture probe sequence by software at NCBI

Location of designed capture probes against *sdfI* gene target aligned by ClustalW program in BioEdit software

PCR Specificity of ENT-F/ENT-R primers with crude DNA from selected *Salmonella* serovars

PCR Sensitivity for S. Enteritidis detection in the pre-enrichment (with 24 h incubation) chicken meat and chicken sausage samples homogenate

Calibration curve showing PCR-ELISA sensitivity when analysed using raw chicken meat and chicken sausages samples spiked with S. Enteritidis cultures
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists (AOAC)</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BAM</td>
<td>Bacteriological Analytical Manual</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BPW</td>
<td>Buffered peptone water</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene-diamine-tetra-acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>FoodNet</td>
<td>Foodborne Diseases Active Surveillance Network</td>
</tr>
<tr>
<td>FSIS</td>
<td>Food Safety and Inspection Service</td>
</tr>
<tr>
<td>GALT</td>
<td>Gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>LIA</td>
<td>Lysine iron agar</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>MPN-mPCR</td>
<td>Most probable number-multiplex polymerase chain reaction</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PCR-ELISA</td>
<td>Polymerase chain reaction-enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>RTE</td>
<td>Ready-to-eat</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>SC</td>
<td>Selenite cystine</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>Ta</td>
<td>Annealing temperature</td>
</tr>
<tr>
<td>Tₘ</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate-EDTA</td>
</tr>
<tr>
<td>TSA</td>
<td>Trypticase soy agar</td>
</tr>
<tr>
<td>TSI</td>
<td>Triple sugar iron agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic soy broth</td>
</tr>
<tr>
<td>TT</td>
<td>Tetrathionate broth</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>x g</td>
<td>Gravity unit</td>
</tr>
<tr>
<td>XLD</td>
<td>Xylose lysine deoxycholate</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION

1.1 Background

Foodborne illnesses are defined by World Health Organization (WHO) as diseases, usually either infectious or toxic in nature, caused by agents that enter the body through the ingestion of food. Foodborne diseases could be caused by a wide range of biological and chemical agents or hazards resulting in varying degrees of severity, ranging from mild indisposition to chronic or life-threatening illness, or both (Kaferstein, 2003). These agents include bacteria, viruses, protozoa, helminthes, and natural toxins, as well as chemical and environmental contaminants.

Foodborne illness or disease that caused by foodborne pathogen occurred every year both in developed and developing countries throughout the world. The incidence of foodborne disease is difficult to be estimated globally but it was reported that an estimate of 600 million or almost 1 in 10 people in the world fall ill after eating contaminated food and 420,000 die every year. Centers for Disease Control & Prevention, US in 2011 (Scallan, et al., 2011) estimated that roughly one of six Americans or 48 million people get sick, 128,000 are hospitalized, and 3,000 die of foodborne diseases. Among these, children under 5 years of age carry 40% of the foodborne disease burden, with 125,000 deaths occur every year (WHO, 2015).

Diarrhea where considerable proportion comes from foodborne is a main cause of deaths in susceptible person such as young children, elderly and infants causing 550 million people to fall ill and 230,000 deaths every year. Mead et al. (1999) estimated that foodborne diseases may result in 76 million illnesses, 325,000 hospitalizations and 5000 deaths each year in the U.S. In Australia, about 5.4 million cases, 15,000 hospitalizations and 120 deaths of foodborne disease reported each year (Astridge et al., 2011). Meanwhile, in England and Wales, about 1.3 million cases, 21,000 hospitalizations and 500 deaths reported each year (Adak et al., 2002).

In Malaysia, no statistics report published on the numbers of hospitalizations and deaths. However, according to MOH Health Facts report 2013, 2014 and 2015, food poisoning incidence is escalating from 44.93 cases per 100,000 population in 2012, 47.79 in 2013 and increased 22.72% to 58.65 per 100,000 population in 2014. Based on 30.6 million Malaysia population in 2014, there
were 17,946 people involved in the food poisoning incidence which should be
looked seriously as this reported figure probably represents only a fraction of
true incidence since most of the cases are unreported or undiagnosed. This is
often true when as most individual regard mild and diarrhea as a common
illness and transient discomfort rather than a symptom of disease and hence
may not consult the doctor (Soon et al., 2011).

Foodborne illnesses can be divided into two major groups of which are
foodborne pathogens and unspecified agents. The foodborne pathogens
comprise of 31 pathogens known to cause foodborne illness and many of these
pathogens are tracked by system developed by public health sector that tracks
and monitor diseases and outbreaks (Scallan, et al., 2011). While most
foodborne illness cases go unreported to health departments, and are thus of
unknown origin, the CDC estimates that 9.4 million of the illnesses are caused
by 31 known foodborne pathogens and about 90% of foodborne illnesses, are
caused by 8 known pathogens which account for the vast majority of illness,
hospitalizations and deaths in US namely Salmonella (non-typhoidal),
Norovirus, Campylobacter spp., Toxoplasma gondii, E. coli (STEC) O157, Listeria
monocytogenes, Clostridium perfringens and Staphylococcus aureus (Scallan, et al.,
2011).

Salmonella continues to be a major foodborne pathogen for animals and
humans worldwide (Olsen et al., 2000; Humphrey, 2000) and it is the leading
cause of foodborne outbreaks and infections in many countries (Wallace et al.,
2000). Foodborne Diseases Active Surveillance Network (FoodNet), US
released their morbidity and mortality weekly report (MMWR) reported that
in 2014, most commonly diagnosed and reported illness caused by Salmonella
continues to be a challenge as incidence of Salmonella infections per 100,000
population is the highest at 15.45 or 7,452 cases followed by Campylobacter and
Shigella at 13.45 and 5.81 respectively (Crim et al., 2014). Among 6,565 of
Salmonella serotype isolates in 2004, the top three isolates was Enteritidis
(1,401), Typhimurim (806) and Newport (724). Thus, S. Enteritidis and S.
Typhimurium was chosen as the candidate foodborne pathogens in this study.

Salmonella is the leading causes of foodborne illness and is common foodborne
pathogen infecting humans and animals (Tirado & Schmidt, 2001). It has been
estimated that in the United States alone there are 1.4 million Salmonella
infections per year (Voetsch et al., 2004). An infection by Salmonella bacteria is
called salmonellosis it is a major cause of many food poisoning cases, thus
regarded as high public health concern (Aarestrup et al., 2007). Predominantly,
there are two types of salmonellosis, which are typhoidal salmonellosis and
non-typhoidal salmonellosis. Typhoidal salmonellosis caused enteric fever
which is a severe illness and patients depend on antibiotic treatment and
supportive therapy to cure the infection. While on the other hand, non-
typhoidal salmonellosis is a major cause of human gastroenteritis worldwide (Kornschober et al., 2009) and is the cause of the most foodborne illness worldwide. S. Enteritidis and S. Typhimurium are under non-typhoidal salmonellosis. It was estimated that approximately 400 persons die each year with acute salmonellosis.

Children are the one that most likely to get salmonellosis. The rate of diagnosed infections in children less than five years of age is higher than the rate in other persons (Rudas et al., 2015). Severe infections were most likely to be seen in young children, the elderly, and those with impaired immune systems. Most persons infected with Salmonella develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness usually lasts 4 to 7 days, and most persons recover without treatment. However, in some persons, the diarrhea may be so severe that the patient needs to be hospitalized. In these patients, Salmonella infection may spread from the intestines to the bloodstream and/or the lymphatic system which can overcome the host’s natural defence system (D’Aoust, 1997) and can cause death unless the person is treated promptly with antibiotics.

The source of salmonellosis as indicated by the most outbreaks are caused by the food contamination not limited to dairy, poultry and meat products. Chicken, eggs and their derivative products are particularly at high risk. Most of foodborne disease cases were due to lack of cleanliness in food preparation and unhygienic handling of food (Griffith, 2000; Chen et al., 1997). Human infections resulted from eating raw or undercooked eggs (Chousalkar & McWhorter, 2017; Martelli & Davies, 2012), poultry and meat (Yoon et al., 2014; Akbar & Anal, 2013), raw milk and dairy products (Ahmed & Shimamoto, 2014; Lubote et al., 2014) seafood (Nguyen et al., 2016; Mus et al., 2014), spices (Kara et al., 2015) and; fruits and vegetables (Vestrheim et al., 2016; Callejón et al., 2015) have been reported. With the recurring and increasing incidences of salmonellosis outbreaks that have been reported worldwide, it has been of great interest of various parties in controlling these outbreaks lead through the surveillance and control system before any action plan can be devised and employed. Generally, it is an important task for food regulators, manufacturers, restaurants and the food industry sector, as well as for legislative body in controlling the outbreaks of foodborne pathogens in particular, Salmonella. The surveillance and control requires reliable and/or rapid method in the detection and identification of Salmonella spp. Detection of Salmonella is therefore of outmost importance in food safety (Thornton et al., 1993).

Great attention has been given to the development of methods for detecting these pathogens including culture isolation, deoxyribonucleic acid (DNA)
probes and polymerase chain reaction (PCR) assays. Although conventional culture methods deemed as the gold standard for detection of *Salmonella* spp. in food, they are time-consuming, taking up to 4-7 days to get results which involve pre-enrichment in non-selective medium, followed by plating onto selective agar and isolation of presumptive colonies for biochemical and serological tests. On the other hand, nucleic acid amplification technologies such as PCR provide rapid and sensitive tools for detection of *Salmonella*. Successful amplification to detect *Salmonella* using *invA* gene has been reported with diagnostic potential (Rahn et al., 1992). *Salmonella* detection has been improved with greater sensitivity and permits quantification by the application of real-time PCR (Zhang et al., 2015). A PCR requires primer sequences unique to the pathogen of interest and it is crucial for the detection to be specific towards targeted pathogen. Target genes in designing primers specific to *Salmonella* detection are mostly associated with their virulence genes such as *invA*, *fimA*, *spv*, *stn*, *hilA*, and *fliC*. In this study, *in silico* PCR technique were used to search for *Salmonella* spp., *S. Typhimurium* and *S. Enteritidis* specific PCR primers and probes through the prediction of probable PCR products and search of potential mismatching location of the specified primers or probes. New primer sequences for those three pathogens were designed and subsequently used in multiplex PCR assay for prevalence studies.

Although PCR is considered as an alternative to conventional culturing, this procedure allows limited number of samples that can be analysed during one electrophoresis run since traditional PCR required amplification in a thermocycler, followed by post-PCR analysis such as gel electrophoresis or by hybridization with a probe. In this perspective, conventional PCR method could turn out to be inadequate in fulfilling demands for sectors such as food industry and regulatory bodies with routine and large sample screenings of foodborne pathogens.

Polymerase Chain Reaction-Enzyme Linked Immunosorbent Assay (PCR-ELISA) format is a high-throughput detection system and viable alternative to real-time PCR methods. PCR products are labelled (eg. by biotin) during amplification and a capture probe specific to the PCR amplicon is used to immobilize the amplicon to a well of microtiter plate (Elizabeth and Anne, 2005). Biotinylated PCR method was demonstrated to provide a simple, accurate, high sensitivity and specificity comparable to commercial system at around one-fourth the cost (Yam et al., 2004). Due to the low cost and high throughputness of this system, PCR-ELISA method was established and studied for the detection of *S. Enteritidis*.
With the high and growing demands of Malaysia population towards chicken meat and meat-based products, this study will gather the prevalence and estimated quantity of *Salmonella* covering raw chicken meat, process chicken meat products and chicken-based ready-to-eat food samples. In addition, this study is also aimed to develop and evaluate the detection of these samples by PCR-ELISA and compared with the conventional PCR to evaluate its sensitivity and specificity.

1.2 Problem statements

Increased cases of *Salmonella* infection in Malaysia and worldwide has urged great attention to the development of detection methods for this foodborne pathogen. This has encouraged the development and use of evolving techniques such as PCR and PCR-ELISA which has faster analysis time and better sensitivity than the conventional culture method. So far, there has no published data on the prevalence and estimated quantities of *Salmonella* spp., *S. Enteritidis* and *S. Typhimurium* in the chicken samples covering the raw and processed chicken and RTE chicken-based food by MPN-mPCR and MPN-plating. Hence, the MPN-mPCR and MPN-plating methods were used in this study to gather these data to have an insight of the *Salmonella* contamination in the samples and the risks associated with the microbial load towards human health.

Similarly, only a few studies to date reported on *Salmonella* detection by PCR-ELISA and this study will be the first to perform PCR-ELISA for *S. Enteritidis* detection in raw chicken and chicken sausage. Food matrices can influence the detection of *Salmonella* (Ryan et al., 2015) in a sample and therefore, this study will also focus on the detection of *S. Enteritidis* which was spiked in two different food matrices that have two distinct characters. One is non-processed matrix (raw chicken meat) and highly processed matrix (chicken sausages) were the reason of choosing these two samples in this study with purpose to discover the matrices effect towards PCR-ELISA performance. It is anticipated that results from these works will generate new knowledge and improve current detection method to benefit the scientific community.
1.3 Objectives

The objectives of this study were as follows:

1. To design specific PCR primers to detect *Salmonella* spp., *Salmonella* Enteritidis and *Salmonella* Typhimurium.

3. To determine prevalence and estimated quantity of *Salmonella* spp., *S*. Enteritidis and *S*. Typhimurium in raw chicken and chicken-based products from hypermarket and stalls by MPN-mPCR.

4. To establish PCR-ELISA assay to detect *S*. Enteritidis artificially-contaminated raw chicken meat and chicken sausage samples as study model and perform comparison with conventional PCR.
REFERENCES

towards production of table eggs free from *Salmonella enteritidis*. *Journal of Cleaner Production*, 9, 69–73.

Hong, Y., Berrang, M. E., Liu, T., Hofacre, C. L., Sanchez, S., Wang, L., & Maurer, J. J. (2003). Rapid detection of *Campylobacter coli, C. jejuni,* and
Salmonella enterica on poultry carcasses by using PCR-enzyme-linked immunosorbent assay. Applied and Environmental Microbiology, 69(6), 3492–3499.

Cultural and immunological detection methods for *Salmonella* spp. in animal feeds - A review. *Veterinary Research Communications*, 30(2), 127–137.

determined from four housekeeping genes and evidence of lateral gene transfer events. *Journal of Bacteriology*, 190(21), 7060–7067.

