

UNIVERSITI PUTRA MALAYSIA

EXTRACTION, PURIFICATION AND CHARACTERIZATION OF POLYGALACTURONASE FROM DURIAN (Durio zibethinus L.) SEEDS

FARHANA AZMIRA BINTI ASMADI

FSTM 2018 11

EXTRACTION, PURIFICATION AND CHARACTERIZATION OF POLYGALACTURONASE FROM DURIAN (*Durio zibethinus* L.) SEED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This thesis is dedicated to my loving family: For my special person in my life, my father, Asmadi bin Mohamad Sapar and my mother, Suraya binti Mahmud, who have been my inspiration and my strength through all these years, always there for me, never out of reach whenever I needed them. Thank you for your love. To my dear siblings, I am grateful for what you are and have always been to me. To all my friends, my fellow colleagues and to whom I owe more than I can ever repay. Lastly, a very special credit for my dear supervisor, Associate Professor Dr. Mehrnoush Amid for all your care, support and believe in me.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EXTRACTION, PURIFICATION AND CHARACTERIZATION OF POLYGALACTURONASE FROM DURIAN (*Durio zibethinus* L.) SEED

By

FARHANA AZMIRA BINTI ASMADI

December 2017

Chairman : Associate Professor Mehrnoush Amid, PhD

Faculty : Food Science and Technology

Polygalacturonase breaks down pectin chains generally found in the cell wall of plant. Primarily, enzymes have high tendency to be degraded by improper extraction method. Therefore, it is essential to use an economical, simple and efficient extraction method. In this study, polygalacturonase (PG) was extracted from durian seed with ultrasound assisted-extraction. The effects of extraction time, ultrasound temperature, pH of buffer and solvent-to-seed ratio for optimization of the extraction were determined. The optimum combination of extraction was achieved at 30 min extraction time, 50°C temperature and 5:1 ml/g of solvent-to-seed ratio at pH 5.5. Conventional purification processes are multistep, tedious and expensive; thus, it is vital to develop an economical, highly efficient and environmental friendly process for the purification of polygalacturonase with required properties. A novel aqueous two-phase system (ATPS) process composed of surfactant and acetonitrile was employed to purify polygalacturonase from *Durio zibethinus* seed at laboratory scale. In this study, the effect of Tie Line Length (TLL), crude loads and pH on purification of the enzyme were investigated. The results of the ATPS process indicated polygalacturonase was partitioned in the novel method of ATPS composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. It was determined that the phase components, Tie Line Length (TLL), crude loads and pH effected the polygalacturonase partitioning. This study also showed that ATPS can be used as an economical and effective method for purification of the enzyme from a novel source with potential industrial application and alternative to the conventional ATPS.

Characterization of the purified polygalacturonase was done to determine the polygalacturonase stability in vary conditions. In this study, it indicated that polygalacturonase extracted from durian seed was stable with the presence of some

metal ions, surfactants and oxidizing agents. The metals K⁺, Mg²⁺, Na⁺ and Cu²⁺ enhanced the polygalacturonase activity to 135.1%, 108.5%, 94.6% and 86.7% respectively. Meanwhile Zn²⁺, Ca²⁺ and Fe³⁺ inhibited the enzyme activity to 72.9%, 49.3% and 14.1% respectively. Polygalacturonase showed high stability towards surfactants EDTA (108.1%) and SDS (101.6%). The polygalacturonase was stable in Triton X-100 (97.7%) and Tween 80 (92.5%) meanwhile almost half of the activity was inhibited by oxidizing agent to 66.7%. Based on SDS-PAGE, the estimated molecular weight of this was 34.4 kDa. Hence, as a conclusion, the enzyme with unique characteristics could be extracted and purified from natural source. It has high potential to contribute in some industrial applications such as food and beverages, textile, paper, and other biotechnological applications.

PENGEKSTRAKAN, PENULENAN DAN PENCIRIAN OF POLYGALAKTURONASE DARIPADA BIJI DURIAN (Durio zibethinus L.)

Oleh

FARHANA AZMIRA BINTI ASMADI

Disember 2017

Pengerusi : Profesor Madya Mehrnoush Amid, PhD

Fakulti : Sains dan Teknologi Makanan

Polygalacturonase menguraikan rantai pektin yang biasanya terdapat di dinding sel tumbuhan. Enzim mempunyai kecenderungan tinggi untuk direncatkan oleh kaedah pengekstrakan yang tidak sesuai. Oleh itu, adalah penting untuk menggunakan kaedah pengekstrakan yang mudah dan berkesan. Dalam kajian ini, polygalakturonase (PG) diekstraks daripada biji durian dengan bantuan ultrasonik. Efek masa untuk pengekstrakan, suhu ultrasonik, pH dan nisbah pelarut-ke-biji untuk pengoptimuman pengekstrakan telah ditentukan. Gabungan optimum pengekstrakan dicapai pada masa pengekstrakan 30 min, suhu 50°C dan 5: 1 ml/g nisbah pelarut-ke-biji pada pH 5.5. Proses penulenan konvensional adalah berbilang, rumit dan memerlukan kos yang tinggi. Oleh itu, adalah penting untuk inovasikan proses yang lebih ringkas, cekap dan mesra alam bagi penulenan polygalakturonase. Sistem Dua Fasa Berakua (SDFB) yang terdiri daripada surfaktan dan asetonitril digunakan untuk menulenkan polygalakturonase daripada biji durian pada skala makmal. Dalam kajian ini, kesan Panjang Garis Ikatan (PGI), beban mentah dan pH pada pemurnian enzim telah disiasat. Keputusan proses ATPS menunjukkan polygalacturonase dibahagikan kepada kaedah baru ATPS yang terdiri daripada 23% (w/w) Triton X-100 dan 19% (w / w) asetonitril, 55.6% TLL beban 25% (w / w) pada pH 6.0. Telah ditentukan bahawa komponen fasa, Panjang Garis Ikatan (PGI), muatan mentah dan pH mempengaruhi pengasingan polygalakturonase. Kajian ini juga menunjukkan bahawa SDFB boleh digunakan sebagai kaedah yang lebih ekonomik dan berkesan untuk penulenan enzim daripada sumber baru dengan aplikasi perindustrian yang tinggi potensi dan juga sebagai alternatif kepada SDFB konvensional. Pencirian polygalakturonase telah dilakukan untuk menentukan kestabilan polygalakturonase dalam pelbagai keadaan. Dalam kajian ini, ia menunjukkan bahawa polygalakturonase yang diekstrak daripada biji durian sangat stabil dengan kehadiran beberapa ion logam, surfaktan dan agen pengoksida. Logam K +, Mg2 +, Na + dan Cu2 + masingmasing meningkatkan aktiviti polygalakturonase kepada 135.1%, 108.5%, 94.6% dan

86.7%. Sementara itu Zn2 +, Ca2 + dan Fe3 + menghentikan aktiviti enzim sebanyak 72.9%, 49.3% dan 14.1%. Polygalakturonase menunjukkan kestabilan yang tinggi terhadap surfaktan EDTA (108.1%) dan SDS (101.6%). Polygalakturonase stabil bersama kehadiran Triton X-100 (97.7%) dan Tween 80 (92.5%) sementara hampir separuh daripada aktiviti itu dihentikan oleh ejen pengoksidaan kepada 66.7%. Berdasarkan SDS-PAGE, anggaran berat molekul ini ialah 34.4 kDa. Oleh itu, sebagai kesimpulan, enzim yang mempunyai ciri-ciri unik dapat diekstrak dan ditulenkankan daripada sumber semula jadi dah juga bahan buangan. Ia mempunyai potensi yang tinggi untuk menyumbang dalam beberapa aplikasi perindustrian seperti makanan dan minuman, tekstil, kertas, dan aplikasi bioteknologi yang lain.

ACKNOWLEDGEMENTS

To the Almighty, from whom all mercies flow, I thank Him for the strength and wisdom he has bestowed upon me in the course of my studies and through all the days of my life. After years of struggling and hardworking, I couldn't say more than Alhamdulillah. He gave me all the way through my master journey. I would like to express my deepest appreciation to Associate Professor Dr Mehrnoush Amid, the chairman of my supervisory committee, for taking me under her wings and giving me the benefit of her knowledge, wisdom and expertise over the years, and enabling me to successfully complete my thesis. She has been a pillar of strength throughout the entire period of my study here at UPM and I will always be grateful for her patience and for the many times she has walked that extra mile for me.

My sincere appreciation also goes to Y. Bhg. Professor Dato' Dr. Mohd Yazid bin Abd Manap and Y. Bhg. Profesor Dr. Nazamid Saari, members of my supervisory committee, who have been extremely helpful and supportive, providing me guidance, answering my many questions and showing me the way. To the most and very important person in my life; Asmadi bin Mohamad Sapar and Suraya binti Mahmud, you are my everything. Thank you for your love, passion, advice, thought and your guide. I may not be able to redeem your kindness. Thank you also for your understanding, love, courage and support. We have made it this far and may Allah give us His blessing to be together till Jannah.

To the many others who have come into my life in my years at UPM, some of whom have grown to be more than course mates and acquaintances, I thank you for your friendship and kindness.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Yazid bin Abd Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazamid bin Saari

Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	Date:	
Name and Matric No.:	Farhana Azmira binti Asmadi, GS40261	

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted, and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	
Name of	
Chairman of	
Supervisory	
Committee:	Mohd Yazid bin Abd Manap
Signature:	
Name of	
Member of	
Supervisory	
Committee:	Nazamid bin Saari

TABLE OF CONTENTS

A DC	TD A CIT		Page
	TRACT		1
	TRAK		iii
		EDGEMENTS	V
	ROVAL		V
	LARAT		V111
	OF TA		XIII
	OF FIC		xiv
		BREVIATION MENCI ATURE	XV
LISI	OF NO	MENCLATURE	XV
CHA	APTER		
1	INTD	ODUCTION	1
1	1.1		1
	1.2	Problem Statement	3
	1.3	Significance of Study	3
	1.4	Objectives of Study	4
	1.1	Sojectives of Study	
2		RATURE REVIEW	5
	2.1	Durian	5 5
	2.2	1	
	2.3	Durian Seed	6
	2.4	Polygalacturonase	6
		2.4.1 Endo-Polygalacturonase	7
		2.4.2 Exo-Polygalacturonase	7
	2.5	Source of Polygalacturonase	8
	2.6	Applications of Polygalacturonase	9
	2.7	Extraction of Enzyme from Plant	10
		2.7.1 Methods of Extraction	10
	2.0	2.7.2 Ultrasound-Assisted Extraction	12
	2.8	Purification of Enzyme	12
	2.9	Drawback with Conventional Process Approach	13
	2.10	Aqueous Two-Phase System (ATPS)	13
	2.11	Advantages of ATPS	14
		2.11.1 Phase Diagram, Binodal Curve & Tie Line Length (TLL)	15
	2.12	2.11.2 Response Surface Methodology	16
	2.12	Characterization of Polygalacturonase	16
		2.12.1 Molecular Weight of Polygalacturonase	16
		2.12.2 Optimum Temperature and pH of Polygalacturonase	17
		2.12.3 Effects of metal ions, surfactants and oxidizing agents on Polygalacturonase (PG)	18
		EOLVYAIACHILOHASC LEVII	10

3	GEN I	ERAL METHODOLOGY	19
	3.1	Materials	19
	3.2	Chemicals	19
	3.3	Apparatus	19
	3.4	Experimental Design	19
	3.5	Ultrasound-Assisted Extraction Procedure	20
	3.6	Analytical Methods	20
		3.6.1 Polygalacturonase Activity Assay	20
		3.6.2 Protein Concentration Determination	22
		3.6.3 Specific Activity of Polygalacturonase	22
		3.6.4 Storage Stability of Polygalacturonase	22
	3.7	Purification Procedure with Aqueous Two-Phase System (ATP	
		3.7.1 Binodal Curve Construction	22
		3.7.2 Tie Line Length (TLL) Determination	23
		3.7.3 Polygalacturonase Purification in Triton X-100/Aceton	itrile
		ATPS	23
		3.7.4 Partition Coefficient, Selectivity in ATPS	23
		3.7.5 Purification Fold and Yield of Polygalacturonase after	
		ATPS	24
		3.7.6 Sodium Dodecyl Sulphate Polyacrylamide Gel	
		Electrophoresis (SDS-PAGE)	24
	3.8	Characterization of Polygalacturonase	25
		3.8.1 Optimum Temperature and Temperature Stability	25
		3.8.2 Optimum pH and pH stability of Polygalacturonase	25
		3.8.3 Effects of Metal Ions on Polygalacturonase Activity	25
		3.8.4 Effects of Surfactants and Oxidizing Agents on	
		Polygalacturonase Stability	26
		3.8.5 Relative Activity and Residual Activity	26
	3.9	Statistical Design & Statistical Analysis	26
	3.10	Optimization and Validation Procedures	27
			_,
4	RESU	ULTS AND DISCUSSIONS	28
		Fitting Response Surface Methodology of Polygalacturonase	
		Extraction	28
	4.2	Enzyme Activity of Extracted Polygalacturonase	30
	4.3	Specific Activity of Extracted Polygalacturonase	31
	4.4	Yield of Extracted Polygalacturonase	32
	4.5	Temperature Stability of Extracted Polygalacturonase	35
	4.6	Storage Stability of Extracted Polygalacturonase	35
	4.7	Optimization of Extraction Procedure and Validation of the Fir	
		Reduced Model	36
	4.8	Phase Diagram of Surfactants and Acetonitrile in ATPS	38
	4.9	Effects of crude feedstock concentration on polygalacturonase	•
	,	partitioning	41
	4.10	Effects of system pH on Polygalacturonase Partitioning	42
	4.11	Purified Polygalacturonase on SDS-PAGE	43
	4.12	Effect of Temperature Activity and Stability of Purified	13
	1,12	Polygalacturonase	44
		- 0.7 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	

	4.13 4.14	Effect of pH Activity and Stability of Purified Polygalacturonase Effect of Metal Ions, Surfactants, and Oxidizing Agents on the	45
		Purified Polygalacturonase	47
5	CON	CLUSION AND RECOMMENDATION	49
	5.1	Conclusion	49
	5.2	Recommendation	50
REI	FERENC	CES	51
API	PENDIC	ES	68
BIC	DATA (OF STUDENT	72
PH	RLICAT	ION	73

LIST OF TABLES

Table	P	age
2.1	Summary of previous studies in extraction of polygalacturonase from various sources with their respective extraction conditions	9
3.1	Matrix of the Central Composite Design (CCD) comprises of 30 total treatments to optimize the polygalacturonase extraction from durian seed with UAE	21
4.1	Table of regression coefficients of five independent variables, R^2 , p -value of lack of fit for the final reduced models	30
4.2	F-ratio and p-value for each Independent Variable Effect in the Polynomial Response Surface Models	33
4.3	Partition behaviour of polygalacturonase in different surfactant/acetonitrile systems	e 39
4.4	Effect of metal ions, surfactants and oxidizing agents on the PG activity	48

LIST OF FIGURES

Figur	Figure	
2.1	General phase diagram for two phases in ATPS. T: top phase composition, B: bottom phase composition, M: aqueous two-phase emulsion composition (Modified from Dembczyński, Białas and Jankowski, 2012)	15
4.1	Fitted line plots predicted values (Y_0) and Experimental values (Y_1) of the respective response variables	34
4.2	Fitted Line Plots for Predicted Value (Y ₀) and Experimental Data (Y ₁); (a) Polygalacturonase activity, (b) Yield, (c) Specific Activity, (d) Temperature Stability, (e) Storage stability	38
4.3	The binodal curves and Tie Line for Triton X-100 were plotted against acetonitrile	39
4.4	Effect of crude load on polygalacturonase partitioning conducted at $25 \pm 2^{\circ}$ C and atmospheric pressure. The partition efficiency of polygalacturonase was measured in terms of selectivity and yield. The results were shown as the mean of triplicate readings with an estimated error of ± 10 % of selectivity and yield	41
4.5	Effect of pH of ATPS process on polygalacturonase partitioning was varied between 1.0 and 11.0. The partition efficiency of polygalacturona was measured in terms of selectivity and yield. Data is represented by mean ±SEM or SD	se 43
4.6	The molecular weight of the partitioned polygalacturonase was assessed by 12% SDS-PAGE analysis. Molecular weight of standard protein mark ranged 6.5–42.7 kDa. M: protein molecular marker; Lane 1: crude feedstock, Lane 2: ATPS process top phase	
4.7	Optimum temperature (a) and Temperature stability (b) of purified polygalacturonase	45
4.8	Optimum pH (a) activity and (b) stability of purified polygalacturonase	46

LIST OF ABBREVIATIONS

ATPS Aqueous Two-Phase System

BSA Bovine Serum Albumin

DNS Dinitrosalicyclic acid

EC Enzyme Commission

EDTA Ethylenediaminetetraacitic Acid

kDa Kilodaltons

LSD Least Significant Difference

Mt Metric ton

MW Molecular weight

PG Polygalacturonase

RSM Response Surface Methodology

SD Standard Deviation

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel electrophoresis

TCA Trichloroacetic Acid

TLL Tie Line Length

LIST OF NOMENCLATURE

A_{T}	Enzyme Activity in the Top Phase	U/mL
A_{B}	Enzyme Activity in the Bottom Phase	U/mL
Ke	Partition Coefficient of enzyme	-
K_p	Partition Coefficient of protein	-
P_{F}	Purification factor of enzyme	-
P_{A}	Protein concentration of enzyme in top phase	mg/mL
P_{B}	Protein concentration of enzyme in bottom phase	mg/mL
S	Specific Activity	U/mL
T_{A}	Total activity of enzyme	U/mL
T_{P}	Total protein of enzyme	mg
Y	Yield of enzyme	%

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Durio *zibethinus* is known as durian by most consumers in Asia and it is seasonal. Durian tree is currently grown widely all over Southeast Asia (Subhadrabandhu & Ketsa, 2001). A number of durian species are also edible, above all, D. *dulcis*, D. *graveolens*, D. *oxleyanus*, D. *kutejensis*, and D. *testudinarium* are distributed in local markets around Borneo. Durians are produced in the following countries consecutively; Thailand, Malaysia, Indonesia, Vietnam and Philippines.

Durian is usually consumed fresh; but, only one-third of durian can be consumed. The seeds (20–25%) and shell are usually discarded as waste. Durian seeds are highly nutritious and have high fiber content. Amiza $et\ al.$, (2007) demonstrated that durian seed could be used to produce several food products and used as a thickening agent. Thus, this fruit waste has major potential as a source of raw material useful for the growth of value-added products. Durian seeds can be used as a precious, economical and rich source of media to yield natural enzymes such as polygalacturonase and β -galactosidase

A complex polysaccharide known as pectin, was discovered primarily in the center of lamella and in the main cell walls of higher plants (Kashyap, Vohra, Chopra, & Tewari, 2001). It is part of 35% of main plants walls (Caffall, Pattathil, Phillips, Hahn, & Mohnen, 2009). Pectic substances are degrade by the method of de-polymerization, trans-elimination, or de-esterification with the help of a heterogeneous group of complementary enzymes known as pectolytic enzymes. They are grouped into exopolygalacturonase and endo-polygalacturonase, pectin lyase and pectin methylesterase enzymes (Fontana & Silveira, 2012). Pectinases are significant enzymes used in the food industry, with 25% share in the world enzyme sales (Jayani, Saxena, & Gupta, 2005). Pectinases can be found in many organisms such as plants, fungi, and bacteria.

Polygalacturonase is a pectin-degrading enzyme complex; one of the richest pectinolytic enzymes. It is functional as a hydrolytic depolymerizing group helps in hydrolyzing polygalacturonic acid chains by addition of water (Schnitzhofer et al., 2007a). Polygalacturonase is the most researched and widely used pectinase in industry. It is used in several industrial and biotechnological processes, for example, fruit and vegetable enzymatic maceration to produce single-cell suspensions and to produce fruit nectars, vegetable purees and baby foods (Rojas *et al.*, 2011). Moreover, polygalacturonases are used to aid in the extraction of essential oils, coffee and pigments. In addition, they are also used to treat indigestion problems in the veterinary field (Palanivelu, 2006). Thus, it is vital to discover new polygalacturonases,

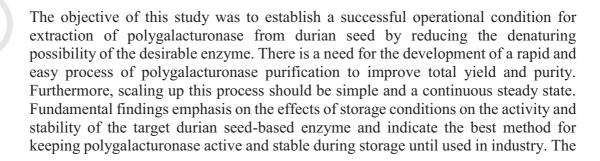
especially in food waste, and optimized their production conditions to meet the growing demand. Moreover, there are some advantages of using agro-industrial residues to produce such as, reduces pollution and produces high-value added products with an economical method (Ruiz, Rodríguez-Jasso, Rodríguez, Contreras-Esquivel, & Aguilar, 2012).

Nowadays, there are several extraction methods was introduced and established for the extraction of plants active components, including ultrasonic-assisted extraction (UAE), enzymatic-assisted extraction (EAE), supercritical fluid extraction (SFE) and dispersive liquid-liquid microextraction (Hardlei, Morkbak and Nexo, 2007; Yang *et al.*, 2009; Campillo *et al.*, 2013;). Conversely, ultrasonic-assisted extraction is the most rapid and effective extraction method. The acoustic cavitation generated in the solvent by the ultrasound wave pathway could enhance ultrasonic extraction (Ghafoor *et al.*, 2009; Zou *et al.*, 2011). A mechanical effect produced by an ultrasound could cause solvent to penetrate highly into the tissue and increase the area of contact surface between the solid and liquid phase. The extraction process can also be further improved by disrupting the cell wall and releasing cellular materials (Vilkhu, Mawson, Simons, & Bates, 2008).

Generally, purification process depends on polymer/salt system, for instance polymer/polymer, or a polyethylene glycol (PEG)/potassium phosphate system, and PEG/dextran (Goja *et al.*, 2013). However, these traditional aqueous two phase systems have some disadvantages including slow separation, polymers prohibitive cost, difficulties in separating the purified bio-molecules from the polymer as well as phase-forming chemicals are ineffectively to be recycled; causing large chemical/polymers usage and large production costs (Yau et al., 2015). Moreover, these traditional systems require monotonous operations like ultra-filtration, diafiltration and crystallization to remove the phase-forming chemicals/polymers from the recovery of desired proteins. Ideally, an ATPS need to be tremendously cost-effective, eco-friendly and able to maintain the biological activity of enzymes more than the traditional ATPS.

Response surface methodology (RSM) is a group of mathematical and statistical methods that depend on the fit of empirical models (Quiroz-Reyes *et al.*, 2013). In RSM, the effect of independent variables on response variables have to be optimized by thorough experimental design. It also involves an assemblage of techniques for investigating for optimum conditions through experimental methods and has been recognized as an essential technique of statistical design. It is a valuable for design of experiment, procedure of optimization and for data analysis (Morshedi & Akbarian, 2014). RSM is very crucial in the application of development, designing and new scientific formulation such as in industrial, clinical, biological science, food science, social science and physical and engineering sciences (Zhi, Song, Ouyang, & Bi, 2005).

1.2 Problem Statement


Enzymes could be affected to a greater extend by the changes in extraction condition including temperature, time, pH and solvent to sample ratio. Nevertheless, enzyme extraction should be advantageous if it is based on the natural morphology of enzyme which could be destroyed by the undesirable extraction condition. The most popular separation method used in the purification of protein products is chromatography.

Various conventional methods of purification of polygalacturonase have been employed. According to Biazus *et al.*, (2006), prior to chromatography, the crude feedstock of traditional adsorption chromatography or conventional adsorbents need to be clarified. Crucially, solid impurities must be removed from the feedstock as trapping of solid matter could lead to serious operational problems. Even though the possibility of chromatography to provide high selective separation levels in the recovering targeted molecules process, yet due to high cost of purification process, it could demonstrate prohibitive (Clonis, 2006).

Currently, the products of protein including enzymes are high in demand and developing in the market. Hence, it is important to focus on the total cost of the purification process and other succeeding related steps of enzymes. Though, these procedures were multi-step, discontinues, as well as time and labor consuming which could cause significant product loss (Y.-Y. Zhang & Liu, 2010). Nowadays, industry requires fast and cost-effective downstream processes for protein purification, in addition those that provide products with high yield and purity (Guptra *et al.*, 2002).

1.3 Significance of Study

Durian growth has been remarkable worldwide, yet, due to its overproduction, the wastage increases. According to Ho and Bhat, (2015), durian has many advantages, values and useful components but it is not currently being utilized commercially. This could lead to pollution and increment in the waste treatment cost (Negro, Tommasi, & Miceli, 2003). Durian seed is normally thrown making it as an agro-industrial residue. The seeds make up to around 5-15 % of the total fruit mass. However, till present, there is no research on the potentiality of durian seed as a source of producing enzymes.

novelty of this study is the extraction and purification of polygalacturonase as an important enzyme from waste (durian seed) at elevated level of purification factor and yield by an easy scale-up and rapid processing at low material cost, while benefitting from low interfacial tension and a mild environment.

1.4 Objectives of Study

In this study, the general objective was to study the extraction, purification, and characterization of polygalacturonase from durian (Durio *zibethinus*) seed. The specific objectives of this study were:

- 1. To establish the optimum condition for extraction of polygalacturonase from durian seed
- 2. To develop the purification procedure for production of polygalacturonase from durian seed
- 3. To characterize of polygalacturonase enzyme from durian seed

REFERENCES

- Abdul Rahim, N. A. Z. A. R. (2014). An Overview Of Fruit Supply Chain in Malaysia. *Jurnal Mekanikal*, *37*, 36–46.
- Amid, B. T., & Mirhosseini, H. (2012). Optimisation of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low cost source of hydrocolloid. *Food Chemistry*, 132(3), 1258–1268.
- Amin, A. M., Ahmad, A. S., Yap, Y. Y., Yahya, N., & Ibrahim, N. (2007). Extraction, purification and characterization of durian (Durio zibethinus) seed gum. *Food Hydrocolloids*, 21(2), 273–279.
- Amin, A. M., Jaafar, Z., & Ng, L. K. (2004). Effect of Salt on Tempoyak Fermentation and Sensory Evaluation. *Journal of Biological Sciences*, 4(5), 650–653.
- Aminzadeh, S., Naderi-Manesh, H., Khajeh, K., & Saudi, M. R. (2007). Isolation and characterization of polygalacturonase produced by Tetracoccosporium sp. *Iranian Journal of Chemistry and Chemical Engineering*, 26(1), 47–54.
- Anand, G., Yadav, S., & Yadav, D. (2016). Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. *3 Biotech*, 6(2), 201.
- Antov, M. (2004). Partitioning of pectinase produced by Polyporus squamosus in aqueous two-phase system polyethylene glycol 4000/crude dextran at different initial pH values. *Carbohydrate Polymers*, 56(3), 295–300.
- Asenjo, J. A., & Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: A perspective. *Journal of Chromatography A*, 1218(49), 8826–8835.
- Badwaik, L. S., Borah, P. K., & Deka, S. C. (2015). Optimization of Microwave Assisted Extraction of Antioxidant Extract from Garcinia pedunculata Robx. *Separation Science and Technology*, 50(12), 1814–1822.
- Benavides, J., & Rito-Palomares, M. (2008). Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. *Journal of Chemical Technology & Biotechnology*, 83(2), 133–142.
- Bennamoun, L., Hiligsmann, S., Dakhmouche, S., Ait-Kaki, A., Labbani, F.-Z., Nouadri, T., ... Thonart, P. (2016). Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace. *Foods*, *5*(4), 72.

- Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. *Talanta*, 76(5), 965–977.
- Bhavsar, K., Ravi Kumar, V., & Khire, J. M. (2012). Downstream processing of extracellular phytase from Aspergillus niger: Chromatography process vs. aqueous two phase extraction for its simultaneous partitioning and purification. *Process Biochemistry*, 47(7), 1066–1072.
- Bhunia, B., Basak, B., Mandal, T., Bhattacharya, P., & Dey, A. (2013). Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70kDa). *International Journal of Biological Macromolecules*, *54*, 1–8.
- Biazus, J. P. M., Severo, J. B., Santana, J. C. C., Souza, R. R., & Tambourgi, E. B. (2006). Study of amylases recovery from maize malt by ion-exchange expanded bed chromatography. *Process Biochemistry*, 41(8), 1786–1791.
- Bimakr, M., Rahman, R. A., Taip, F. S., Ganjloo, A., Salleh, L. M., Selamat, J., ... Zaidul, I. S. M. (2011). Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. *Food and Bioproducts Processing*, 89(1), 67–72.
- Bonomo, R., Minima, L., Coimbra, J., Fontan, R., Mendesdasilva, L., & Minim, V. (2006). Hydrophobic interaction adsorption of whey proteins: Effect of temperature and salt concentration and thermodynamic analysis. *Journal of Chromatography B*, 844(1), 6–14.
- Borkar, P., Mhaske, S., & Kumar, A. (2015). Extraction, Purification and Characterization of Exo-Polygalacturonase From Cucurbita Pepo a Pumpkin Variety Cola Lambgol Samrat 2. *World Journal of Pharmacy and Pharmaceutical Sciences*, 4(10), 2250–2257.
- Caffall, K. H., Pattathil, S., Phillips, S. E., Hahn, M. G., & Mohnen, D. (2009). Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa. *Molecular Plant*, 2(5), 1000–1014.
- Campillo, N., Viñas, P., Férez-Melgarejo, G., & Hernández-Córdoba, M. (2013). Dispersive liquid—liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry. *Journal of Chromatography A*, 1282, 20–26.
- Carvalho, C. (2000). Reverse micelles as reaction media for lipases. *Biochimie*, 82(11), 1063–1085.
- Chansiripornchai, P., & Pongsamart, S. (2015). Treatment Of Infected Open Wounds

- On Two Dogs Using A Film Dressing Of Polysaccharide Extracted From The Hulls Of Durian (Durio Zibethinus Murr.): Case Report. *The Thai Journal of Veterinary Medicine*, 38(3), 55–61.
- Chen, Y.-L., Su, C.-K., & Chiang, B.-H. (2006). Optimization of reversed micellar extraction of chitosanases produced by Bacillus cereus. *Process Biochemistry*, 41(4), 752–758.
- Chen, Y., Luo, H., Gao, A., & Zhu, M. (2011). Ultrasound-assisted extraction of polysaccharides from litchi (Litchi chinensis Sonn.) seed by response surface methodology and their structural characteristics. *Innovative Food Science & Emerging Technologies*, 12(3), 305–309.
- Chow, Y. H., Yap, Y. J., Tan, C. P., Anuar, M. S., Tejo, B. A., Show, P. L., ... Ling, T. C. (2015). Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems. *Journal of Bioscience and Bioengineering*, 120(1), 85–90.
- Clonis, Y. D. (2006). Affinity chromatography matures as bioinformatic and combinatorial tools develop. *Journal of Chromatography A*, 1101(1–2), 1–24.
- Cornelia, M., Siratantri, T., & Prawita, R. (2015). The Utilization of Extract Durian (Durio zibethinus L.) Seed Gum as an Emulsifier in Vegan Mayonnaise. *Procedia Food Science*, 3, 1–18.
- Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). *Journal of Food Engineering*, 72(1), 8–15.
- Das, D., & Das, P. K. (2009). Superior Activity of Structurally Deprived Enzyme–Carbon Nanotube Hybrids in Cationic Reverse Micelles. *Langmuir*, 25(8), 4421–4428.
- De Lorenzo, G., Salvi, G., Degra, L., D'Ovidio, R., & Cervone, F. (1987). Induction of Extracellular Polygalacturonase and Its mRNA in the Phytopathogenic Fungus Fusarium moniliforme. *Microbiology*, 133(12), 3365–3373.
- Dembczyński, R., Białas, W., & Jankowski, T. (2012). Determination of phase diagrams and thermoseparation behaviour of aqueous two-phase systems composed of ethylene oxide–propylene oxide random copolymer and potassium phosphate. *Chemical and Process Engineering*, 33(3), 411–429.
- Dembitsky, V. M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S., & Gorinstein, S. (2011). The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. *Food Research International*, 44(7), 1671–1701.
- Dosanjh, N. S., & Hoondal, G. S. (1996). Production of constitutive, thermostable,

- hyper active exo-pectinase from Bacillus GK-8. *Biotechnology Letters*, 18(12), 1435–1438.
- Dreyer, S. E. (2008). Aqueous two-phase extraction of proteins and enzymes using tetraalkylammonium-based ionic liquids. PhD Dissertation, University Rostock.
- El-Batal, A. I., Osman, E. M., & Shaima, I. A. M. (2013). Optimization and characterization of polygalacturonase enzyme produced by gamma irradiated Penicillium citrinum. *Journal of Chemical and Pharmaceutical Research*, 5(1), 336–347.
- El-Tanboly, E. E. (2001). The β--galactosidase System of a Novel Plant from Durian Seeds (Durio zibethinus) I. Isolation and Partial Characterization. *Pakistan Journal of Biological Sciences*, 4(12), 1531–1534.
- Federici, L., Caprari, C., Mattei, B., Savino, C., Di Matteo, a, De Lorenzo, G., ... Tsernoglou, D. (2001). Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). *Proceedings of the National Academy of Sciences of the United States of America*, 98(23), 13425–30.
- Fontana, R. C., & Silveira, M. M. (2012). Influence Of Pectin, Glucose, and pH on the Production OF Endo-And Exo-Polygalacturonase By Aspergillus oryzae In Liquid Medium, *29*(4), 683–690.
- García Maceira, F. (1997). Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f.sp. lycopersici. *FEMS Microbiology Letters*, 154(1), 37–43.
- Gautam, S., Mukherjee, J., Roy, I., & Gupta, M. N. (2012). Emerging Trends in Designing Short and Efficient Protein Purification Protocols. *American Journal of Biochemistry and Biotechnology Published Online*, 8(84), 230–254.
- Gayathri, T., Kishor Mohan, T. C., & Murugan, K. (2007). Purification and Characterization of Polygalacturonase-3 from Jamaica cherry (Muntingia calabura Linn). *Journal of Plant Biochemistry and Biotechnology*, *16*(2), 127–130.
- Gayathri, T., & Nair, A. S. (2014). Isolation, purification and characterisation of polygalacturonase from ripened banana (Musa acuminata cv. Kadali). *International Journal of Food Science and Technology*, 49(2), 429–434.
- Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (*Vitis vinifera*) Seeds. *Journal of Agricultural and Food Chemistry*, 57(11),

- Goja, A. M., Yang, H., Cui, M., & Li, C. (2013). Aqueous Two-Phase Extraction Advances for Bioseparation. *Journal of Bioprocessing & Biotechniques*, 4(1).
- Gorinstein, S., Cvikrová, M., Machackova, I., Haruenkit, R., Park, Y.-S., Jung, S.-T., ... Trakhtenberg, S. (2004). Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. *Food Chemistry*, 84(4), 503–510.
- Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. *Applied Microbiology and Biotechnology*, 59(1), 15–32.
- Hardlei, T. F., Morkbak, A. L., & Nexo, E. (2007). Enzymatic extraction of cobalamin from monoclonal antibody captured haptocorrin and transcobalamin. *Clinical Biochemistry*, 40(18), 1392–1397.
- Haruenkit, R., Poovarodom, S., Vearasilp, S., Namiesnik, J., Sliwka-Kaszynska, M., Park, Y.-S., ... Gorinstein, S. (2010). Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. *Food Chemistry*, 118(3), 540–547.
- Hatti-Kaul, R. (2000). *Aqueous Two-Phase Systems* (Vol. 11). New Jersey: Humana Press.
- Hatti-Kaul, R. (2001). Aqueous Two-Phase Systems: A General Overview. *Molecular Biotechnology*, 19(3), 269–278.
- Hebbar, H. U., Sumana, B., & Raghavarao, K. S. M. S. (2008). Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. *Bioresource Technology*, 99(11), 4896–4902.
- Ho, L.-H., & Bhat, R. (2015). Exploring the potential nutraceutical values of durian (Durio zibethinus L.) an exotic tropical fruit. *Food Chemistry*, 168, 80–9.
- Hong Yang, A. M. G. (2013). Aqueous Two-Phase Extraction Advances for Bioseparation. *Journal of Bioprocessing & Biotechniques*, 4(1), 1–8.
- Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., & Beg, Q. (2002). Microbial alkaline pectinases and their industrial applications: a review. *Applied Microbiology and Biotechnology*, 59(4–5), 409–418.
- Imm, J.-Y., & Kim, S.-C. (2009). Convenient partial purification of polyphenol oxidase from apple skin by cationic reversed micellar extraction. *Food Chemistry*, 113(1), 302–306.
- Irshad, M., Anwar, Z., Mahmood, Z., Aqil, T., Mehmmod, S., Nawaz, H., ... Irshad, M. (2014). Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viridi; its purification and characterization. *Turkish Journal of Biochemistry*, 39(1), 9–18.

- Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—Aqueous and non-aqueous environment. *Process Biochemistry*, 43(10), 1019–1032.
- Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. *Process Biochemistry*, 40(9), 2931–2944.
- Johnson, R. B., & Barnett, H. J. (2003). Determination of fat content in fish feed by supercritical fluid extraction and subsequent lipid classification of extract by thin layer chromatography-flame ionization detection. *Aquaculture*, 216(1–4), 263–282.
- Jurick, W. M., Vico, I., Gaskins, V. L., Garrett, W. M., Whitaker, B. D., Janisiewicz, W. J., & Conway, W. S. (2010). Purification and Biochemical Characterization of Polygalacturonase Produced by *Penicillium expansum* During Postharvest Decay of "Anjou" Pear. *Phytopathology*, 100(1), 42–48.
- Jurick, W. M., Vico, I., Mcevoy, J. L., Whitaker, B. D., Janisiewicz, W., & Conway, W. S. (2009). Isolation, Purification, and and Characterization of a Polygalacturonase Produced in Penicillium solitum- Decayed "Golden Delicious" Apple Fruit. Postharvest Pathology and Mycotoxins Isolation, 636–641.
- Kadkhodaee, R., & Hemmati-Kakhki, A. (2007). ULTRASONIC EXTRACTION OF ACTIVE COMPOUNDS FROM SAFFRON. *Acta Horticulturae*, (739), 417–425.
- Kapoor, M., & Kuhad, R. C. (2002). Improved polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation. *Letters in Applied Microbiology*, *34*(5), 317–22.
- Kar, S., & Ray, R. C. (2008). Partial characterization and optimization of extracellular thermostable Ca 2+ inhibited α-amylase production by Streptomyces erumpens MTCC 7317. *Journal of Scientific & Industrial Research*, 67(67), 58–64.
- Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. *Bioresource Technology*, 77(3), 215–27.
- Kaur, G., Kumar, S., & Satyanarayana, T. (2004). Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. *Bioresource Technology*, 94(3), 239–243.
- Ketnawa, S., Rungraeng, & Rawdkuen, N. (2017). Phase partitioning for enzyme separation: An overview and recent applications. *International Food Research Journal*, 24(1), 1–24.

- Kim, C.-W., & Rha, C. (2000). Phase Separation of Polyethylene Glycol/Salt Aqueous Two-Phase Systems. *Physics and Chemistry of Liquids*, *38*(2), 181–191.
- Kim, J.-W., Nagaoka, T., Ishida, Y., Hasegawa, T., Kitagawa, K., & Lee, S.-C. (2009). Subcritical Water Extraction of Nutraceutical Compounds from Citrus Pomaces. *Separation Science and Technology*, 44(11), 2598–2608.
- Kobayashi, T., Higaki, N., Yajima, N., Suzumatsu, A., Hagihara, H., Kawai, S., & Ito, S. (2001). Purification and Properties of a Galacturonic Acid-releasing Exopolygalacturonase from a Strain of Bacillus. *Bioscience, Biotechnology, and Biochemistry*, 65(4), 842–847.
- Kumar, P., & Sharma, S. (2015). An overview of purification methods for proteins, *1*(12), 450–459.
- Kumar, S. S., & Palanivelu, P. (1999). Purification and characterization of an extracellular polygalacturonase from the thermophilic fungus, Thermomyces lanuginosus. *World Journal of Microbiology and Biotechnology*, *15*(5), 643–646.
- Kusuma, M. P., & Reddy, D. S. R. (2014). Purification and Characterization of Polygalacturonase using Isolated Bacillus subtilis C4. Research Journal of Microbiology, 9(2), 95–103.
- Laemmli, K. U. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature*, 227(5259), 680–685.
- Leontowicz, H., Leontowicz, M., Jesion, I., Bielecki, W., Poovarodom, S., Vearasilp, S., ... Gorinstein, S. (2011). Positive effects of durian fruit at different stages of ripening on the hearts and livers of rats fed diets high in cholesterol. *European Journal of Integrative Medicine*, 3(3), e169–e181.
- Li, M., Kim, J. W., & Peeples, T. L. (2002). Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems. *Journal of Biotechnology*, 93(1), 15–26.
- Lima, C. J. B. De, Coelho, L. F., & Contiero, J. (2010). The Use of Response Surface Methodology in Optimization of Lactic Acid Production: Focus on Medium Supplementation, Temperature and pH Control, *Food Technology and Biotechnology*, 48(2), 175–181.
- Liu, B., Ma, Y., Liu, Y., Yang, Z., & Zhang, L. (2014). Ultrasonic-Assisted Extraction and Antioxidant Activity of Flavonoids from Adinandra nitida Leaves. *Tropical Journal of Pharmaceutical Research*, 12(6), 1045.
- Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, A. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). *Food and Bioproducts*

- *Processing*, 88(2–3), 319–326.
- Maciel, M. D. H. C., Ottoni, C. A., Herculano, P. N., Porto, T. S., Porto, A. L. F., Santos, C., Lima, N., Moreira, K. A., & Souza-Motta, C. Purification of polygalacturonases produced by *Aspergillus niger* using an aqueous two-phase system, In *Fluid Phase Equilibria*, 371, 125-130.
- Martos, M. A., Butiuk, A. P., Rojas, N. L., & Hours, R. A. (2014). Purification and characterization of a polygalacturonase produced by Wickerhamomyces anomalus. *Brazilian Archives of Biology and Technology*, *57*(4), 587–594.
- Mcfeeters, R. F., Bell, T. A., & Fleming, H. P. (1980). An Endo-Polygalacturonase In Cucumber Fruit. *Journal of Food Biochemistry*, *4*(1), 1–16.
- Merchuk, J. C., Andrews, B. A., & Asenjo, J. A. (1998). Aqueous two-phase systems for protein separation. *Journal of Chromatography B: Biomedical Sciences and Applications*, 711(1-2), 285-293.
- Mitra, P., Barman, P. C., & Chang, K. S. (2011). Coumarin Extraction from Cuscuta reflexa using Supercritical Fluid Carbon Dioxide and Development of an Artificial Neural Network Model to Predict the Coumarin Yield. *Food and Bioprocess Technology*, 4(5), 737–744.
- Mohammadi, H. S., & Omidinia, E. (2013). Process integration for the recovery and purification of recombinant Pseudomonas fluorescens proline dehydrogenase using aqueous two-phase systems. *Journal of Chromatography B*, 929, 11–17.
- Montgomery, D. C. (2005). Design and Analysis of Experiments: Response surface method and designs. New Jersey: John Wiley and Sons, Inc.
- Morshedi, A., & Akbarian, M. (2014). Application Of Response Surface Methodology: Design Of Experiments And Optimization: A Mini Review. *Indian Journal of Fundamental and Applied Life Sciences*, 4, 2231–6345.
- Moshrefi, M., & Luh, B. S. (1984). Purification And Characterization Of Two Tomato Polygalacturonaseisoenzymes. *Journal of Food Biochemistry*, 8(1), 39–54.
- Murad, H. A., & Azzaz, H. H. (2011). Microbial Pectinases and Ruminant Nutrition. *Research Journal of Microbiology*, *6*(3), 246–269.
- Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2000). *Harpers Biochemistry*. US (Conneticut): Appleton and Lange.
- Nagai, M., Katsuragi, T., Terashita, T., Yoshikawa, K., & Sakai, T. (2000). Purification and Characterization of an Endo-Polygalacturonase from Aspergillus awamori. *Bioscience, Biotechnology, and Biochemistry*, 64(8), 1729–1732.

- Nakkeeran, E., Subramanian, R., & Umesh-Kumar, S. (2010). Purification of polygalacturonase from solid-state cultures of Aspergillus carbonarius. *Journal of Bioscience and Bioengineering*, 109(2), 101–106.
- Naumov, G. I., Naumova, E. S., Aigle, M., Masneuf, I., & Belarbi, A. (2001). Genetic reidentification of the pectinolytic yeast strain SCPP as Saccharomyces bayanus var. uvarum. *Applied Microbiology and Biotechnology*, 55(1), 108–11.
- Negro, C., Tommasi, L., & Miceli, A. (2003). Phenolic compounds and antioxidant activity from red grape marc extracts. *Bioresource Technology*, 87(1), 41–4.
- Niture, S. (2008). Comparative biochemical and structural characterizations of fungal polygalacturonases. *Biologia*, 63(1), 1–19.
- Nozaki, K., Miyairi, K., Hozumi, S., Fukui, Y., & Okuno, T. (1997). Novel Exopolygalacturonases Produced by *Alternaria mali. Bioscience, Biotechnology, and Biochemistry*, 61(1), 75–80.
- Oliveira, R. D. Q., Lima, G., Junior, V., Paula, A., Uetanabaro, T., Gabriela, M., ... Assis, S. A. De. (2012). Influence of carbon source, pH, and temperature on the polygalacturonase activity of Kluyveromyces marxianus CCMB 322. *Ciência E Tecnologia de Alimentos*, 32(3), 499–504.
- Ooi, C. W., Hii, S. L., Kamal, S. M. M., Ariff, A., & Ling, T. C. (2011). Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. *Process Biochemistry*, 46(1), 68–73.
- Padma, P. N., Anuradha, K., Nagaraju, B., Kumar, V. S., & Reddy, G. (2012). Use of Pectin Rich Fruit Wastes for Polygalacturonase Production by Aspergillus awamori MTCC 9166 in Solid State Fermentation. *Journal of Bioprocessing & Biotechniques*, 2(2).
- Palanivelu, P. (2006). Polygalacturonases: Active site analyses and mechanism of action. *Indian Journal of Biotechnology*, 5, 148–162.
- Pasha, K. M., Anuradha, P., & Subbarao, D. (2013). Applications of Pectinases in Industrial Sector. *Int. J. Pure Appl. Sci. Technol*, 16(1), 89–95.
- Pathak, N., Mishra, S., & Sanwal, G. (2000a). Purification and characterization of polygalacturonase from banana fruit. *Phytochemistry*, *54*(2), 147–152.
- Pathak, N., Mishra, S., & Sanwal, G. G. (2000b). Purification and characterization of polygalacturonase from banana fruit. *Phytochemistry*, *54*(2), 147–152.
- Patil, S. R., & Dayanand, A. (2006). Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions.

- Bioresource Technology, 97(16), 2054–2058.
- Paudel, Y. P., Lin, C., Shen, Z., & Qin, W. (2015). Characterization of pectin depolymerising exo polygalacturonase by Bacillus sp. HD2 isolated from the gut of Apis mellifera L. *Microbiology Discovery*, 3(2), 1–8.
- Pedrolli, D. B., Monteiro, A. C., Gomes, E., & Carmona, E. C. (2009). Pectin and Pectinases: Production, Characterization and Industrial Application of Microbial Pectinolytic Enzymes. *The Open Biotechnology Journal*, *3*(1), 9–18.
- Phutdhawong, W., Chairat, P., Kantarod, K., & Phutdhawong, W. (2015). GC-MS and 1 H NMR Analysis of Fatty Acids in Monthong Thai Durian (Durio Zibethinus, Murr), 4(3), 663–667.
- Phutela, U., Dhuna, V., Sandhu, S., & Chadha, B. S. (2005). Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels. *Brazilian Journal of Microbiology*, 36, 63–69.
- Picó, G., Romanini, D., Nerli, B., & Farruggia, B. (2006). Polyethyleneglycol molecular mass and polydispersivity effect on protein partitioning in aqueous two-phase systems. *Journal of Chromatography B*, 830(2), 286–292.
- Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Nurez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. *Journal of Agricultural and Food Chemistry*, 53(6), 2111–2117.
- Pirota, R. D. P. B., Miotto, L. S., Delabona, P. S., & Farinas, C. S. (2013). Improving the extraction conditions of endoglucanase produced by Aspergillus niger under solid-state fermentation. *Brazilian Journal of Chemical Engineering*, 30(1), 117–123.
- Pithawala, K., Mishra, N., & Bahadur, A. (2010). Immobilization of urease in alginate, paraffin and lac. *Journal of the Serbian Chemical Society*, 75(2), 175–183.
- Polizeli, M. d. L. T. M., Jorge, J. A., & Terenzi, H. F. (1991). Pectinase production by Neurospora crassa: purification and biochemical characterization of extracellular polygalacturonase activity. *Journal of General Microbiology*, 137(8), 1815–1823.
- Posoongnoen, S., Ubonbal, R., Thammasirirak, S., Daduang, J., Minami, H., Yamamoto, K., & Daduang, S. (2015). α-Amylase from Mon Thong durian (Durio zibethinus Murr. cv. Mon Thong)-nucleotide sequence analysis, cloning and expression. *Plant Biotechnology*, 32, 1–10.
- Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2006). Multiple forms of

- polygalacturonase from mango (Mangifera indica L. cv Alphonso) fruit. *Food Chemistry*, 95(1), 30–36.
- Pressey, R. (1987). Exopolygalacturonase in tomato fruit. *Phytochemistry*, 26(7), 1867–1870.
- Pressey, R., & Avants, J. K. (1973). Two forms of polygalacturonase in tomatoes. Biochimica et Biophysica Acta (BBA) - Enzymology, 309(2), 363–369.
- Prinz, A., Zeiner, T., Vössing, T., Schüttmann, I., Zorn, H., & Górak, A. (2012). Experimental Investigation of Laccase Purification Using Aqueous Two-Phase Extraction.
- Priyanka, & Khanam, S. (2014). Supercritical Fluid Extraction of Natural Products: A Review. In *International Journal of Engineering Development and Research* (pp. 14–17).
- Quiroz-Reyes, C. N., Aguilar-Mendez, M. A., Ramírez-Ortíz, M. E., & Ronquillo-De Jesus, E. (2013). Comparative Study Of Ultrasound And Maceration Techniques For The Extraction Of Polyphenols From Cocoa Beans (Theobroma cacao L.). Revista Mexicana de Ingeniería Química, 12(1), 11–18.
- Rahimpour, F., Feyzi, F., Maghsoudi, S., & Hatti-Kaul, R. (2006). Purification of plasmid DNA with polymer-salt aqueous two-phase system: Optimization using response surface methodology. *Biotechnology and Bioengineering*, 95(4), 627–637.
- Raja, S., & Murty, V. R. (2013). Optimization of Aqueous Two-Phase Systems for the Recovery of Soluble Proteins from Tannery Wastewater Using Response Surface Methodology. *Journal of Engineering*, 2013, 1–10.
- Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V., & Ramesh, V. (2011). Aqueous Two Phase Systems for the Recovery of Biomolecules A Review. *Science and Technology*, *1*(1), 7–16.
- Ramana, V. L., Regupathi, I., Rashmi, B. S., & Basavaraj, S. N. (2016). Partitioning of Nitralase Enzyme from Pseudomonas putida in Polymer/Salt Aqueous Two Phase System. In *Biotechnology and Biochemical Engineering* (pp. 93–100). Singapore: Springer Singapore.
- Rasheedha, B. A., Kalpana, D. M., Gnanaprabhal, G. R., Pradeep, B. V., & Palaniswamy, M. (2013). Production and characterization of pectinase enzyme from Penicillium chrysogenum. *Indian Journal of Science and Technology*, 3(4), 377–381.
- Ratanapongleka, K. (2010). Recovery of Biological Products in Aqueous Two Phase Systems. *International Journal of Chemical Engineering and Applications*,

- *1*(2), 191–198.
- Raviyan, P., Zhang, Z., & Feng, H. (2005). Ultrasonication for tomato pectinmethylesterase inactivation: effect of cavitation intensity and temperature on inactivation. *Journal of Food Engineering*, 70(2), 189–196.
- Rehman, H. U., Aman, A., Silipo, A., Qader, S. A. U., Molinaro, A., & Ansari, A. (2013). Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. *Food Chemistry*, 139(1–4), 1081–1086.
- Reza, M. (2007). Isolation and Characterization of Polygalacturonase Produced by Tetracoccosporium sp. *Iran. J. Chem. Chem. Eng.*, 26(1).
- Rodrigo, D., Cortés, C., Clynen, E., Schoofs, L., Loey, A. Van, & Hendrickx, M. (2006). Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. *Food Research International*, *39*, 440–448.
- Rodrigues, S., Pinto, G., & Fernandes, F. (2008). Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. *Ultrasonics Sonochemistry*, 15(1), 95–100.
- Rodríguez-Fernández, D. E., Rodríguez-León, J. A., de Carvalho, J. C., Sturm, W., & Soccol, C. R. (2011). The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. *Bioresource Technology*, 102(22), 10657–10662.
- Rojas, N. L., Ortiz, G. E., Chesini, M., Baruque, D. J., & Cavalitto, S. F. (2011). Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures. *Food Technology & Biotechnology*, 49(3), 316–321.
- Rostagno, M. A., Palma, M., & Barroso, C. G. (2003). Ultrasound-assisted extraction of soy isoflavones. *Journal of Chromatography*. *A*, 1012(2), 119–28.
- Roy, I., & Gupta, M. (2002). Downstream Processing of Enyzmes/Proteins. Proceedings- Indian National Science Academy Part B. 175–204.
- Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. *Biochemical Engineering Journal*, 65, 90–95.
- Salabat, A., Tiani Moghadam, S., & Rahmati Far, M. (2010). Liquid–liquid equilibria of aqueous two-phase systems composed of TritonX-100 and sodium citrate or magnesium sulfate salts. *Calphad*, *34*(1), 81–83.

- Salariato, D., Diorio, L. A., Mouso, N., & Forchiassin, F. (2010). Extraction and characterization of polygalacturonase of Fomes sclerodermeus produced by solid-state fermentation. *Revista Argentina de Microbiología*, 42, 57–62.
- Sanatan, P. T., Lomate, P. R., Giri, A. P., & Hivrale, V. K. (2013). Characterization of a chemostable serine alkaline protease from Periplaneta americana. *Biotechnology Letters*, 14(32), 135–138.
- Sandeep, B. S., Kishor Mohan, T. C., & Murugan, K. (2014). Purification and kinetic characterization of polygalacturonase 3 from palmyrah palm (Borassus flabellifer L). *Journal of Plant Biochemistry and Biotechnology*, 23(2), 221–224
- Santoso, P. J. (2012). Agroinovasi Indonesia Berpotensi Produksi Durian Sepanjang Tahun. *Sinar Tani*, 19, 10–16.
- Saoudi, B., Habbeche, A., Kerouaz, B., Haberra, S., Ben Romdhane, Z., Tichati, L., Ladjama, A. (2015). Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. *Process Biochemistry*, 50(12), 2259–2266.
- Saravanan, S., Rao, J. R., Murugesan, T., Nair, B. U., & Ramasami, T. (2007). Partition of tannery wastewater proteins in aqueous two-phase poly (ethylene glycol)-magnesium sulfate systems: Effects of molecular weights and pH. *Chemical Engineering Science*, 62(4), 969–978.
- Sathiyaraj, G., Srinivasan, S., Kim, H.-B., Subramaniyam, S., Lee, O. R., Kim, Y.-J., & Yang, D. C. (2011). Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans. *Brazilian Journal of Microbiology*, 42(2), 794–806.
- Sattayasai, N. (2012). Protein Purification. In *Chemical Biology*. Thailand: Khon Kaen University, 3–18.
- Schnitzhofer, W., Weber, H.-J., Vršanská, M., Biely, P., Cavaco-Paulo, A., & Guebitz, G. M. (2007a). Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. *Enzyme and Microbial Technology*, 40(7), 1739–1747.
- Schnitzhofer, Weber, H. ., Vršanská, M., Biely, P., Cavaco-Paulo, A., & Guebitz, G. M. (2007b). Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. *Enzyme and Microbial Technology*, 40, 1739–1747.
- Show, P. L., Tan, C. P., Anuar, M. S., Ariff, A., Yusof, Y. A., Chen, S. K., & Ling, T. C. (2012). Primary recovery of lipase derived from Burkholderia cenocepacia strain ST8 and recycling of phase components in an aqueous two-phase system. *Biochemical Engineering Journal*, 60, 74–80.

- Siddiqui, M. A., Pande, V., & Arif, M. (2012). Production, Purification, and Characterization of Polygalacturonase from *Rhizomucor pusillus* Isolated from Decomposting Orange Peels. *Enzyme Research*, 2012, 1–8.
- Silva, D., Martins, E. S., Leite, R. S. R., Da Silva, R., Ferreira, V., & Gomes, E. (2007). Purification and characterization of an exo-polygalacturonase produced by Penicillium viridicatum RFC3 in solid-state fermentation. *Process Biochemistry*, 42(8), 1237–1243.
- Silvério, S. C., Rodríguez, O., Tavares, A. P. M., Teixeira, J. A., & Macedo, E. A. (2013). Laccase recovery with aqueous two-phase systems: Enzyme partitioning and stability. *Journal of Molecular Catalysis B: Enzymatic*, 87, 37–43.
- Singh, J., & Sharma, A. (2012). Application of response surface methodology to the modeling of cellulase purification by solvent extraction. *Advances in Bioscience and Biotechnology*, 3(4), 408–416.
- Singh, P., & Dwivedi, U. N. (2008). Purification and characterisation of multiple forms of polygalacturonase from mango (Mangifera indica cv. Dashehari) fruit. *Food Chemistry*, 111(2), 345–349.
- Soriano, M., Diaz, P., & Pastor, F. I. J. (2005). Pectinolytic Systems of Two Aerobic Sporogenous Bacterial Strains with High Activity on Pectin. *Current Microbiology*, 50(2), 114–118.
- Souza, J. V. ., Silva, É. S., Maia, M. L. ., & Teixeira, M. F. . (2003). Screening of fungal strains for pectinolytic activity: endopolygalacturonase production by Peacilomyces clavisporus 2A.UMIDA.1. *Process Biochemistry*, 39(4), 455–458.
- Subhadrabandhu, S., & Ketsa, S. (2001). *Durian King of Tropical Fruits*. *Durian King of Tropical Fruits*. Daphne Brassell Associates Ltd., Wellington.
- Sulaiman, A. Z., Ajit, A., Yunus, R. M., & Chisti, Y. (2011). Ultrasound-assisted fermentation enhances bioethanol productivity. *Biochemical Engineering Journal*, 54(3), 141–150.
- Sun, H., Ge, X., Lv, Y., & Wang, A. (2012). Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. *Journal of Chromatography A*, 1237, 1–23.
- Sun, S. (2014). Data analysis on properties of Polygalacturonase purified and separated from kiwifruit. *Advance Journal of Food Science and Technology*, 6(7), 839–842.
- Szijártó, N., Horan, E., Zhang, J., Puranen, T., Siika-Aho, M., & Viikari, L. (2011). Thermostable endoglucanases in the liquefaction of hydrothermally pretreated

- wheat straw. *Biotechnology for Biofuels*, 4(1), 2.
- Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and protein extraction: the past and the present. *Journal of Biomedicine & Biotechnology*, 2009, 574398.
- Tang, D. S., Tian, Y. J., He, Y. Z., Li, L., Hu, S. Q., & Li, B. (2010). Optimisation of ultrasonic-assisted protein extraction from brewer's spent grain. *Czech Journal of Food Sciences*, 28(1), 9–17.
- Teo, C. C., Chong, W. P. K., & Ho, Y. S. (2013). Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. *Metabolomics*, 9(5), 1109–1128.
- Thakur, A., Pahwa, R., Singh, S., & Gupta, R. (2010). Production, Purification, and Characterization of Polygalacturonase from Mucor circinelloides ITCC 6025. *Enzyme Research*, 2010, 170549.
- Tiwari, B. K., O'Donnell, C. P., & Cullen, P. J. (2009). Effect of sonication on retention of anthocyanins in blackberry juice. *Journal of Food Engineering*, 93(2), 166–171.
- Tongdang, T. (2008). Some Properties of Starch Extracted from Three Thai Aromatic Fruit Seeds. *Starch Stärke*, 60(3–4), 199–207.
- Tu, T., Meng, K., Bai, Y., Shi, P., Luo, H., Wang, Y., ... Yao, B. (2013). High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. *Food Chemistry*, 141(3), 2974–2981.
- Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry A review. *Innovative Food Science and Emerging Technologies*, 9(2), 161–169.
- Wai, W. W., Alkarkhi, A. F. M., & Easa, A. M. (2010). Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. *Food and Bioproducts Processing*, 88(2–3), 209–214.
- Wakabayashi, K., & Huber, D. J. (2001). Purification and catalytic properties of polygalacturonase isoforms from ripe avocado (Persea americana) fruit mesocarp. *Physiologia Plantarum*, 113(2), 210–216.
- Weng, W.-L., Liu, Y.-C., & Lin, C.-W. (2001). Studies on the Optimum Models of the Dairy Product Kou Woan Lao Using Response Surface Methodology. *Asian-Australasian Journal of Animal Sciences*, 14(10), 1470–1476.
- Widowati, E., Utami, R., Mahadjoeno, E., & Saputro, G. P. (2017). Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste. *IOP Conference*

- Series: Materials Science and Engineering, 193.
- Wu, Q., Szakacs-Dobozi, M., Hemmat, M., & Hrazdina, G. (1993). Endopolygalacturonase in Apples (Malus domestica) and Its Expression during Fruit Ripening. *Plant Physiology*, 102(1), 219–225.
- Wu, Y.-T., Pereira, M., Venâncio, A., & Teixeira, J. (2001). Separation of endopolygalacturonase using aqueous two-phase partitioning. *Journal of Chromatography A*, 929(1–2), 23–29.
- Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). Influence of ultrasonic stimulation on the germination of barley seed and its alpha-amylase activity. *Journal of Biotechnology*, 7(14), 2465–2471.
- Yang, H., Li, X., Tang, Y., Zhang, N., Chen, J., & Cai, B. (2009). Supercritical fluid CO2 extraction and simultaneous determination of eight annonaceous acetogenins in Annona genus plant seeds by HPLC–DAD method. *Journal of Pharmaceutical and Biomedical Analysis*, 49(1), 140–144.
- Yau, Y. K., Ooi, C. W., Ng, E.-P., Lan, J. C.-W., Ling, T. C., & Show, P. L. (2015). Current applications of different type of aqueous two-phase systems. *Bioresources and Bioprocessing*, 2(1), 49.
- Zhang, S., Bi, H., & Liu, C. (2007). Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. *Separation and Purification Technology*, 57(2), 277–282.
- Zhang, Y.-Y., & Liu, J.-H. (2010). Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems. *Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences*, 878(11–12), 909–12.
- Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. (2008). Ultrasound-assisted extraction of oil from flaxseed. *Separation and Purification Technology*, 62(1), 192–198.
- Zhi, W., Song, J., Ouyang, F., & Bi, J. (2005). Application of response surface methodology to the modeling of α-amylase purification by aqueous two-phase systems. *Journal of Biotechnology*, 118(2), 157–165.
- Zohdi, N., & Amid, M. (2013). Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus) Peel. *Molecules*, 18(11), 14366–14380.
- Zou, T.-B., Jia, Q., Li, H.-W., Wang, C.-X., & Wu, H.-F. (2013). Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. *Marine Drugs*, 11(5), 1644–55.

Zou, T.-B., Wang, M., Gan, R.-Y., & Ling, W.-H. (2011). Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology. *International Journal of Molecular Sciences*, *12*(12), 3006–3017.

