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UML-B is a graphical front-end for the formal method Event-B. UML-B mod-
els are translated to Event-B for verification purpose. Modelling and proving
become difficult for complex models with many state variables and transitions.
Reducing modelling and proving effort is potential for UML-B models. Decom-
position, composition, model matching, and pattern reuse are attracting meth-
ods to support individual team modelling, comparing, integrating, and reusing
models helping UML-B modellers and practitioners to avoid remodelling and
reduce the proof effort required to verify the correctness of the models.

Decomposition in Event-B divides a complex model into sub-parts reducing cer-
tainly its complexity and facilitating independent modelling for the sub-parts.
Two decomposition styles exist for Event-B which are shared-event and shared-
variable. The shared-event style has been introduced in UML-B and it is consid-
ered suitable for synchronous message passing systems. However, the shared-
variable style is not supported before in UML-B. In this research, a correct-
by-construction method is introduced to support the shared-variable decompo-
sition in UML-B that is considered suitable for asynchronous shared variable
models. The proposed method is provided through three sequential phases
which are refinement-preparation, actual-decomposition, and refinement-after-
decomposition. The provision of new notions, conditions, and rules is a signifi-
cant step to maintain the graphical semantics of UML-B and the shared variable
formalism of Event-B. We introduce refinement-preparation strategies and con-
ditions, actual-decomposition rules, refinement-after-decomposition conditions,
new UML-B notions, and a representation mechanism. The method is formalised
and verified via a generic proof on a theoretical level to show how the generated
semantic implicit invariants and the shared variable formalism are preserved,
and to prove that any recomposed machine is indeed correct and a refinement
of the original decomposable machine when the method phases conditions and
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rules are followed. The method is illustrated by a case study on the updating of
master data, in which the notions, conditions, and rules are applied.

Event-B composition is to reuse existing interacting models specifications to con-
struct a larger one fulfilling the complete system behaviour. In this research, a
correct-by-construction method is introduced to compose UML-B machines that
interact via the shared-variable style. This saves the modelling and proving
effort via the correct machines that are being composed. The method is pro-
vided through steps and rules, and its correctness is verified by proving that
any composed machine is indeed correct when the method rules are followed.
The method applicability is also illustrated by the case study on the updating of
master data.

Identifying similarities between models has several benefits such as model com-
parison, integration, and evolution. Several matching and comparison methods
have been done in the context of model driven software engineering. However,
matching models via a systematic method is not supported yet in UML-B. In this
work, we propose a matching method for UML-B elements based on their se-
mantics. This method includes variable-based, event-based, and state-machine
matching. The variable-based matching provides rules for matching UML-B
classes, attributes, states, and variables. The event-based matching provides
rules and cases for matching UML-B transitions and class-events. The state-
machine matching provides rules for matching UML-B state-machines based on
the state and transition matching rules. The matching rules are formalized by
means of the generated corresponding Event-B specifications. The correctness
of the rules is justified via preserving the compatibility of the matched state-
variables and corresponding modifying events including their matched guards
and actions. These rules are illustrated via a communication-based case study to
show their applicability.

Pattern reuse allows reusing models in constructing new ones saving the mod-
elling and proving effort. However, there is no systematic method in terms of
pattern reuse in UML-B. In this research, a correct-by-construction method is in-
troduced to support the reuse of UML-B models which is based on the Event-B
pattern reuse. The method is provided through three sequential phases which
are pattern matching, checking, and incorporation. The provision of new guide-
lines and rules is necessary to preserve both the UML-B graphical semantics and
the method correctness. This is proven via a generic proof using the proofs from
the pattern that is integrated with the problem model. The proposed method re-
duces certainly the modelling and proving effort by using existing models in
constructing new ones, since it is always that the proof obligations from the
pattern model do not need to be proven again during the integration between
the pattern and problem models. The method applicability is illustrated by the
communication-based case study introduced in the model matching.
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UML-B adalah grafik bahagian hadapan untuk kaedah formal bagi Event-B.
Model UML-B diterjemahkan ke Event-B untuk tujuan pengesahan. Pemodelan
dan pembuktian menjadi sukar bagi model kompleks yang mempunyai banyak
pembolehubah dan peralihan keadaan. Pengurangan model dan usaha pembuk-
tian berpotensi untuk diaplikasikan di dalam Event-B. Penguraian, komposisi,
pemadanan model dan penggunaan semula corak adalah kaedah yang menarik
untuk menyokong pemodelan pasukan secara individu, perbandingan, integrasi
dan penggunaan semula model. Ia membantu UML-B modellers dan pengamal
untuk mengelakkan pembentukan semula dan mengurangkan usaha pembuk-
tian yang diperlukan bagi mengesahkan ketepatan model.

Penguraian dalam Event-B akan membahagikan model kompleks kepada be-
berapa pecahan bahagian bagi mengurangkan kerumitan dan memudahkan
pemodelan bebas untuk pecahan bahagian. Dua cara penguraian sedia
ada bagi Event-B adalah perkongsian acara dan perkongsian pembolehubah.
Gaya perkongsian acara telah diperkenalkan di dalam UML-B dan diang-
gap sesuai untuk sistem penghantaran pesanan secara serentak. Kaedah
Perkongsian pembolehubah pula sebelum ini tidak disokong di dalam UML-
B. Di dalam kajian ini, kaedah pembetulan melalui pembinaan diperkenalkan
untuk menyokong penguraian perkongsian pembolehubah dalam UML-B yang
dianggap sesuai untuk model pembolehubah bersama yang tidak serentak.
Kaedah yang dicadangkan dibahagikan kepada tiga fasa berturutan iaitu perse-
diaan penyempurnaan, penguraian sebenar dan penyempurnaan selepas pen-
guraian. Penyediaan idea, syarat dan peraturan baru adalah langkah pent-
ing untuk mengekalkan semantik grafik bagi UML-B dan formalisme pembole-
hubah bersama untuk Event-B. Kami mencadangkan strategi dan syarat perse-
diaan penyempurnaan, peraturan penguraian sebenar, perkongsian pengertian
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UML-B dan mekanisme perwakilan. Kaedah ini diformalkan dan disahkan
melalui bukti umum pada tahap teoritikal bagi menunjukkan bagaimana peng-
hasilan semantik tersirat tak berubah dan formalisme perkongsian pembole-
hubah dapat dikekalkan, dan untuk membuktikan bahawa mana-mana mesin
yang direkodkan semula adalah tepat dan sempurna dari satu dekomposisi asal
apabila syarat dan peraturan bagi fasa di dalam kaedah diikuti. Kaedah ini
digambarkan melalui kajian kes dalam pengemaskinian data induk, di mana
pengertian, syarat dan peraturan digunakan.

Komposisi Event-B adalah untuk menggunakan semula spesifikasi model inter-
aksi sedia ada untuk membina model yang lebih besar bagi memenuhi tingkah
laku sistem yang lengkap. Dalam kajian ini, kaedah pembetulan melalui pem-
binaan diperkenalkan untuk menyusun model-model UML-B yang akan berin-
teraksi menggunakan gaya perkongsian pembolehubah. Pemodelan dan pem-
buktian usaha dapat dijimatkan melalui penghasilan pecahan model yang betul.
Kaedah ini disediakan melalui langkah-langkah dan peraturan, dan ketepatan-
nya dapat disahkan dengan membuktikan mesin yang disusun adalah betul apa-
bila peraturan kaedah diikuti. Aplikasi kaedah ini juga digambarkan dengan
kajian kes mengenai pengemaskinian data induk.

Mengenal pasti persamaan antara model mempunyai beberapa kebaikan seperti
perbandingan model, integrasi dan evolusi. Beberapa kaedah pemadanan
dan perbandingan telah dilakukan di dalam konteks kejuruteraan perisisan.
Walaubagaimanapun,model yang sepadan melalui kaedah yang sistematik
masih belum disokong lagi dalam kaedah UML-B. Dalam karya ini, kami
mencadangkan kaedah pemadanan untuk elemen UML-B berdasarkan seman-
tik mereka. Kaedah ini termasuk asas pembolehubah, asas peristiwa, dan
keadaan pemadanan mesin. Pemadanan berasaskan pembolehubah menyedi-
akan peraturan untuk pemadanan kelas UML-B, attibut, keadaan dan pembole-
hubah. Pemadanan berasaskan peristiwa menyediakan peraturan dan kes un-
tuk transisi pemadanan UML-B dan peristiwa kelas. Pemadanan berasaskan
keadaan mesin pula menyediakan peraturan untuk keadaan mesin UML-B
yang sepadan berdasarkan peraturan pemadanan keadaan dan peralihan. Per-
aturan yang sesuai diformalkan melalui spesifikasi Event-B yang dihasilkan.
Ketepatan peraturan dapat dibuktikan dengan memelihara kesesuaian pembole-
hubah keadaan dan pengubahsuaian peristiwa yang sepadan termasuklah pen-
gawalan dan tindakan yang dipadankan. Peraturan ini digambarkan melalui
kajian kes berdasarkan komunikasi untuk menunjukkan kebolehgunaannya.

Penggunaan semula corak yang membolehkan penggunaan semula model
dalam membina model yang baru dapat menjimatkan model dan usaha pem-
buktian. Walaubagaimanapun, tiada kaedah yang sistematik dari segi penggu-
naan semula corak dalam UML-B. Dalam kajian ini, kaedah pembetulan melalui
pembinaan diperkenalkan untuk menyokong penggunaan semula model UML-
B di mana ia berdasarkan penggunaan semula corak Event-B. Kaedah ini dise-
diakan melalui tiga fasa berturutan iaitu pemadanan corak, pemeriksaan dan
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penggabungan. Penyediaan garis panduan dan peraturan yang baru adalah
perlu untuk memelihara kedua-dua semantik grafik UML-B dan ketepatan
kaedah. Ini terbukti melalui bukti umum menggunakan bukti dari corak yang
telah di integrasikan dengan model masalah. Kaedah yang dicadangkan da-
pat mengurangkan pemodelan dan usaha pembuktian dengan model sedia ada
dalam membina model yang baru. Hal demikian kerana pembuktian dari corak
model tidak perlu dibuktikan lagi ketika integrasi antara corak dan masalah
model. Aplikasi model ini digambarkan melalui kes kajian berdasarkan komu-
nikasi yang diperkenalkan dalam pemadanan model.
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CHAPTER 1

OVERVIEW OF RESEARCH PROJECT

1.1 Introduction

This chapter describes an overview of this thesis. This includes the motivation,
the problem statements, the research questions, scope, objectives and summary
of contributions of this work.

1.2 Motivation

Formal methods [1, 2] in the software engineering discipline allow the design,
modelling, verification, and maintenance of hardware and software systems.
Formal methods introduce preciseness, remove ambiguity in specifications, and
support the verification of requirements and design properties. The specifica-
tions in formal methods could be viewed as mathematical models, which rep-
resent the intended behaviour of the systems and they are used to model safety
critical systems such as: railway control systems, nuclear power plant control
systems, aircraft control systems, intelligent transport systems, and medical sys-
tems.

Event-B [1] is a formal method, which is a variant of the B-method and is based
on Action Systems. An action system [3] is a collection of actions on a set of
state variables. An action system describes the state space (the set of possible
values that could be assigned to the state variables) of a system and the possible
executable actions that change the values of the system state variables.

UML-B [4, 5, 6, 7] is a graphical front end of Event-B and relies in its infrastruc-
ture on Event-B formalism in verifying the system properties. It shares simi-
lar properties with object oriented modelling including class instances and at-
tributes. UML-B is similar to UML, but it has a new notation and has its own
meta-model. UML-B is supported by a tool which provides the user with the en-
vironment for drawing four diagrams. These diagrams are translated to Event-B
in order to be verified using Rodin theorem provers.

As the use of formal methods is increasing and the real life scenarios become
more complicated, the system specifications are gaining more complexity. This
raises the need of methods and approaches to reduce this complexity and man-
age these formal models. Decomposition, composition, model matching and pat-
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tern reuse are proposed in the context of model driven software engineering to
facilitate managing the models and dealing with their complexity.

1.3 Problem Statement

Methods and approaches are needed to manage the formal models and han-
dle their complexity. Decomposition, composition, model matching and pattern
reuse are proposed in the context of model driven software engineering to facil-
itate managing the models and dealing with their complexity.

Decomposition splits a model specification into subparts in order to prove and
model each subpart individually. Two decomposition styles exist in Event-B
which are the shared-event [8] and the shared-variable [9] styles. The shared-
event decomposition has been introduced in UML-B [10] and it is considered
suitable for synchronous message passing distributed systems. However, the
shared-variable decomposition style, which is considered suitable for asyn-
chronous shared-memory models, is not introduced yet in UML-B.

Also, composition reuses existing correct models constructing a larger one by
means of integration. Shared-event composition has been introduced in UML-B
[10], however shared-variable composition is not yet introduced in UML-B.

In addition, model matching is for identifying similarities between models. This
has several benefits such as model comparison, integration, and evolution. Sev-
eral matching and comparison methods have been done in the context of model
driven software engineering [11], however, there is no existing research that con-
cerns the matching and comparison for UML-B models.

Further more, pattern reuse is important in software engineering discipline to
save effort and avoid remodelling. Reuse is seen in the use of design patterns
which are general solutions to common problems. A pattern reuse method has
been introduced in Event-B to avoid remodelling and reproving [12] of Event-B
models. It is possible to construct complex UML-B models that are correct-by-
construction. However, there no systematic method in terms of pattern reuse to
support the construction of these models.

The purpose of this research is to provide a methodology to support managing
and modelling UML-B specifications. This methodology supports the develop-
ment in UML-B in which modelling and proving efforts are handled.

2
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1.4 Research Questions

1. What are the extensions needed for UML-B language to support shared-
variable decomposition?

2. What are the necessary rules to prepare and decompose UML-B models by
the shared-variable style?.

3. What are the necessary rules to prepare and compose UML-B models by
the shared-variable style?.

4. How models in UML-B could be matched compatibly and consistently?

5. How pattern models in UML-B could be reused to construct larger models?

1.5 Research Objectives

The main objective of this research is:

• To design a methodology including a set of methods to facilitate the man-
agement of UML-B models and handling the models complexity.

The sub-objectives of this research are:

1. To extend UML-B language to support the shared-variable decomposition.

2. To propose a method of shared-variable decomposition for UML-B models.

3. To propose a method of shared-variable composition for UML-B models.

4. To propose a method of model matching for UML-B models.

5. To propose a method of pattern reuse for UML-B models.

1.6 Summary of Contributions

In this research, multiple methods to support and save the modelling and prov-
ing effort in UML-B are provided.

In Chapter 4, a method for shared-variable decomposition is proposed. The sub-
contributions in this method are as follows:

3
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• Refinement-preparation invariants and strategies.

• Actual-decomposition rules.

• Refinement-after-decomposition conditions and a representation mecha-
nism.

• New UML-B notions to realize the method.

• A formalisation and a generic formal proof for the method.

• A case study to illustrate the method applicability.

In Chapter 5, a composition method is proposed based on the shared-variable
style. The method rules are proposed, formalized and evaluated by a case study.

In Chapter 6, a method for matching models in UML-B is proposed based on the
set-theory, first-order-logic and Event-B that are the basis semantics for UML-B.
The sub-contributions in this method are as follows:

• Variable-based matching rules.

• Event-based matching rules.

• State-machine matching rules.

• A formalization of the rules and a compatibility proof.

• An illustrating case study.

In Chapter 7, a method for pattern reuse is proposed based on the Event-B pat-
tern reuse and the matching method in Chapter 6. The sub-contributions in this
method are as follows:

• Specialization of the model matching rules that are introduced in Chapter
6 to correspond to the pattern reuse concept.

• Checking rules for UML-B state-machine transition and class event that use
the UML-B class, attribute, state and variable.

• Incorporation rules for UML-B class, attribute, state, variable state-
machine, transition and class event.

• A formalization of the pattern reuse method.

• A formal proof for the method on a theoretical level.

• A case study to illustrate the method applicability.

4
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1.7 Research Scope

This research focuses on supporting the modeling of UML-B machines. Shared-
variable decomposition and composition are to decompose and compose UML-B
machines in the context of shared-memory models. Model matching is to match
UML-B machines including their contained classes, attributes, states, variables,
transitions and class-events. Pattern reuse is to use any existing UML-B machine
model in constructing a larger problem UML-B refinement machine model.

1.8 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 describes a background study related to this research. A background is
presented about the formal methods (B-Method, Event-B, Z, VDM), some of the
well-known object-oriented formal languages (VDM++, Object-Z), UML-B, some
parallel computing models, refinement and decomposition in (Event-B, UML-B),
pattern reuse in Event-B, and related work.

Chapter 3 presents the research operational framework, research methodology
needed to meet the objectives, and tools which are used.

Chapter 4 introduces the shared-variable decomposition method. The method
is provided in this chapter through three sequential phases: refinement-
preparation, actual-decomposition, and refinement-after-decomposition.

Chapter 5 introduces the shared-variable composition method including the re-
quired conditions and the necessary rules to compose machines.

Chapter 6 introduces the method for model matching including the variable-
based, event-based, and state-machine matching rules.

Chapter 7 introduces the method for patten reuse. The method is provided in
this chapter through three phases: matching, checking, and incorporation.

Chapter 8 concludes the thesis. A summary of contributions, limitations, and
future works of the thesis are presented. Comparison to other work on decom-
position, composition, model matching, and pattern reuse are also discussed.

5
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