
© C
OPYRIG

HT U
PM 

 

UNIVERSITI PUTRA MALAYSIA 
 

A METHODOLOGY TO SUPPORT UML-B MODEL DEVELOPMENT 
 

 
 
 
 
 
 
 
 
 

MUHAMMED BASHEER JASSER 
 
 
 
 
 
 
 
 
 
 
 
 

FSKTM 2018 19 



© C
OPYRIG

HT U
PM

A METHODOLOGY TO SUPPORT UML-B MODEL DEVELOPMENT

By

MUHAMMED BASHEER JASSER

Thesis submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of

Philosophy

January 2018



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, lo-
gos,icons, photographs and all other artwork, is copyright material of Univer-
siti Putra Malaysia unless otherwise stated. Use may be made of any material
contained within the thesis for non-commercial purposes from the copyright
holder.Commercial uses of material may only be made with the express, prior,
written permission of Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

DEDICATIONS

To my mother Sahar and father Mohammad, thank you for your unconditional love,
support, advice and encouragement that motivate me to complete my goals and set

higher targets.

To my sisters Lima and Lamees, thank you for providing me with hope and love that
always surround me with strength and ambition.

To all my relatives and friends, thank you for your understanding and encouragement
in many moments. Your friendship makes my life an unforgettable experience. I cannot

list all the names, but you are all in my mind and heart.

Finally, to All whom I love.



© C
OPYRIG

HT U
PM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

A METHODOLOGY TO SUPPORT UML-B MODEL DEVELOPMENT

By

MUHAMMED BASHEER JASSER

January 2018

Chairman: Mar Yah Said, PhD
Faculty: Computer Science and Information Technology

UML-B is a graphical front-end for the formal method Event-B. UML-B mod-
els are translated to Event-B for verification purpose. Modelling and proving
become difficult for complex models with many state variables and transitions.
Reducing modelling and proving effort is potential for UML-B models. Decom-
position, composition, model matching, and pattern reuse are attracting meth-
ods to support individual team modelling, comparing, integrating, and reusing
models helping UML-B modellers and practitioners to avoid remodelling and
reduce the proof effort required to verify the correctness of the models.

Decomposition in Event-B divides a complex model into sub-parts reducing cer-
tainly its complexity and facilitating independent modelling for the sub-parts.
Two decomposition styles exist for Event-B which are shared-event and shared-
variable. The shared-event style has been introduced in UML-B and it is consid-
ered suitable for synchronous message passing systems. However, the shared-
variable style is not supported before in UML-B. In this research, a correct-
by-construction method is introduced to support the shared-variable decompo-
sition in UML-B that is considered suitable for asynchronous shared variable
models. The proposed method is provided through three sequential phases
which are refinement-preparation, actual-decomposition, and refinement-after-
decomposition. The provision of new notions, conditions, and rules is a signifi-
cant step to maintain the graphical semantics of UML-B and the shared variable
formalism of Event-B. We introduce refinement-preparation strategies and con-
ditions, actual-decomposition rules, refinement-after-decomposition conditions,
new UML-B notions, and a representation mechanism. The method is formalised
and verified via a generic proof on a theoretical level to show how the generated
semantic implicit invariants and the shared variable formalism are preserved,
and to prove that any recomposed machine is indeed correct and a refinement
of the original decomposable machine when the method phases conditions and

i



© C
OPYRIG

HT U
PM

rules are followed. The method is illustrated by a case study on the updating of
master data, in which the notions, conditions, and rules are applied.

Event-B composition is to reuse existing interacting models specifications to con-
struct a larger one fulfilling the complete system behaviour. In this research, a
correct-by-construction method is introduced to compose UML-B machines that
interact via the shared-variable style. This saves the modelling and proving
effort via the correct machines that are being composed. The method is pro-
vided through steps and rules, and its correctness is verified by proving that
any composed machine is indeed correct when the method rules are followed.
The method applicability is also illustrated by the case study on the updating of
master data.

Identifying similarities between models has several benefits such as model com-
parison, integration, and evolution. Several matching and comparison methods
have been done in the context of model driven software engineering. However,
matching models via a systematic method is not supported yet in UML-B. In this
work, we propose a matching method for UML-B elements based on their se-
mantics. This method includes variable-based, event-based, and state-machine
matching. The variable-based matching provides rules for matching UML-B
classes, attributes, states, and variables. The event-based matching provides
rules and cases for matching UML-B transitions and class-events. The state-
machine matching provides rules for matching UML-B state-machines based on
the state and transition matching rules. The matching rules are formalized by
means of the generated corresponding Event-B specifications. The correctness
of the rules is justified via preserving the compatibility of the matched state-
variables and corresponding modifying events including their matched guards
and actions. These rules are illustrated via a communication-based case study to
show their applicability.

Pattern reuse allows reusing models in constructing new ones saving the mod-
elling and proving effort. However, there is no systematic method in terms of
pattern reuse in UML-B. In this research, a correct-by-construction method is in-
troduced to support the reuse of UML-B models which is based on the Event-B
pattern reuse. The method is provided through three sequential phases which
are pattern matching, checking, and incorporation. The provision of new guide-
lines and rules is necessary to preserve both the UML-B graphical semantics and
the method correctness. This is proven via a generic proof using the proofs from
the pattern that is integrated with the problem model. The proposed method re-
duces certainly the modelling and proving effort by using existing models in
constructing new ones, since it is always that the proof obligations from the
pattern model do not need to be proven again during the integration between
the pattern and problem models. The method applicability is illustrated by the
communication-based case study introduced in the model matching.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

METODOLOGI UNTUK MENYOKONG MODEL PEMBANGUNAN
UML-B

Oleh

MUHAMMED BASHEER JASSER

Januari 2018

Pengerusi: Mar Yah Said, PhD
Fakulti: Sains Komputer dan Teknolologi Maklumat

UML-B adalah grafik bahagian hadapan untuk kaedah formal bagi Event-B.
Model UML-B diterjemahkan ke Event-B untuk tujuan pengesahan. Pemodelan
dan pembuktian menjadi sukar bagi model kompleks yang mempunyai banyak
pembolehubah dan peralihan keadaan. Pengurangan model dan usaha pembuk-
tian berpotensi untuk diaplikasikan di dalam Event-B. Penguraian, komposisi,
pemadanan model dan penggunaan semula corak adalah kaedah yang menarik
untuk menyokong pemodelan pasukan secara individu, perbandingan, integrasi
dan penggunaan semula model. Ia membantu UML-B modellers dan pengamal
untuk mengelakkan pembentukan semula dan mengurangkan usaha pembuk-
tian yang diperlukan bagi mengesahkan ketepatan model.

Penguraian dalam Event-B akan membahagikan model kompleks kepada be-
berapa pecahan bahagian bagi mengurangkan kerumitan dan memudahkan
pemodelan bebas untuk pecahan bahagian. Dua cara penguraian sedia
ada bagi Event-B adalah perkongsian acara dan perkongsian pembolehubah.
Gaya perkongsian acara telah diperkenalkan di dalam UML-B dan diang-
gap sesuai untuk sistem penghantaran pesanan secara serentak. Kaedah
Perkongsian pembolehubah pula sebelum ini tidak disokong di dalam UML-
B. Di dalam kajian ini, kaedah pembetulan melalui pembinaan diperkenalkan
untuk menyokong penguraian perkongsian pembolehubah dalam UML-B yang
dianggap sesuai untuk model pembolehubah bersama yang tidak serentak.
Kaedah yang dicadangkan dibahagikan kepada tiga fasa berturutan iaitu perse-
diaan penyempurnaan, penguraian sebenar dan penyempurnaan selepas pen-
guraian. Penyediaan idea, syarat dan peraturan baru adalah langkah pent-
ing untuk mengekalkan semantik grafik bagi UML-B dan formalisme pembole-
hubah bersama untuk Event-B. Kami mencadangkan strategi dan syarat perse-
diaan penyempurnaan, peraturan penguraian sebenar, perkongsian pengertian

iii



© C
OPYRIG

HT U
PM

UML-B dan mekanisme perwakilan. Kaedah ini diformalkan dan disahkan
melalui bukti umum pada tahap teoritikal bagi menunjukkan bagaimana peng-
hasilan semantik tersirat tak berubah dan formalisme perkongsian pembole-
hubah dapat dikekalkan, dan untuk membuktikan bahawa mana-mana mesin
yang direkodkan semula adalah tepat dan sempurna dari satu dekomposisi asal
apabila syarat dan peraturan bagi fasa di dalam kaedah diikuti. Kaedah ini
digambarkan melalui kajian kes dalam pengemaskinian data induk, di mana
pengertian, syarat dan peraturan digunakan.

Komposisi Event-B adalah untuk menggunakan semula spesifikasi model inter-
aksi sedia ada untuk membina model yang lebih besar bagi memenuhi tingkah
laku sistem yang lengkap. Dalam kajian ini, kaedah pembetulan melalui pem-
binaan diperkenalkan untuk menyusun model-model UML-B yang akan berin-
teraksi menggunakan gaya perkongsian pembolehubah. Pemodelan dan pem-
buktian usaha dapat dijimatkan melalui penghasilan pecahan model yang betul.
Kaedah ini disediakan melalui langkah-langkah dan peraturan, dan ketepatan-
nya dapat disahkan dengan membuktikan mesin yang disusun adalah betul apa-
bila peraturan kaedah diikuti. Aplikasi kaedah ini juga digambarkan dengan
kajian kes mengenai pengemaskinian data induk.

Mengenal pasti persamaan antara model mempunyai beberapa kebaikan seperti
perbandingan model, integrasi dan evolusi. Beberapa kaedah pemadanan
dan perbandingan telah dilakukan di dalam konteks kejuruteraan perisisan.
Walaubagaimanapun,model yang sepadan melalui kaedah yang sistematik
masih belum disokong lagi dalam kaedah UML-B. Dalam karya ini, kami
mencadangkan kaedah pemadanan untuk elemen UML-B berdasarkan seman-
tik mereka. Kaedah ini termasuk asas pembolehubah, asas peristiwa, dan
keadaan pemadanan mesin. Pemadanan berasaskan pembolehubah menyedi-
akan peraturan untuk pemadanan kelas UML-B, attibut, keadaan dan pembole-
hubah. Pemadanan berasaskan peristiwa menyediakan peraturan dan kes un-
tuk transisi pemadanan UML-B dan peristiwa kelas. Pemadanan berasaskan
keadaan mesin pula menyediakan peraturan untuk keadaan mesin UML-B
yang sepadan berdasarkan peraturan pemadanan keadaan dan peralihan. Per-
aturan yang sesuai diformalkan melalui spesifikasi Event-B yang dihasilkan.
Ketepatan peraturan dapat dibuktikan dengan memelihara kesesuaian pembole-
hubah keadaan dan pengubahsuaian peristiwa yang sepadan termasuklah pen-
gawalan dan tindakan yang dipadankan. Peraturan ini digambarkan melalui
kajian kes berdasarkan komunikasi untuk menunjukkan kebolehgunaannya.

Penggunaan semula corak yang membolehkan penggunaan semula model
dalam membina model yang baru dapat menjimatkan model dan usaha pem-
buktian. Walaubagaimanapun, tiada kaedah yang sistematik dari segi penggu-
naan semula corak dalam UML-B. Dalam kajian ini, kaedah pembetulan melalui
pembinaan diperkenalkan untuk menyokong penggunaan semula model UML-
B di mana ia berdasarkan penggunaan semula corak Event-B. Kaedah ini dise-
diakan melalui tiga fasa berturutan iaitu pemadanan corak, pemeriksaan dan

iv



© C
OPYRIG

HT U
PM

penggabungan. Penyediaan garis panduan dan peraturan yang baru adalah
perlu untuk memelihara kedua-dua semantik grafik UML-B dan ketepatan
kaedah. Ini terbukti melalui bukti umum menggunakan bukti dari corak yang
telah di integrasikan dengan model masalah. Kaedah yang dicadangkan da-
pat mengurangkan pemodelan dan usaha pembuktian dengan model sedia ada
dalam membina model yang baru. Hal demikian kerana pembuktian dari corak
model tidak perlu dibuktikan lagi ketika integrasi antara corak dan masalah
model. Aplikasi model ini digambarkan melalui kes kajian berdasarkan komu-
nikasi yang diperkenalkan dalam pemadanan model.

v



© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Dr. Mar Yah, for her guidance
and support throughout this work, and especially for her confidence in me. Her
willingness to provide feedback made the completion of this work an enjoyable
experience. I would also like to thank Professor Abdul Azim and Dr. Pathiah for
the discussion and help.

I would also like to thank Dr. Jamilah. I have been so grateful to her support,
encouragement and advice in several occasions.

I cannot forget the help during the discussion with Professor Jean Raymond
Abrial. His feedback has clarified several issues in this work.

Finally, I would like to thank all the professors and doctors who helped me dur-
ing this research work.

vi



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Doctor of Phi-
losophy.

The members of the Supervisory Committee were as follows:

Mar Yah Said, PhD
Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Abdul Azim Abdul Ghani, PhD
Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Pathiah Abdul Samat, PhD
Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

viii



© C
OPYRIG

HT U
PM

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other

degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

• written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and Innovation) before thesis is published (in the
form of written, printed or in electronic form) including books, journals, mod-
ules, proceedings, popular writings, seminar papers, manuscripts, posters, re-
ports, lecture notes, learning modules or any other materials as stated in the
Universiti Putra Malaysia (Research) Rules 2012;

• there is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld as according to the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra
Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detec-
tion software.

Signature: Date:

Name and Matric No.: Muhammed Basheer Jasser (GS38917)

ix



© C
OPYRIG

HT U
PM

Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervi-
sion

• supervision responsibilities as stated in the Universiti Putra Malaysia (Grad-
uate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of
Chairman of
Supervisory
Committee:

Signature:
Name of
Member of
Supervisory
Committee:

Signature:
Name of
Member of
Supervisory
Committee:

x



© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Page

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS vi
APPROVAL vii
DECLARATION ix
LIST OF TABLES xvi
LIST OF FIGURES xvii

CHAPTER
1 OVERVIEW OF RESEARCH PROJECT 1

1.1 Introduction 1
1.2 Motivation 1
1.3 Problem Statement 2
1.4 Research Questions 3
1.5 Research Objectives 3
1.6 Summary of Contributions 3
1.7 Research Scope 5
1.8 Thesis Structure 5

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Formal Methods 6

2.2.1 B-Method 7
2.2.2 Event-B 7
2.2.3 Z-Method 10
2.2.4 Vienna Development Method VDM 11
2.2.5 Comparison between Z, VDM, B and Event-B 12

2.3 Unified Modeling Language 13
2.4 Object Oriented Formal Methods 14
2.5 UML-B 16

2.5.1 UML-B Diagrams 16
2.5.2 UML-B Semantics 19
2.5.3 UML-B Meta-model 20

2.6 Parallel Computing Models 22
2.7 Refinement 23

2.7.1 Refinement In Event-B 23
2.7.2 Refinement in Object Oriented Formal Methods 26

xi



© C
OPYRIG

HT U
PM

2.7.3 Refinement In UML-B 27
2.8 Decomposition and Composition 28

2.8.1 Decomposition and Composition In Event-B 28
2.8.2 Decomposition and Composition In Object Oriented For-

mal Methods 31
2.8.3 Decomposition and Composition In UML-B 32

2.9 Model Matching and Reuse 34
2.9.1 Model Matching and Reuse in Event-B 35
2.9.2 Model Matching and Reuse in Formal Specifications and

Object-Oriented Formal methods 38
2.10 Summary 39

3 RESEARCH METHODOLOGY 40
3.1 Introduction 40
3.2 Research Operational Framework 40
3.3 Methodology 41

3.3.1 The Shared-Variable Decomposition Method 41
3.3.2 The Shared-Variable Composition Method 43
3.3.3 The Model Matching Method 44
3.3.4 The Pattern model Reuse Method 44

3.4 Tools 46
3.5 Summary 46

4 THE SHARED-VARIABLE DECOMPOSITION METHOD 47
4.1 Introduction 47
4.2 Overview of the Master Data Update Case Study in UML-B 49
4.3 The Refinement-preparation Phase 51

4.3.1 The Master Data Update Case Study- Refinement Preparation 52
4.3.2 The Formalization of the Decomposable Machine and Re-

finement Preparation Invariants 59
4.4 The Actual-Decomposition Phase 70

4.4.1 Formalisation of the Actual-Decomposition Phase 70
4.4.2 The Master Data Update Case Study- Actual-Decomposition 76

4.5 The Refinement-After-Decomposition Phase 79
4.5.1 Conditions and Formalisation of the Refinement-after-

decomposition Phase 79
4.5.2 The Master Data Update Case Study- Refinement-After-

Decomposition 86
4.6 Invariants and Proof Obligations of the case study 89
4.7 Preservation of the Shared-Variable Formalism Conditions in

UML-B 90
4.7.1 New Notions Semantics 92
4.7.2 Shared Notions Consistency 92
4.7.3 Internal and External Transitions and Class-Events 93

xii



© C
OPYRIG

HT U
PM

4.8 The Overall Correctness and Proof Obligations of The Decompo-
sition Method 94

4.9 The Shared-variable UML-B Meta-model Extensions 99
4.9.1 The Shared UML-B Notions 99
4.9.2 The Representation-Mechanism 101

4.10 The Shared-variable Extensions for UML-B Diagrams and Draw-
ing Tools 103

4.11 Summary 105

5 THE SHARED-VARIABLE COMPOSITION METHOD 107
5.1 Introduction 107
5.2 Shared-Variable Composition Preparation 107
5.3 Shared Variable Composition Rules 109
5.4 Shared-Variable Composition Correctness 112
5.5 The Master Data Update Case Study 113
5.6 Summary 117

6 THE MODEL MATCHING METHOD 118
6.1 Introduction 118
6.2 Variable-based Matching 120

6.2.1 Classes Matching 120
6.2.2 Class Attributes Matching 121
6.2.3 State Matching 122
6.2.4 Variable Matching 123

6.3 Event-based Matching 124
6.3.1 Transitions Matching 125

6.4 State-Machine Matching 131
6.5 The Formalization and Correctness of the Matching Method 133

6.5.1 The Required Compatibility Conditions 133
6.5.2 The Formalization of the Matched Machines 134
6.5.3 The Preservation of the Compatibility Conditions in the

Formalization 136
6.6 Communication-Based Case Study 139

6.6.1 First Match 141
6.6.2 Second Match 143

6.7 The Significance of the Matching Method 145
6.8 Summary 146

7 THE PATTERN REUSE METHOD 148
7.1 Introduction 148
7.2 The Matching Phase 150

7.2.1 Variable-based Matching 154
7.2.2 Event-based Matching 155

xiii



© C
OPYRIG

HT U
PM

7.2.3 The State Machine Matching 157
7.3 The Checking Phase 160

7.3.1 Checking UML-B Transition TCheck 160
7.3.2 Checking UML-B Class Event 163

7.4 The Incorporation Phase 163
7.4.1 Merging the classes, attributes, states and variables 167
7.4.2 Invariants Preservation and Copying 170
7.4.3 Copying the non-matched transitions and class events 171
7.4.4 Copying the new pattern transitions and class events 172
7.4.5 Merging the refined pattern transitions and class-events

with extra implicit and explicit guards and actions 173
7.5 The Correctness and Proof Obligations of the Pattern Reuse Method181

7.5.1 The Compatibility Preservation of the Matched Pattern El-
ements 181

7.5.2 The Correctness Proof Obligations of the Integration 182
7.6 Case Study Validation 186

7.6.1 First Pattern Reuse 189
7.6.2 Second Pattern Reuse 194

7.7 Summary 199

8 CONCLUSIONS AND FUTURE WORKS 201
8.1 Contributions 201
8.2 Comparison to Other Works on the Decomposition and Composition202
8.3 Comparison to Other Works on the Model Matching and Pattern

Reuse 203
8.4 Limitations 205
8.5 Future Works 206

REFERENCES 207
APPENDICES
A THE CORRECTNESS PROOF OF THE SHARED-VARIABLE DE-

COMPOSITION AND COMPOSITION METHODS 214
A.1 Axioms 216

A.1.1 Invariant Refinement Axioms From Sys2RefM 216
A.1.2 Guard Refinement Axioms from Sys1RefM 216
A.1.3 Feasibility Refinement Axioms from Sys1RefM 216
A.1.4 Invariant Refinement and Simulation Axioms from Sys1RefM216
A.1.5 Invariant Axioms From Sys1RefM and Sys2RefM 217
A.1.6 Feasibility Axioms from Sys1RefM 217

A.2 Proof Obligations for SysRefCM 217
A.2.1 GRD_REF Proofs 217
A.2.2 FIS_REF Proofs 218
A.2.3 INV_REF&SIM Proofs 219
A.2.4 INV Proofs 222

xiv



© C
OPYRIG

HT U
PM

A.2.5 FIS Proofs 223
B THE JUSTIFICATION FOR THE REFINEMENT PREPARATION IN-

VARIANTS FOR UML-B CLASSES, UML-B STATES AND UML-B
ATTRIBUTES 225

C THE CORRECTNESS PROOF OF THE PATTERN REUSE METHOD 228
C.1 Axioms 228

C.1.1 Invariant Axiom From PatternAbs 228
C.1.2 Refinement Axioms From PatternRef 228
C.1.3 Feasibility Axiom From RefinementN 229

C.2 Proof Obligations For RefinementN+1 229
C.2.1 GRD_REF Proof obligation 229
C.2.2 FIS_REF Proof obligation 232
C.2.3 INV_REF&SIM Proof obligation 236

C.3 Proof Obligations For RefinementN 243
C.3.1 INV Proof Obligation 243

BIODATA OF STUDENT 246
LIST OF PUBLICATIONS 246

xv



© C
OPYRIG

HT U
PM

LIST OF TABLES

Table Page

2.1 Formal Methods Comparison 14
2.2 Generic instantiation and Event-B pattern reuse comparison 38

4.1 UML-B Shared-Variable Decomposition Frequently Used Symbols 48
4.2 Refinement Preparation- The UML-B elements of the decomposable ma-

chine UpdateMasterDBRef6 58
4.3 Master data update case study proof obligations 89

6.1 UML-B Matching Frequently Used Symbols 119
6.2 Transition matching cases 126
6.3 First Possible Matching 143
6.4 Second Possible Matching 145

7.1 UML-B Pattern Reuse- Matching Frequently Used Symbols 150
7.2 Transition matching cases of the pattern reuse method 156
7.3 TCheck- Extra Guards Checking 161
7.4 TCheck Extra Actions Checking 162
7.5 UML-B Pattern Reuse- Incorporation Frequently Used Symbols 166
7.6 First Pattern Matching 191
7.7 Second pattern reuse matching 196

A.1 Axioms used by GRD_REF refinement proofs in SysRefCM 215
A.2 Axioms used by FIS_REF refinement proofs in SysRefCM 215
A.3 Axioms used by INV_REF&SIM refinement proofs in SysRefCM 215
A.4 Axioms used by INV consistency proofs in SysRefCM 215
A.5 Axioms used by FIS consistency proofs in SysRefCM 215

xvi



© C
OPYRIG

HT U
PM

LIST OF FIGURES

Figure Page

2.1 B-Method Bank Machine 7
2.2 Event-B Bank System Model Context 9
2.3 Event-B Bank System Model Machine 9
2.4 Z-Method schema 10
2.5 Z State Initialization schema 11
2.6 Z Operation schema- Bank Withdraw 11
2.7 VDM Bank Module 12
2.8 Object-Z Class Construct 15
2.9 VDM++ Class Construct 16
2.10 UML-B package diagram 17
2.11 The bank system- UML-B context diagram 17
2.12 The bank system- UML-B class diagram 18
2.13 The bank system- UML-B state machine diagram 18
2.14 UML-B meta-model (part of) 21
2.15 Shared memory architectural model 22
2.16 Distributed local memory architectural model 23
2.17 Event-B Refinement 24
2.18 MNP shared variable decomposition split-point 28
2.19 MN and NP decomposed machines 29
2.20 Event-B model of the sub-machine MN 30
2.21 UML-B Flattening 33
2.22 Nested State Machines 34
2.23 Event-B Pattern Reuse Steps 35
2.24 Event-B Specifications of Abstract Pattern and Refinement Problem Ma-

chines 36
2.25 Event-B Specifications of Refinement Pattern and Next Refinement Prob-

lem Machines 37

3.1 Research Operational Framework 40
3.2 Shared-variable decomposition- research methodology 41
3.3 Shared-variable composition- research methodology 43
3.4 Model matching- research methodology 44
3.5 Pattern Reuse- research methodology 45

4.1 Decomposition method phases 47
4.2 Update of master data- Schemata 49
4.3 Master data update case study- The package diagram 50
4.4 Sets Communication- The correct preferable case 51
4.5 UML-B Diagrams- The Master Data Update Case-Study (PartOf) 53
4.6 Update Master DB- Communication Recognition- Refinement-machine

UpdateMasterDBRef3 Class and State-machine diagrams 55
4.7 UpdateMasterDB- Decomposable Machine UpdateMasterDBRef6- Class

and State-machine diagrams 57

xvii



© C
OPYRIG

HT U
PM

4.8 SysRefnM Decomposable Machine- Class and CommunicationSM state-
machine diagrams 60

4.9 Sys1M Decomposed Machine- Class and CommunicationSM state-
machine diagrams 71

4.10 The Actual decomposition Phase- The Decomposed machine Local- class
and state machine diagrams 77

4.11 Actual decomposition Phase- The Decomposed machine Server class and
state machine diagrams 78

4.12 Sys1RefM Decomposable Machine- Class and CommunicationSM state-
machine diagrams 81

4.13 Refinement-after-decomposition Phase- LocalRef1 class and state machine
diagrams 87

4.14 Refinement-after-decomposition Phase- ServerRef1 class and state ma-
chine diagrams 88

4.15 The Correctness Framework of the Shared-Variable Decomposition Method 94
4.16 Shared class meta-class containments

100
4.17 Shared state meta-class containments and transitions 100
4.18 Representing shared class meta-model extensions 101
4.19 Shared and representing class containment relationship 102
4.20 Shared variable meta-model extensions integration (part of) 102
4.21 Class Diagram Drawing Tools Extensions 104
4.22 State Machine Diagram Drawing Tools Extensions 105

5.1 The UML-B machines Sys1Mach and Sys2Mach- Class and State-machine
Diagrams 108

5.2 The Composed Machine SysCM- Class and State-machine Diagrams 110
5.3 The Class Diagrams of LocalRef1 and ServerRef1 114
5.4 LocalRef1 and ServerRef1- Private and Shared State-machines 115
5.5 Update Master Database Class and State Machine diagrams (Shared Vari-

able Composition Phase). 116

6.1 The Class attribute matching 121
6.2 The state matching 122
6.3 TCase1 Matching 126
6.4 TCase2 Matching 127
6.5 TCase3 Matching 128
6.6 TCase4 Matching 129
6.7 TCase5 Matching 130
6.8 State-Machine Matching Seq1 and Seq2 Matching 132
6.9 State-Machine Matching- SeqNM 132
6.10 Communication-based Case Study Schemata 140
6.11 The Com1 Model Package Diagram 140
6.12 Com1 Model- ComBasedRef2Match 142
6.13 The Com2 Model machine 142
6.14 Com1 Model- ComBasedRef5Match 144

7.1 UML-B pattern reuse- Overview 149
7.2 Pattern Abstract Machine Specification 152

xviii



© C
OPYRIG

HT U
PM

7.3 Problem Refinement Machine Specification 153
7.4 PTCase2 Matching 157
7.5 CSM Matching Seq3, Seq4, Seq5 and Seq6 Matching

158
7.6 Pattern Refinement Machine Representation 164
7.7 Problem RefinementN+1 Machine Representation 165
7.8 UMLB Incorporation- Classes Merge 167
7.9 UMLB Incorporation- Class attributes merge

168
7.10 UMLB Incorporation- States merge 169
7.11 UMLB Incorporation- PTCase1 merge when PrC and PC are matched 174
7.12 UMLB Incorporation- PTCase1 merge when PrC and PC are non-matched 175
7.13 UMLB Incorporation- PTCase2 merge- PrC and PC are non-matched 176
7.14 UMLB Incorporation- PTCase3 merge when PrC and PC are matched 177
7.15 UMLB Incorporation- PTCase3 merge when PrC and PC are non-matched 177
7.16 UMLB Incorporation- PTCase4 merge- PrC and PC are non-matched 178
7.17 UMLB Incorporation- PTCase5 merge when PrC and PC are matched 180
7.18 UMLB Incorporation- PTCase5 merge when PrC and PC are non-matched 180
7.19 The Communication Based Case study- The package diagrams of the

problem and pattern models 186
7.20 The Communication Based Case study- The ComBasedRef7 problem machine188
7.21 The Communication pattern- The First possible refinement machine Pat-

terComC1Ref of the pattern abstract machine 190
7.22 ComBasedRef3PatternIncorporate refinement machine 192
7.23 The ProblemCom Model- ComBasedRef5Match 194
7.24 The PatternCom Model- The Second possible refinement machine Pattern-

ComC2Ref 195
7.25 ComBasedRef6PatternIncorporate refinement machine 198

B.1 Sets Communication- Some incorrect cases 225

xix



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

CHAPTER 1

OVERVIEW OF RESEARCH PROJECT

1.1 Introduction

This chapter describes an overview of this thesis. This includes the motivation,
the problem statements, the research questions, scope, objectives and summary
of contributions of this work.

1.2 Motivation

Formal methods [1, 2] in the software engineering discipline allow the design,
modelling, verification, and maintenance of hardware and software systems.
Formal methods introduce preciseness, remove ambiguity in specifications, and
support the verification of requirements and design properties. The specifica-
tions in formal methods could be viewed as mathematical models, which rep-
resent the intended behaviour of the systems and they are used to model safety
critical systems such as: railway control systems, nuclear power plant control
systems, aircraft control systems, intelligent transport systems, and medical sys-
tems.

Event-B [1] is a formal method, which is a variant of the B-method and is based
on Action Systems. An action system [3] is a collection of actions on a set of
state variables. An action system describes the state space (the set of possible
values that could be assigned to the state variables) of a system and the possible
executable actions that change the values of the system state variables.

UML-B [4, 5, 6, 7] is a graphical front end of Event-B and relies in its infrastruc-
ture on Event-B formalism in verifying the system properties. It shares simi-
lar properties with object oriented modelling including class instances and at-
tributes. UML-B is similar to UML, but it has a new notation and has its own
meta-model. UML-B is supported by a tool which provides the user with the en-
vironment for drawing four diagrams. These diagrams are translated to Event-B
in order to be verified using Rodin theorem provers.

As the use of formal methods is increasing and the real life scenarios become
more complicated, the system specifications are gaining more complexity. This
raises the need of methods and approaches to reduce this complexity and man-
age these formal models. Decomposition, composition, model matching and pat-



© C
OPYRIG

HT U
PM

tern reuse are proposed in the context of model driven software engineering to
facilitate managing the models and dealing with their complexity.

1.3 Problem Statement

Methods and approaches are needed to manage the formal models and han-
dle their complexity. Decomposition, composition, model matching and pattern
reuse are proposed in the context of model driven software engineering to facil-
itate managing the models and dealing with their complexity.

Decomposition splits a model specification into subparts in order to prove and
model each subpart individually. Two decomposition styles exist in Event-B
which are the shared-event [8] and the shared-variable [9] styles. The shared-
event decomposition has been introduced in UML-B [10] and it is considered
suitable for synchronous message passing distributed systems. However, the
shared-variable decomposition style, which is considered suitable for asyn-
chronous shared-memory models, is not introduced yet in UML-B.

Also, composition reuses existing correct models constructing a larger one by
means of integration. Shared-event composition has been introduced in UML-B
[10], however shared-variable composition is not yet introduced in UML-B.

In addition, model matching is for identifying similarities between models. This
has several benefits such as model comparison, integration, and evolution. Sev-
eral matching and comparison methods have been done in the context of model
driven software engineering [11], however, there is no existing research that con-
cerns the matching and comparison for UML-B models.

Further more, pattern reuse is important in software engineering discipline to
save effort and avoid remodelling. Reuse is seen in the use of design patterns
which are general solutions to common problems. A pattern reuse method has
been introduced in Event-B to avoid remodelling and reproving [12] of Event-B
models. It is possible to construct complex UML-B models that are correct-by-
construction. However, there no systematic method in terms of pattern reuse to
support the construction of these models.

The purpose of this research is to provide a methodology to support managing
and modelling UML-B specifications. This methodology supports the develop-
ment in UML-B in which modelling and proving efforts are handled.

2



© C
OPYRIG

HT U
PM

1.4 Research Questions

1. What are the extensions needed for UML-B language to support shared-
variable decomposition?

2. What are the necessary rules to prepare and decompose UML-B models by
the shared-variable style?.

3. What are the necessary rules to prepare and compose UML-B models by
the shared-variable style?.

4. How models in UML-B could be matched compatibly and consistently?

5. How pattern models in UML-B could be reused to construct larger models?

1.5 Research Objectives

The main objective of this research is:

• To design a methodology including a set of methods to facilitate the man-
agement of UML-B models and handling the models complexity.

The sub-objectives of this research are:

1. To extend UML-B language to support the shared-variable decomposition.

2. To propose a method of shared-variable decomposition for UML-B models.

3. To propose a method of shared-variable composition for UML-B models.

4. To propose a method of model matching for UML-B models.

5. To propose a method of pattern reuse for UML-B models.

1.6 Summary of Contributions

In this research, multiple methods to support and save the modelling and prov-
ing effort in UML-B are provided.

In Chapter 4, a method for shared-variable decomposition is proposed. The sub-
contributions in this method are as follows:

3



© C
OPYRIG

HT U
PM

• Refinement-preparation invariants and strategies.

• Actual-decomposition rules.

• Refinement-after-decomposition conditions and a representation mecha-
nism.

• New UML-B notions to realize the method.

• A formalisation and a generic formal proof for the method.

• A case study to illustrate the method applicability.

In Chapter 5, a composition method is proposed based on the shared-variable
style. The method rules are proposed, formalized and evaluated by a case study.

In Chapter 6, a method for matching models in UML-B is proposed based on the
set-theory, first-order-logic and Event-B that are the basis semantics for UML-B.
The sub-contributions in this method are as follows:

• Variable-based matching rules.

• Event-based matching rules.

• State-machine matching rules.

• A formalization of the rules and a compatibility proof.

• An illustrating case study.

In Chapter 7, a method for pattern reuse is proposed based on the Event-B pat-
tern reuse and the matching method in Chapter 6. The sub-contributions in this
method are as follows:

• Specialization of the model matching rules that are introduced in Chapter
6 to correspond to the pattern reuse concept.

• Checking rules for UML-B state-machine transition and class event that use
the UML-B class, attribute, state and variable.

• Incorporation rules for UML-B class, attribute, state, variable state-
machine, transition and class event.

• A formalization of the pattern reuse method.

• A formal proof for the method on a theoretical level.

• A case study to illustrate the method applicability.

4



© C
OPYRIG

HT U
PM

1.7 Research Scope

This research focuses on supporting the modeling of UML-B machines. Shared-
variable decomposition and composition are to decompose and compose UML-B
machines in the context of shared-memory models. Model matching is to match
UML-B machines including their contained classes, attributes, states, variables,
transitions and class-events. Pattern reuse is to use any existing UML-B machine
model in constructing a larger problem UML-B refinement machine model.

1.8 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 describes a background study related to this research. A background is
presented about the formal methods (B-Method, Event-B, Z, VDM), some of the
well-known object-oriented formal languages (VDM++, Object-Z), UML-B, some
parallel computing models, refinement and decomposition in (Event-B, UML-B),
pattern reuse in Event-B, and related work.

Chapter 3 presents the research operational framework, research methodology
needed to meet the objectives, and tools which are used.

Chapter 4 introduces the shared-variable decomposition method. The method
is provided in this chapter through three sequential phases: refinement-
preparation, actual-decomposition, and refinement-after-decomposition.

Chapter 5 introduces the shared-variable composition method including the re-
quired conditions and the necessary rules to compose machines.

Chapter 6 introduces the method for model matching including the variable-
based, event-based, and state-machine matching rules.

Chapter 7 introduces the method for patten reuse. The method is provided in
this chapter through three phases: matching, checking, and incorporation.

Chapter 8 concludes the thesis. A summary of contributions, limitations, and
future works of the thesis are presented. Comparison to other work on decom-
position, composition, model matching, and pattern reuse are also discussed.

5



© C
OPYRIG

HT U
PM

REFERENCES

[1] Jean-Raymond Abrial. Modeling in Event-B: System and software engineering.
Cambridge University Press, 2010.

[2] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-Book: Assigning pro-
grams to meanings. Cambridge University Press, 2005.

[3] R-JR Back and Reino Kurki-Suonio. Decentralization of process nets with
centralized control. Distributed Computing, 3(2):73–87, 1989.

[4] Colin Snook and Michael Butler. UML-B: Formal modeling and design
aided by UML. ACM Transactions on Software Engineering and Methodology
(TOSEM), 15(1):92–122, 2006.

[5] Colin Snook and Michael Butler. UML-B and Event-B: an integration of
languages and tools. 2008.

[6] Colin Snook and Michael Butler. UML-B: A plug-in for the Event-B tool set.
2008.

[7] Colin Snook, Ian Oliver, and Michael Butler. The UML-B profile for formal
systems modelling in UML, pages 69–84. Springer, 2004.

[8] Renato Silva and Michael Butler. Shared event composition/decomposition
in Event-B. In Formal Methods for Components and Objects, pages 122–141.
Springer, 2012.

[9] Jean-Raymond Abrial. Event model decomposition, ETH Zurich, Technical
Report 626. 2009.

[10] Mar Yah Said. Methodology of refinement and decomposition in UML-B. Thesis,
2010.

[11] Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F
Paige. Different models for model matching: An analysis of approaches
to support model differencing. In Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models, pages 1–6. IEEE Computer So-
ciety, 2009.

[12] Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B pat-
terns and their tool support. Software & Systems Modeling, 12(2):229–244,
2013.

[13] Stephen J Garland, John V Guttag, and James J Horning. An overview of
larch. In Functional programming, concurrency, simulation and automated rea-
soning, pages 329–348. Springer, 1993.

[14] Gary T Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M Zimmer-
man, et al. JML reference manual, 2008.

207



© C
OPYRIG

HT U
PM

[15] Kevin Lano. The B language and method: a guide to practical formal development.
Springer Science & Business Media, 2012.

[16] Jean-Raymond Abrial. From Z to B and then Event-B: Assigning proofs to
meaningful programs. In Integrated Formal Methods, pages 1–15. Springer.

[17] Jonathan Peter Bowen. Formal specification and documentation using Z: A case
study approach, volume 66. International Thomson Computer Press London,
1996.

[18] Jonathan Peter Bowen. Comp. specification. z and Z forum frequently asked
questions. In International Conference of Z Users, pages 407–416. Springer,
1998.

[19] Jonathan P Bowen. Z: A formal specification notation. In Software specifica-
tion methods, pages 3–19. Springer, 2001.

[20] Petra Malik and Mark Utting. CZT: A framework for Z tools. In International
Conference of B and Z Users, pages 65–84. Springer, 2005.

[21] Rob Arthan. Proofpower. on-line documentation. URL: http://www. lemma-one.
com/ProofPower, 2007.

[22] Daniel Plagge and Michael Leuschel. Validating Z specifications using the
ProB animator and model checker. In International Conference on Integrated
Formal Methods, pages 480–500. Springer, 2007.

[23] Michael Leuschel and Michael Butler. ProB: A model checker for B. In
International Symposium of Formal Methods Europe, pages 855–874. Springer,
2003.

[24] Dines Bjørner. The Vienna Development Method (VDM). In Mathematical
Studies of Information Processing, pages 326–359. Springer, 1979.

[25] Cliff B Jones. Scientific decisions which characterize VDM. In International
Symposium on Formal Methods, pages 28–47. Springer, 1999.

[26] Cliff B Jones. Systematic software development using VDM, volume 2. Citeseer,
1986.

[27] Vangalur S Alagar and Kasilingam Periyasamy. Specification of software sys-
tems. Springer Science & Business Media, 2011.

[28] Peter Gorm Larsen. Ten years of historical development bootstrapping
PDM tools VX. Journal of Universal Computer Science, 7(8):692–709, 2001.

[29] Peter Gorm Larsen, Kenneth Lausdahl, Augusto Ribeiro, Sune Wolff, Nick
Battle, and B RG12. Overture VDM-10 tool support: User guide. Technical
report, Technical Report TR-2010-02, The Overture Initiative, www. over-
turetool. org, 2010.

[30] Robin Bloomfield, Peter Froome, and Brian Monahan. Specbox: a toolkit for
BSI-VDM. SafetyNet, 5:4–7, 1989.

208



© C
OPYRIG

HT U
PM

[31] B Atelier. The industrial tool to efficiently deploy the B-Method. URL:
http://www.atelierb.eu. (access date 04/09/2017), 2017.

[32] Juan C Bicarregui and Brian Ritchie. Reasoning about VDM developments
using the VDM support tool in mural. In International Symposium of VDM
Europe, pages 371–388. Springer, 1991.

[33] Yves Ledru. Proof-based development of specifications with KIDS/VDM.
In International Symposium of Formal Methods Europe, pages 214–232.
Springer, 1994.

[34] Kevin Lano and Howard Haughton. Specification in B: An introduction using
the B toolkit, volume 71. World Scientific, 1996.

[35] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling
and reasoning in Event-B. International journal on software tools for technology
transfer, 12(6):447–466, 2010.

[36] Object Management Group. Unified modeling language UML, 2017.

[37] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Pearson Higher Education, 2004.

[38] Susan Stepney, Rosalind Barden, and David Cooper. A survey of object
orientation in Z. Software Engineering Journal, 7(2):150–160, 1992.

[39] Graeme Smith. An object-oriented approach to formal specification. PhD thesis,
Citeseer, 1992.

[40] Roger Duke, Gordon Rose, and Graeme Smith. Object-Z: A specification
language advocated for the description of standards. Computer Standards &
Interfaces, 17(5):511–533, 1995.

[41] Graeme Smith. The Object-Z specification language, volume 1. Springer Sci-
ence & Business Media, 2012.

[42] Kevin Lano. Z++, an object-orientated extension to Z. In Z User Workshop,
Oxford 1990, pages 151–172. Springer, 1991.

[43] Antonio J Alencar and Joseph A Goguen. OOZE: An object oriented Z en-
vironment. In European Conference on Object-Oriented Programming, pages
180–199. Springer, 1991.

[44] Anthony Hall. Using Z as a specification calculus for object-oriented sys-
tems. In International Symposium of VDM Europe, pages 290–318. Springer,
1990.

[45] Stephen A Schuman, David H Pitt, and PJ Byers. Object-oriented process
specification. In Specification and Verification of Concurrent Systems, pages 21–
70. Springer, 1990.

[46] Eugene Diirr and J van Katwijk. VDM++, a formal specification language
for object-oriented designs. In Proceedings 6th Annual European Computer
Conference, Compeuro, pages 214–219, 1992.

209



© C
OPYRIG

HT U
PM

[47] Hung Ledang and Jeanine Souquieres. Formalizing uml behavioral dia-
grams with B. In Tenth OOPSLA Workshop on Behavioral Semantics: Back to
Basics, pages 12–p, 2001.

[48] Hung Ledang and Jeanine Souquières. Modeling class operations in B: ap-
plication to UML behavioral diagrams. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference on, pages
289–296. IEEE, 2001.

[49] Hung Ledang and Jeanine Souquières. Integration of UML and B specifica-
tion techniques: Systematic transformation from OCL expressions into B. In
Ninth Asia Pacific Software Engineering Conference-APSEC’2002, pages 10–p,
2002.

[50] Ninh-Thuan Truong and Jeanine Souquieres. Verification of behavioural
elements of UML models using B. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 1546–1552. ACM, 2005.

[51] Colin Snook. Combining UML and B. 2002.

[52] Colin Snook and Michael Butler. U2b-a tool for translating UML-B models
into B. 2004.

[53] The Eclipse Foundation. Eclipse Modelling Framework. http://www.
eclipse.org/modeling/emf/, 2017. Accessed: 04/09/2017.

[54] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[55] The Eclipse Foundation. Graphical Modelling Framework. http://
projects.eclipse.org/projects/modeling.gmp, 2017. Accessed:
04/09/2017.

[56] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced computer architecture
and parallel processing, volume 42. John Wiley & Sons, 2005.

[57] Blaise Barney et al. Introduction to parallel computing. Lawrence Livermore
National Laboratory, 6(13):10, 2010.

[58] Guy E Blelloch and Bruce M Maggs. Parallel algorithms. In Algorithms and
theory of computation handbook, pages 25–25. Chapman & Hall/CRC, 2010.

[59] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement Tech-
niques in Software Engineering: First Pernambuco Summer School on Software
Engineering, PSSE 2004, Recife, Brazil, November 23-December 5, 2004, Revised
Lectures, volume 3167. Springer, 2006.

[60] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Etats-
Unis Informaticien, and Edsger Wybe Dijkstra. A discipline of programming,
volume 1. prentice-hall Englewood Cliffs, 1976.

[61] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition,
and instantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 77(1-2):1–28, 2007.

210



© C
OPYRIG

HT U
PM

[62] John Derrick and Eerke Boiten. Refinement in Z and Object-Z, volume 30.
Springer, 2001.

[63] John Derrick and Eerke Boiten. Refinement in Object-Z. In Refinement in Z
and Object-Z, pages 385–402. Springer, 2014.

[64] Graeme Smith and John Derrick. Refinement and verification of concur-
rent systems specified in Object-Z and CSP. In Formal Engineering Meth-
ods., 1997. Proceedings., First IEEE International Conference on, pages 293–302.
IEEE, 1997.

[65] John Derrick and Eerke Boiten. Refinement of objects and operations in
Object-Z. In Formal Methods for Open Object-based Distributed Systems IV,
pages 257–277. Springer, 2000.

[66] Tim McComb and Graeme Smith. Compositional class refinement in Object-
Z. In International Symposium on Formal Methods, pages 205–220. Springer,
2006.

[67] Kevin Lano and SJ Goldsack. Refinement, subtyping and subclassing in
VDM++. Theory and Formal Methods, 95, 1994.

[68] SJ Goldsack and Kevin Lano. Annealing and data decomposition in VDM.
ACM Sigplan Notices, 31(4):32–38, 1996.

[69] Yojiro Kawamata, Christian Sommer, Fuyuki Ishikawa, and Shinichi
Honiden. Specifying and checking refinement relationships in VDM++. In
2009 Seventh IEEE International Conference on Software Engineering and Formal
Methods, pages 220–227. IEEE, 2009.

[70] Mar Yah Said, Michael Butler, and Colin Snook. Class and state machine
refinement in UML-B. In Proceedings of Workshop on Integration of Model-
based Formal Methods and Tools (associated with IFM 2009).

[71] Mar Yah Said, Michael Butler, and Colin Snook. A method of refinement in
UML-B. Software & Systems Modeling, pages 1–24, 2015.

[72] Daniel Jackson and Michael Jackson. Problem decomposition for reuse. Soft-
ware Engineering Journal, 11(1):19–30, 1996.

[73] Grady Booch. Object oriented analysis & design with application. Pearson Ed-
ucation India, 2006.

[74] Michael Butler. Decomposition structures for Event-B. In Integrated Formal
Methods, pages 20–38. Springer, 2009.

[75] Ali Gondal, Michael Poppleton, and Michael Butler. Composing Event-B
specifications-case-study experience. In Software Composition, pages 100–
115. Springer, 2011.

[76] Thai Son Hoang, Alexei Iliasov, Renato A Silva, and Wei Wei. A survey on
Event-B decomposition. Electronic Communications of the EASST, 46, 2011.

[77] Ingo Brückner. Slicing CSP-OZ specifications. In Nordic Workshop on Pro-
gramming Theory, page 71, 2004.

211



© C
OPYRIG

HT U
PM

[78] Ingo Brückner and Heike Wehrheim. Slicing an integrated formal method
for verification. In International Conference on Formal Engineering Methods,
pages 360–374. Springer, 2005.

[79] Ingo Brückner and Heike Wehrheim. Slicing Object-Z specifications for ver-
ification. In International Conference of B and Z Users, pages 414–433. Springer,
2005.

[80] Björn Metzler, Heike Wehrheim, and Daniel Wonisch. Decomposition for
compositional verification. In International Conference on Formal Engineering
Methods, pages 105–125. Springer, 2008.

[81] Kirsten Winter and Graeme Smith. Compositional verification for Object-Z.
In International Conference of B and Z Users, pages 280–299. Springer, 2003.

[82] Renato Silva and Michael Butler. Supporting reuse of event-b developments
through generic instantiation. In International Conference on Formal Engineer-
ing Methods, pages 466–484. Springer, 2009.

[83] Jun-Jang Jeng and Betty HC Cheng. Specification matching for software
reuse: A foundation. In ACM SIGSOFT Software Engineering Notes, vol-
ume 20, pages 97–105. ACM, 1995.

[84] Amy Moormann Zaremski and Jeannette M Wing. Specification match-
ing of software components. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(4):333–369, 1997.

[85] Frank Feiks and David Hemer. Specification matching of object-oriented
components. In Software Engineering and Formal Methods, 2003. Proceedings.
First International Conference on, pages 182–190. IEEE, 2003.

[86] David Hemer. Specification matching of state-based modular components.
In Software Engineering Conference, 2003. Tenth Asia-Pacific, pages 446–455.
IEEE, 2003.

[87] Jörg Becker, Patrick Delfmann, Sebastian Herwig, and Łukasz Lis. A generic
set theory-based pattern matching approach for the analysis of conceptual
models. In International Conference on Conceptual Modeling, pages 41–54.
Springer, 2009.

[88] Fathi Taibi, Fouad Mohammed Abbou, and Md Jahangir Alam. A matching
approach for object-oriented formal specifications. Journal of Object Technol-
ogy, 7(8):139–153, 2008.

[89] Wei-Jin Park and Doo-Hwan Bae. A two-stage framework for uml specifi-
cation matching. Information and Software Technology, 53(3):230–244, 2011.

[90] Richard C Gronback. Eclipse modeling project: a domain-specific language (DSL)
toolkit. Pearson Education, 2009.

[91] Michael Leuschel and Michael Butler. ProB: an automated analysis toolset
for the B-method. International Journal on Software Tools for Technology Trans-
fer, 10(2):185–203, 2008.

212



© C
OPYRIG

HT U
PM

[92] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

[93] Clark Barrett and Cesare Tinelli. Cvc3. In Computer Aided Verification, pages
298–302. Springer, 2007.

[94] Thomas Bouton, Diego Caminha B De Oliveira, David DÃl’harbe, and Pas-
cal Fontaine. veriT: an open, trustable and efficient SMT-solver, pages 151–156.
Springer, 2009.

[95] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 337–
340. Springer, 2008.

[96] Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B pat-
terns and their tool support. Software & Systems Modeling, 12(2):229–244,
2013.

213


	Blank Page
	Blank Page



