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One major issue faced by Wireless Sensor Network (WSN), which is based on pulse-
coupled oscillators (PCOs) is the energy consumption and loss of data due to the
deafness, high packet collision and high power in the application. Therefore, to
overcome this problem this research proposes a technique for the efficient minimization
of energy usage among WSNS, particularly during transmission scheduling (sender state)
for time synchronization in WSNs. Specifically, the current work focuses on three
decentralized methods of energy efficiency with scalability and robustness. Among the
mechanisms used is the traveling wave pulse coupled oscillator (TWPCO), which is a
self-organizing technique for energy efficient WSNs by adopting a traveling wave
phenomenon based on phase locking of the PCO model regarding sensor nodes as
observed in the flashing synchronization behaviors of fireflies and secretion of radio
signals as firing to counteract deafness. The second mechanism is a self-organizing
energy efficiency pulse coupled oscillator (EEPCO) mechanism for WSNs, which
combines both the biologically inspired and non-biologically inspired network systems
to counteract packet collision. The third proposed mechanism is the random traveling
wave pulse coupled oscillator (RTWPCO), which reduces high-power to the smallest
level by using phase-locking travelling wave in biologically inspired of the PCO model
and random method based on anti-phase in non-biologically inspired of the PCO model.

The performances of the proposed algorithms were studied using a simulation analysis.
The results showed significant improvement in terms of reaching the steady state after a
certain number of cycles, obtaining superior data gathering ratio, and reducing the
energy consumption ratio of sensor nodes. Specifically, the TWPCO mechanism showed
superior performance compared to other mechanisms with a deduction on the total
energy consumption by 25 %, while improving the performance by 13 % in terms of
data gathering. On the other hand, the EEPCO mechanism improved data collection by



up to 100% when the number of sensor nodes is below 40. In such a scenario, the energy
efficiency also improved by up to 15%. Finally, the proposed RTWPCO mechanism
achieved up to 53% and 60% reduction in the energy usage mainly due to the increase
in the number of sensor nodes as well as the increase in the data packet size of the
transmitted data. In addition, the mechanism improved the data gathering ratio by up to
75% and 73% respectively.

These mechanisms help to avoid deafness that occurs in the transmit state in WSNs, to
counteract packet collision during transmission in WSNs and minimize the high-power
utilization in the network and as well increase the data collection throughout the
transmission states in WSNs.
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Satu isu utama yang dihadapi oleh Rangkaian Sensor Tanpa Wayar (WSN), yang
berdasarkan pengayun denyutan nadi (PCOs) adalah penggunaan tenaga dan kehilangan
data yang disebabkan oleh kurang deria pendengaran, perlanggaran paket yang tinggi
dan kuasa yang tinggi dalam aplikasi. Oleh itu, untuk mengatasi masalah ini,
penyelidikan ini mencadangkan teknik untuk mengurangkan penggunaan tenaga di
kalangan WSN, terutamanya semasa penjadualan penghantaran (state sender) untuk
penyelarasan masa di WSN. Khususnya, kerja semasa yang dijalankan memberi
tumpuan kepada tiga kaedah yang berpusat untuk penggunaan tenaga yang cekap dengan
skala dan ketahanan. Antara mekanisme yang digunakan ialah pengayun denyutan nadi
menggunakan gelombang radiasi (TWPCO), yang merupakan teknik penyelenggaraan
kendiri untuk WSNs yang merupakan cekap tenaga dengan menggunakan fenomena
gelombang radiasi berdasarkan fasa kunci oleh model PCO mengenai nod sensor seperti
yang diperhatikan dalam kelipan kunang-kunang dan rembesan isyarat radio adalah
sebagai cara untuk mengatasi kurang deria pendengaran. Mekanisme kedua adalah
mekanisme pengayunan denyutan nadi berdasarkan penyelenggaraan kendiri yang cekap
tenaga (EEPCO) untuk WSN, yang menggabungkan kedua-dua sistem berdasarkan
biologi dan bukan biologi untuk mengatasi masalah perlanggaran paket. Mekanisme
ketiga yang dicadangkan ialah pengayun denyutan nadi gelombang radiasi secara rawak
(RTWPCO), yang mengurangkan penggunaan kuasa yang tinggi ke tahap terendah
dengan menggunakan gelombang radiasi fasa kunci secara biologi dari model PCO dan
kaedah rawak berdasarkan kepada anti-fasa secara biologi dari model PCO.

Prestasi algoritma yang dicadangkan telah dikaji menggunakan analisis simulasi, yang
menunjukkan peningkatan yang ketara dari segi mencapai keadaan yang stabil setelah
beberapa kitaran tertentu, dapat memperoleh nisbah perhimpunan data yang lebih baik,
dan mengurangkan nisbah penggunaan tenaga nod pengesan. Khususnya, skim TWPCO
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menunjukkan prestasi unggul berbanding dengan mekanisme lain dengan pengurangan
jumlah penggunaan tenaga sebanyak 25%, sementara peningkatan prestasi sebanyak
13% dari segi pengumpulan data. Sebaliknya, skema EEPCO meningkatkan
pengumpulan data sehingga 100% apabila bilangan nod pengesan berada di bawah 40.
Untuk senario sedemikian, kecekapan tenaga juga meningkat sechingga 15%. Akhirnya,
skim RTWPCO yang dicadangkan mencapai 53% dan pengurangan 60% penggunaan
tenaga terutamanya disebabkan oleh peningkatan bilangan nod pengesan serta
peningkatan saiz paket data data yang dihantar. Di samping itu, skim ini meningkatkan
nisbah pengumpulan data masing-masing sehingga 75% dan 73%.

Skim ini membantu mengelakkan kepekakan yang berlaku semasa proses penghantaran
di WSN, sejurus mengatasi perlanggaran paket semasa penghantaran di WSN dan dapat
meminimumkan penggunaan kuasa tinggi dalam rangkaian dan juga mampu
meningkatkan pengumpulan data semasa proses penghantaran di WSN.
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CHAPTER 1

INTRODUCTION

This chapter semantically illustrates a common background of the work reported in this
thesis and recognizes details of the motivation and research problems. It also highlights
the research significance, presents the research objectives, and then describes the scope
of this research. The chapter also provides a brief description of the organization of the
thesis.

1.1 Background

Over the last few years, micro-electrical mechanical systems (MEMS), especially
wireless sensor networks (WSNs) have attracted considerable attention from
researchers. WSNs are small and inexpensive devices with sensing, processing and
transmitting capabilities of environmental phenomena of interest. They have various
application prospects, including military, industrial and agricultural monitoring systems
. In addition, the limited processing capability and communication radius are two
important features characterizing the WSN technology . Since these restrictions are
crucial to the overall lifetime of the WSN, they need to be considered when designing a
routing protocol [4]. Because the failure of individual nodes directly represents the
whole network with time, it is more likely for packet relaying and regular sensing to the
base station to be exposed to serious jeopardization. This is more possible especially
because more and more sensors will cease operating due to their exhausted energy [5].
Each routing protocol algorithm transmits data from the sources to the destinations, and
it is expected to increase the network exposure even if the propagation value decreases
[6]. Yet, one of the most serious issues faced by the WSN technology is the issue of
coverage-holes [7]. Thus, the only remaining feasible deployment option or alternative
in medium and large deployments in hostile regions is random dropping of Sensor Nodes
(SNs) by unmanned vehicles or low flying helicopters. Even when there is a possibility
of deterministic deployment, the issue of coverage-holes will be faced especially because
of the sensors running out of battery energy. Such issue gets more evidently challenging,
particularly for those nodes situated within close proximity to the base station. Such
nodes usually represent the system bottleneck because of their high data-relaying task.
In addition, sensor nodes are left to operate independently after they are initially
deployed, thus complicating the issue of coverage.

As described by Sharma et al. [8], WSN represents a group of thousands of tiny sensor
nodes which are capable of performing wireless communication, limited calculation, and
sensing. A WSN encompasses a sensor, node, base station, gateway, and coordinator.
These elements of WSN are illustrated in Figure 1.1. Its sensors serve as the heart of
network devices because they play an important role in obtaining the data from the
medium and converting it into wireless signals. Nodes are regarded as the fundamental
units of WSN, which also play a role in obtaining the data from the sensors nodes and
relaying the information to the base station [5, 9, 10]. As shown in Figure 1.2, nodes are



small devices, which comprise a few kilobytes of memory, MHz processors, a radio
scope of a few meters, and one or two batteries. In addition, the gateway functions as an
entrance or a proxy server and firewall to another network. As gateways, they are
important in facilitating intelligent WSN network-data and network connection
(TCP/IP). Furthermore, base stations (BS) have a centralized point in controlling the
network. The information extracted from the network as well as disseminate control
information is usually returned into the network [5].

Wireless Sensor Networks

. Coordinator

® O Gateway

Cluster . Node

Tree

Coordinator

Gateway

Base Station
Sensors Nodes

Figure 1.1 : WSN elements

They also serve as collectors of data, and they common computer-based or embedded
system-based. For the coordinator, it plays an important role in parsing and buffering
messages as well as reading raw sensor data broadcasted from the sensor networks. It
also allocates a configuration and a port for the gateway for each connection request

[11].



Control Process Unit
(CPU)

A/D

LALSIotsy Converter

Sensor Transductor

Figure 1.2 : Sensor node architecture

Typically, the sensor node consists of four major factors: power supply unit, sensing
unit, computing unit, and communication unit (Figure 1.3). Thus, a power supply
encompasses the battery that provides all other units with power. This means that power
of the battery must be controlled. Controlling the power is important, especially when
there is a need for maximizing the lifetime of the sensor network because batteries cannot
be easily replaced after being deployed in the field. Controlling such power is achieved
through adoption of various techniques at different layers, thus saving the energy in these
most exhausting units. High-energy costs on the sensor nodes are incurred by a radio
communications unit of sensor nodes, particularly in the active mode (transmit and
receive). The sensor functions as a monitor of the physical events as well as producers
ofthe analog signals. It also serves as a converter of signals into digital while at the same
time passing them to the computing unit for more processing. Generally, the computing
unit involves a processor and memory storage, both of which play a key role in providing
a smart control of the node. The communication unit is inclusive of a short range radio
that receives and transmit data, thus consuming the highest level of energy in the node
[12]. Usually, the sensing unit is inclusive of one or more sensors, a digital-analog
converter (DAC) and an analog-digital converter (ADC). As a matter of fact, the energy
which is consumed in the transmit and receive modes is higher than that consumed in
the sleep and idle modes [13].
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Figure 1.3 : Paradigm diagram of a characteristic sensor node

Time synchronization is considered as a serious problem that hinders the operation of
any distributed WSN. Synchronization sets up the same limit of time for diverse sensor
nodes. In this way, it achieves unification of functions for voice data and video,
organization of diverse sleep or wake-up node scheduling mechanisms and distribution
of time-based channels [14].

Time synchronization is advantageous over unsynchronized systems [15]. It is also
naturally assumed to facilitate certain techniques and algorithms in Physical layer (PHY)
and Medium Access Control (MAC) layers. From the PHY perspective, slot
synchronization is capable of advancing cooperative transmission technologies. From
the perspective of the MAC layer, slot synchronization is capable of coordinating packet
transmission of nodes, thus attaining optimal throughput and power efficiency (Figure
1.4). Moreover, transmission of data based on synchronization can be achieved by
optimizing the periodic use of energy in the WSN.
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Figure 1.4 : Time synchronization in MAC and PHY layers

What often constrains the sensor nodes is the restricted energy in addition to the
processing and storage capacity, which leads to transmitting the sensed data to a more
resource-rich node, known the BS. Therefore, in a network of sensor nodes, the wireless
sensors collaboratively sense the environment, detect the phenomenon of interest and
eventually forward the data to a dedicated base station in synchronization. This
synchronization between the nodes is required for coordinating the cycles of power or
efficiency of energy and for the stable functioning of sensors in real-time monitoring
scenarios [16]. One of the techniques that may be employed to model the behaviour of
WSN is the Pulse-Coupled Oscillator (PCO) algorithm, where sensor nodes as observed
in the flashing light emission synchronization behaviors of fireflies and secretion of radio
signals are regarded as firing to attract mating partners [3, 16]. Wireless sensor nodes
are associated with strict energy requirements and dynamic topology changes. Thus, the
proposed PCO technique must cater for these dynamics in order to afford a successful
implementation (for the avoidance of the deafness, collision problems and hidden
terminal at the sender state); thereby enhancing not only the packet drop rate but also the
network lifetime [17, 18]. Nevertheless, WSNs are unable to afford simultaneous
transmission and reception of data, and for most scenarios, the battery replacement is
impossible upon the exhaustion of a node’s battery energy [19]. Thus, energy efficient
protocols constitute vital design requirements for the WSN as a whole. Another
important requirement of WSNs is the self-organizing capability, which enables sensor
nodes to re-discover their new neighbours (due to battery exhaustion or abrupt
malfunction of some nodes in the network) in the face of dynamic network topology
changes.

In general, energy efficiency is ensured in WSNs by explicitly embedding energy-
minimization protocols into the underlying sensing model of the sensors (such as
reducing the per packet energy consumption) or avoiding the high energy usage of any
single node within the network [19].



1.2 Motivation

The work in this thesis is motivated by the idea of suggesting various decentralized
energy-efficient methods, which are common and suitable for most of WSN applications
[3, 19]. Such applications need minimize energy usage and, consequently, rising the
potential for enhancing the lifetime of a sensor network. This would take into account
the energy of sensor nodes as the most important factor to avoid rapid energy depletion.
In these mechanisms, the transfer load is a regular interval and a lowly energy-efficient
control mechanism over the sensor nodes throughout transmitting, which would reduce
the average energy in the network. Almost all sensor nodes die simultaneously, thus
leading to optimizing the overall network lifespan.

1.3 Research Problem

In analysing the various discussion deliberated in the previous section, there are several
debates negotiated in the former part, while there are also relevant problems that occur
during transmitting (in the sender state). These problems are specified in this thesis as
follows:

e PCO can be used in firefly time synchronization but cannot be used in real sensor
networks because the sensor nodes cannot receive messages while transmitting
(deafness problem). Many researchers have proposed deafness in the original PCO
model in order to improve the main problem of time synchronization. However, the
proposed methods should reduce energy consumption and loss of data.

e The PCO model is also not suitable for sensor networks because WSNs are unable
to afford simultaneous transmission and reception of data, and for most scenarios,
replacement of the battery is impossible upon the exhaustion of a node’s battery
energy method because of packet collision. Packet collision usually occurs when a
sensor node misses the control packet, which indicates that the channel is idle, and
then it attempts to transmit on the channel while another node is busy transmitting
on the same channel. This results into collision and dropping of packets. Therefore,
in this case, none of the packets is successfully received. At the same time, the
energy consumption should be reduced to a certain level.

e The importance of WSN applications is recognized in most various fields, which
leads to dramatically varying requirements and features. Thus, it is more suitable
and more hard to identical demands in all applications. The PCO mechanism
causing delayed and uncharitable applications would prefer to reduce energy
consumption to the smallest level.

1.4 Research Significance

The use of wireless sensor network is inspiring for improving a mechanism that can
conserve more power at each sensor node due to the transmit state. In contrast, energy
efficient pulse coupled oscillator confirms to be the quickest method to conserve power
at each sensor node. However, even with reduced energy consumption, every sensor
node is consumed more quickly to offer services to other nodes through a data
transmission state. In this study, the wireless sensor network element and energy



efficient pulse coupled oscillator are together considered. We proposed improving
energy efficiency in terms of a data gathering ratio and an energy consumption ratio and
reaching the transient steady state [3]. The significance of this research stems from the
challenge of proposing an energy efficiency mechanism that reduces the energy
consumption, makes the data-gathering ratio superior and maximizes their lifetime at the
same time.

1.5 Research Objectives

The main objective of this study is to develop and adopt distributed energy efficient
pulse coupled oscillator mechanisms for time synchronization in WSNs that will
maximize their lifespan. This is achieved by considering the remaining batteries of
sensor nodes that are responsive to the breakdown incidence using efficient and
dependable methods. To accomplish this objective, the following specific objectives are
recognized:

1. To propose a mechanism called Traveling Wave Pulse Coupled Oscillator
(TWPCO) using self-organizing mechanism energy efficient WSNs by adopting a
traveling wave phenomenon based on phase locking of the PCO model to observe
in the flashing synchronization behaviors of fireflies in order to counteract
deafness. For this objective, TWPCO was implemented to overcome the deafness
by distributing the synchronized message through a random offset, even as the
detailed offset is transmitted through the message. Afterwards, the receiver can
immediately re-establish synchronization and change the time as a result of the
received offset costs.

2. To propose a mechanism called an Energy-efficient Pulse Coupled Oscillator
(EEPCO) which is a self-organizing method for energy efficient WSNs by
combining both the biologically inspired and non-biologically inspired network
systems to utilize the desynchronization method based on the anti-phase of PCO in
order to counteract packet collision during transmission and to minimize energy
consumption among the sensor nodes. In order to overcome this problem, EEPCO
was implemented by enabling the sensor node though self-organization and
allocating equally spaced timeslots regardless of the topology or the network size.

3. To propose a mechanism called Random Traveling Wave Pulse Coupled Oscillator
(RTWPCO) mechanism, which is a self-organizing technique for energy efficiency
WSNs using the phase-locking travelling wave and the random method based on
anti-phase of the PCO model. This mechanism was proposed in order to minimize
the high-power utilization in the network and get better data gathering of the sensor
nodes during data transmission. For this objective, RTWPCO was implemented to
overcome the high power by randomly selecting the offset t; between 0 and T



1.6 Research Scope

This research concentrates on the energy efficient pulse coupled oscillator as the main
task in WSNs, where there are biological inspired system network synchronization
behavior and non-biological inspired system network synchronization behavior as a self-
organizing method among node communication. The work in this thesis focuses on two
types of synchronization behavior among oscillators: phase locking synchronization and
anti-phase synchronization.

Moreover, this research used a travelling wave phenomena, desynchronization and
random mechanisms, while for desynchronization, it was employed in the three
suggested mechanisms. It was also slightly utilized in the second method (EEPCO)
during the transmission state process to minimize the energy consumption ratio and
make the data-gathering ratio superior.

Finally, all the suggested mechanisms in this research are based on the PCO model that
takes into account sensor nodes as observed in the flashing synchronization behaviors of
fireflies and secretion of radio signals as firing to counteract the problem that occurs in
the transmission state processing.

1.7 Thesis Organization
The rest of the thesis is organized as follows:

Chapter 1 provides a common background of the work reported in this thesis, the
motivation and the research problems. It also highlights the research significance and
research objectives, and then, it describes the scope of this research.

Chapter 2 introduces a review of state of the art literature of energy efficiency based on
the Pulse Coupled Oscillator model for wireless sensor networks. This chapter also gives
a summary and organization of energy efficiency issues that operate at different layers.
Moreover, it provides the main techniques: non-biologically inspired network systems
and biologically inspired network systems by fireflies phenomenon that suits sensor
networks, and concentrates on time synchronization that uses the transmission
scheduling in WSNs. Furthermore, the chapter explains the concepts and ideas used in
previous related work and emphasizes the strengths and limitations of these models.

Chapter 3 describes the research methodology used in this thesis. The chapter also
explains our suggested algorithms. In this chapter, the system of the suggested
mechanisms is give described through a clarification starting from the pre-process of the
current mechanisms to the estimations. The chapter also gives an outline of the
environmental resources, experimental parameters, and performance metric used.



Chapter 4 provides a detailed discussion of the structural design and evaluation of the
proposed TWPCO method. This chapter also discusses the framework and the most
important operations of the traveling wave. It is concluded with the results and the
observations of some experiments conducted to confirm and test the proposed method
in terms of the transmitting state, efficiency and gathering.

Chapter 5 discuses the proposed EEPCO mechanism and its organization. The EEPCO
is a self-organized method. It also presents a new mechanism to deal with the dynamic
changes in WSN to counteract packet collision and at the same time, increase the data
gathering and minimize the energy efficiency of the system. This chapter also introduces
the performance evaluation of the EEPCO developed in this thesis.

Chapter 6 introduces the proposed RTWPCO mechanism by integrating the PCO
mechanism with the random method that is based on the application requirements. It also
presents and discusses the results and observations of several experiments performed
with simulations.

Chapter 7 concludes the whole thesis by describing the main features and capabilities
of the proposed methodologies. It also provides several promising directions as
guidelines for researchers to carry out future research in this area.
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