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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 
the requirement for the Degree of Doctor of Philosophy 

FIREFLY-INSPIRED TIME SYNCHRONIZATION MECHANISM  
FOR SELF-ORGANIZING ENERGY EFFICIENT WIRELESS SENSOR 

NETWORKS 

By

ZEYAD GHALEB AQLAN AL-MEKHLAFI 

October 2017 

Chairman : Associate Professor Zurina Mohd Hanapi, PhD 
Faculty : Computer Science and Information Technology 

One major issue faced by Wireless Sensor Network (WSN), which is based on pulse-
coupled oscillators (PCOs)   is the energy consumption and loss of data due to the 
deafness, high packet collision and high power in the application. Therefore, to 
overcome this problem this research proposes a technique for the efficient minimization 
of energy usage among WSNs, particularly during transmission scheduling (sender state) 
for time synchronization in WSNs. Specifically, the current work focuses on three 
decentralized methods of energy efficiency with scalability and robustness. Among the 
mechanisms used is the traveling wave pulse coupled oscillator (TWPCO), which is a
self-organizing technique for energy efficient WSNs by adopting a traveling wave 
phenomenon based on phase locking of the PCO model regarding sensor nodes as 
observed in the flashing synchronization behaviors of fireflies and secretion of radio 
signals as firing to counteract deafness. The second mechanism is a self-organizing 
energy efficiency pulse coupled oscillator (EEPCO) mechanism for WSNs, which 
combines both the biologically inspired and non-biologically inspired network systems 
to counteract packet collision. The third proposed mechanism is the random traveling 
wave pulse coupled oscillator (RTWPCO), which reduces high-power to the smallest 
level by using phase-locking travelling wave in biologically inspired of the PCO model 
and random method based on anti-phase in non-biologically inspired of the PCO model.  

The performances of the proposed algorithms were studied using a simulation analysis.
The results showed significant improvement in terms of reaching the steady state after a 
certain number of cycles, obtaining superior data gathering ratio, and reducing the 
energy consumption ratio of sensor nodes. Specifically, the TWPCO mechanism showed 
superior performance compared to other mechanisms with a deduction on the total 
energy consumption by 25 %, while improving the performance by 13 % in terms of 
data gathering. On the other hand, the EEPCO mechanism improved data collection by 
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up to 100% when the number of sensor nodes is below 40. In such a scenario, the energy 
efficiency also improved by up to 15%. Finally, the proposed RTWPCO mechanism 
achieved up to 53% and 60% reduction in the energy usage mainly due to the increase 
in the number of sensor nodes as well as the increase in the data packet size of the 
transmitted data. In addition, the mechanism improved the data gathering ratio by up to 
75% and 73% respectively. 

These mechanisms help to avoid deafness that occurs in the transmit state in WSNs, to 
counteract packet collision during transmission in WSNs and minimize the high-power 
utilization in the network and as well increase the data collection throughout the 
transmission states in WSNs. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

MEKANISME PENYEGERAKAN MASA BERINSPIRASIKAN KUNANG-
KUNANG BAGI PENGATURAN KENDIRI UNTUK KECEKAPAN TENAGA 

JARINGAN PENGESAN TANPA  

Oleh  

ZEYAD GHALEB AQLAN AL-MEKHLAFI 

Oktober 2017 

Pengerusi : Profesor Madya Zurina Mohd Hanapi, PhD 
Fakulti : Sains Komputer dan Teknologi Maklumat 

Satu isu utama yang dihadapi oleh Rangkaian Sensor Tanpa Wayar (WSN), yang 
berdasarkan pengayun denyutan nadi (PCOs) adalah penggunaan tenaga dan kehilangan 
data yang disebabkan oleh kurang deria pendengaran, perlanggaran paket yang tinggi 
dan kuasa yang tinggi dalam aplikasi. Oleh itu, untuk mengatasi masalah ini, 
penyelidikan ini mencadangkan teknik untuk mengurangkan penggunaan tenaga di 
kalangan WSN, terutamanya semasa penjadualan penghantaran (state sender) untuk 
penyelarasan masa di WSN. Khususnya, kerja semasa yang dijalankan memberi 
tumpuan kepada tiga kaedah yang berpusat untuk penggunaan tenaga yang cekap dengan 
skala dan ketahanan. Antara mekanisme yang digunakan ialah pengayun denyutan nadi 
menggunakan gelombang radiasi (TWPCO), yang merupakan teknik penyelenggaraan 
kendiri untuk WSNs yang merupakan cekap tenaga dengan menggunakan fenomena 
gelombang radiasi berdasarkan fasa kunci oleh model PCO mengenai nod sensor seperti 
yang diperhatikan dalam kelipan kunang-kunang dan rembesan isyarat radio adalah 
sebagai cara untuk mengatasi kurang deria pendengaran. Mekanisme kedua adalah 
mekanisme pengayunan denyutan nadi berdasarkan penyelenggaraan kendiri yang cekap 
tenaga (EEPCO) untuk WSN, yang menggabungkan kedua-dua sistem berdasarkan 
biologi dan bukan biologi untuk mengatasi masalah perlanggaran paket. Mekanisme 
ketiga yang dicadangkan ialah pengayun denyutan nadi gelombang radiasi secara rawak 
(RTWPCO), yang mengurangkan penggunaan kuasa yang tinggi ke tahap terendah 
dengan menggunakan gelombang radiasi fasa kunci secara biologi dari model PCO dan 
kaedah rawak berdasarkan kepada anti-fasa secara biologi dari model PCO. 

Prestasi algoritma yang dicadangkan telah dikaji menggunakan analisis simulasi, yang 
menunjukkan peningkatan yang ketara dari segi mencapai keadaan yang stabil setelah 
beberapa kitaran tertentu, dapat memperoleh nisbah perhimpunan data yang lebih baik, 
dan mengurangkan nisbah penggunaan tenaga nod pengesan. Khususnya, skim TWPCO 
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menunjukkan prestasi unggul berbanding dengan mekanisme lain dengan pengurangan 
jumlah penggunaan tenaga sebanyak 25%, sementara peningkatan prestasi sebanyak 
13% dari segi pengumpulan data. Sebaliknya, skema EEPCO meningkatkan 
pengumpulan data sehingga 100% apabila bilangan nod pengesan berada di bawah 40. 
Untuk senario sedemikian, kecekapan tenaga juga meningkat sehingga 15%. Akhirnya, 
skim RTWPCO yang dicadangkan mencapai 53% dan pengurangan 60% penggunaan 
tenaga terutamanya disebabkan oleh peningkatan bilangan nod pengesan serta 
peningkatan saiz paket data data yang dihantar. Di samping itu, skim ini meningkatkan 
nisbah pengumpulan data masing-masing sehingga 75% dan 73%.  

Skim ini membantu mengelakkan kepekakan yang berlaku semasa proses penghantaran 
di WSN, sejurus mengatasi perlanggaran paket semasa penghantaran di WSN dan dapat 
meminimumkan penggunaan kuasa tinggi dalam rangkaian dan juga mampu 
meningkatkan pengumpulan data semasa proses penghantaran di WSN.
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1

CHAPTER 1 

INTRODUCTION 

This chapter semantically illustrates a common background of the work reported in this 
thesis and recognizes details of the motivation and research problems. It also highlights 
the research significance, presents the research objectives, and then describes the scope 
of this research. The chapter also provides a brief description of the organization of the 
thesis. 

1.1 Background 

Over the last few years, micro-electrical mechanical systems (MEMS), especially 
wireless sensor networks (WSNs) have attracted considerable attention from 
researchers. WSNs are small and inexpensive devices with sensing, processing and 
transmitting capabilities of environmental phenomena of interest. They have various 
application prospects, including military, industrial and agricultural monitoring systems 
. In addition, the limited processing capability and communication radius are two 
important features characterizing the WSN technology . Since these restrictions are 
crucial to the overall lifetime of the WSN, they need to be considered when designing a 
routing protocol [4]. Because the failure of individual nodes directly represents the 
whole network with time, it is more likely for packet relaying and regular sensing to the 
base station to be exposed to serious jeopardization. This is more possible especially 
because more and more sensors will cease operating due to their exhausted energy [5].
Each routing protocol algorithm transmits data from the sources to the  destinations, and 
it is expected to increase the network exposure even if the propagation value decreases 
[6]. Yet, one of the most serious issues faced by the WSN technology is the issue of 
coverage-holes [7]. Thus, the only remaining feasible deployment option or alternative 
in medium and large deployments in hostile regions is random dropping of Sensor Nodes 
(SNs) by unmanned vehicles or low flying helicopters. Even when there is a possibility 
of deterministic deployment, the issue of coverage-holes will be faced especially because 
of the sensors running out of battery energy. Such issue gets more evidently challenging, 
particularly for those nodes situated within close proximity to the base station. Such 
nodes usually represent the system bottleneck because of their high data-relaying task. 
In addition, sensor nodes are left to operate independently after they are initially 
deployed, thus complicating the issue of coverage.   

As described by Sharma et al. [8], WSN represents a group of thousands of tiny sensor 
nodes which are capable of performing wireless communication, limited calculation, and 
sensing. A WSN encompasses a sensor, node, base station, gateway, and coordinator. 
These elements of WSN are illustrated in Figure 1.1. Its sensors serve as the heart of 
network devices because they play an important role in obtaining the data from the 
medium and converting it into wireless signals. Nodes are regarded as the fundamental 
units of WSN, which also play a role in obtaining the data from the sensors nodes and 
relaying the information to the base station [5, 9, 10]. As shown in Figure 1.2, nodes are 
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small devices, which comprise a few kilobytes of memory, MHz processors, a radio 
scope of a few meters, and one or two batteries. In addition, the gateway functions as an 
entrance or a proxy server and firewall to another network. As gateways, they are 
important in facilitating intelligent WSN network-data and network connection 
(TCP/IP). Furthermore, base stations (BS) have a centralized point in controlling the 
network. The information extracted from the network as well as disseminate control 
information is usually returned into the network [5]. 

Figure 1.1 : WSN elements 

They also serve as collectors of data, and they common computer-based or embedded 
system-based. For the coordinator, it plays an important role in parsing and buffering 
messages as well as reading raw sensor data broadcasted from the sensor networks. It 
also allocates a configuration and a port for the gateway for each connection request 
[11].
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Figure 1.2 : Sensor node architecture

Typically, the sensor node consists of four major factors: power supply unit, sensing 
unit, computing unit, and communication unit (Figure 1.3). Thus, a power supply 
encompasses the battery that provides all other units with power. This means that power 
of the battery must be controlled. Controlling the power is important, especially when 
there is a need for maximizing the lifetime of the sensor network because batteries cannot 
be easily replaced after being deployed   in the field. Controlling such power is achieved 
through adoption of various techniques at different layers, thus saving the energy in these 
most exhausting units. High-energy costs on the sensor nodes are incurred by a radio 
communications unit of sensor nodes, particularly in the active mode (transmit and 
receive). The sensor functions as a monitor of the physical events as well as producers 
of the analog signals. It also serves as a converter of signals into digital while at the same 
time passing them to the computing unit for more processing. Generally, the computing 
unit involves a processor and memory storage, both of which play a key role in providing 
a smart control of the node. The communication unit is inclusive of a short range radio 
that receives and transmit data, thus consuming the highest level of energy in the node 
[12]. Usually, the sensing unit is inclusive of one or more sensors, a digital-analog 
converter (DAC) and an analog-digital converter (ADC). As a matter of fact, the energy 
which is consumed in the transmit and receive modes is higher than that consumed in 
the sleep and idle modes [13]. 
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Figure 1.3 : Paradigm diagram of a characteristic sensor node

Time synchronization is considered as a serious problem that hinders the operation of 
any distributed WSN. Synchronization sets up the same limit of time for diverse sensor 
nodes. In this way, it achieves unification of functions for voice data and video, 
organization of diverse sleep or wake-up node scheduling mechanisms and distribution 
of time-based channels [14].

Time synchronization is advantageous over unsynchronized systems [15]. It is also 
naturally assumed to facilitate certain techniques and algorithms in Physical layer (PHY) 
and Medium Access Control (MAC) layers. From the PHY perspective, slot 
synchronization is capable of advancing cooperative transmission technologies. From 
the perspective of the MAC layer, slot synchronization is capable of coordinating packet 
transmission of nodes, thus attaining optimal throughput and power efficiency (Figure 
1.4). Moreover, transmission of data based on synchronization can be achieved by 
optimizing the periodic use of energy in the WSN. 
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Figure 1.4 : Time synchronization in MAC and PHY layers

What often constrains the sensor nodes is the restricted energy in addition to the 
processing and storage capacity, which leads to transmitting the sensed data to a more 
resource-rich node, known the BS. Therefore, in a network of sensor nodes, the wireless 
sensors collaboratively sense the environment, detect the phenomenon of interest and 
eventually forward the data to a dedicated base station in synchronization. This 
synchronization between the nodes is required for coordinating the cycles of power or 
efficiency of energy and for the stable functioning of sensors in real-time monitoring 
scenarios [16]. One of the techniques that may be employed to model the behaviour of 
WSN is the Pulse-Coupled Oscillator (PCO) algorithm, where sensor nodes as observed 
in the flashing light emission synchronization behaviors of fireflies and secretion of radio 
signals are regarded as firing to attract mating partners [3, 16]. Wireless sensor nodes 
are associated with strict energy requirements and dynamic topology changes. Thus, the 
proposed PCO technique must cater for these dynamics in order to afford a successful 
implementation (for the avoidance of the deafness, collision problems and hidden 
terminal at the sender state); thereby enhancing not only the packet drop rate but also the 
network lifetime [17, 18]. Nevertheless, WSNs are unable to afford simultaneous 
transmission and reception of data, and for most scenarios, the battery replacement is 
impossible upon the exhaustion of a node’s battery energy [19]. Thus, energy efficient 
protocols constitute vital design requirements for the WSN as a whole. Another 
important requirement of WSNs is the self-organizing capability, which enables sensor 
nodes to re-discover their new neighbours (due to battery exhaustion or abrupt 
malfunction of some nodes in the network) in the face of dynamic network topology 
changes. 

In general, energy efficiency is ensured in WSNs by explicitly embedding energy-
minimization protocols into the underlying sensing model of the sensors (such as 
reducing the per packet energy consumption) or avoiding the high energy usage of any 
single node within the network [19]. 
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1.2 Motivation 

The work in this thesis is motivated by the idea of suggesting various decentralized 
energy-efficient methods, which are common and suitable for most of WSN applications 
[3, 19]. Such applications need minimize energy usage and, consequently, rising the 
potential for enhancing the lifetime of a sensor network. This would take into account 
the energy of sensor nodes as the most important factor to avoid rapid energy depletion. 
In these mechanisms, the transfer load is a regular interval and a lowly energy-efficient 
control mechanism over the sensor nodes throughout transmitting, which would reduce 
the average energy in the network. Almost all sensor nodes die simultaneously, thus 
leading to optimizing the overall network lifespan. 

1.3 Research Problem 

In analysing the various discussion deliberated in the previous section, there are several 
debates negotiated in the former part, while there are also relevant problems that occur 
during transmitting (in the sender state). These problems are specified in this thesis as 
follows: 

� PCO can be used in firefly time synchronization but cannot be used in real sensor 
networks because the sensor nodes cannot receive messages while transmitting 
(deafness problem). Many researchers have proposed deafness in the original PCO 
model in order to improve the main problem of time synchronization. However, the 
proposed methods should reduce energy consumption and loss of data. 

� The PCO model is also not suitable for sensor networks because WSNs are unable 
to afford simultaneous transmission and reception of data, and for most scenarios, 
replacement of the battery is impossible upon the exhaustion of a node’s battery 
energy method because of packet collision. Packet collision usually occurs when a 
sensor node misses the control packet, which indicates that the channel is idle, and 
then it attempts to transmit on the channel while another node is busy transmitting 
on the same channel. This results into collision and dropping of packets. Therefore,
in this case, none of the packets is successfully received. At the same time, the 
energy consumption should be reduced to a certain level. 

� The importance of WSN applications is recognized in most various fields, which 
leads to dramatically varying requirements and features. Thus, it is more suitable 
and more hard to identical demands in all applications. The PCO mechanism 
causing delayed and uncharitable applications would prefer to reduce energy 
consumption to the smallest level.  

1.4 Research Significance 

The use of wireless sensor network is inspiring for improving a mechanism that can 
conserve more power at each sensor node due to the transmit state. In contrast, energy 
efficient pulse coupled oscillator confirms to be the quickest method to conserve power 
at each sensor node. However, even with reduced energy consumption, every sensor 
node is consumed more quickly to offer services to other nodes through a data 
transmission state. In this study, the wireless sensor network element and energy 
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efficient pulse coupled oscillator are together considered. We proposed improving 
energy efficiency in terms of a data gathering ratio and an energy consumption ratio and 
reaching the transient steady state [3]. The significance of this research stems from the 
challenge of proposing an energy efficiency mechanism that reduces the energy 
consumption, makes the data-gathering ratio superior and maximizes their lifetime at the 
same time.

1.5 Research Objectives 

The main objective of this study is to develop and adopt distributed energy efficient 
pulse coupled oscillator mechanisms for time synchronization in WSNs that will 
maximize their lifespan. This is achieved by considering the remaining batteries of 
sensor nodes that are responsive to the breakdown incidence using efficient and 
dependable methods. To accomplish this objective, the following specific objectives are 
recognized: 

1. To propose a mechanism called Traveling Wave Pulse Coupled Oscillator 
(TWPCO) using self-organizing mechanism energy efficient WSNs by adopting a 
traveling wave phenomenon based on phase locking of the PCO model to observe 
in the flashing synchronization behaviors of fireflies in order to counteract 
deafness. For this objective, TWPCO was implemented to overcome the deafness 
by distributing the synchronized message through a random offset, even as the 
detailed offset is transmitted through the message. Afterwards, the receiver can 
immediately re-establish synchronization and change the time as a result of the 
received offset costs. 

2. To propose a mechanism called an Energy-efficient Pulse Coupled Oscillator 
(EEPCO) which is a self-organizing method for energy efficient WSNs by
combining both the biologically inspired and non-biologically inspired network 
systems to utilize the desynchronization method based on the anti-phase of PCO in 
order to counteract packet collision during transmission and to minimize energy 
consumption among the sensor nodes. In order to overcome this problem, EEPCO 
was implemented by enabling the sensor node though self-organization and 
allocating equally spaced timeslots regardless of the topology or the network size.

3. To propose a mechanism called Random Traveling Wave Pulse Coupled Oscillator 
(RTWPCO) mechanism, which is a self-organizing technique for energy efficiency 
WSNs using the phase-locking travelling wave and the random method based on 
anti-phase of the PCO model. This mechanism was proposed in order to minimize 
the high-power utilization in the network and get better data gathering of the sensor 
nodes during data transmission. For this objective, RTWPCO was implemented to 
overcome the high power by randomly selecting the  offset τi between 0 and τmax. 
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1.6 Research Scope 

This research concentrates on the energy efficient pulse coupled oscillator as the main 
task in WSNs, where there are biological inspired system network synchronization 
behavior and non-biological inspired system network synchronization behavior as a self-
organizing method among node communication. The work in this thesis focuses on two 
types of synchronization behavior among oscillators: phase locking synchronization and 
anti-phase synchronization.  

Moreover, this research used a travelling wave phenomena, desynchronization and 
random mechanisms, while for desynchronization, it was employed in the three 
suggested mechanisms. It was also slightly utilized in the second method (EEPCO) 
during the transmission state process to minimize the energy consumption ratio and 
make the data-gathering ratio superior.  

Finally, all the suggested mechanisms in this research are based on the PCO model that 
takes into account sensor nodes as observed in the flashing synchronization behaviors of 
fireflies and secretion of radio signals as firing to counteract the problem that occurs in 
the transmission state processing.  

1.7 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 1 provides a common background of the work reported in this thesis, the 
motivation and the research problems. It also highlights the research significance and 
research objectives, and then, it describes the scope of this research.  

Chapter 2 introduces a review of state of the art literature of energy efficiency based on 
the Pulse Coupled Oscillator model for wireless sensor networks. This chapter also gives 
a summary and organization of energy efficiency issues that operate at different layers. 
Moreover, it provides the main techniques: non-biologically inspired network systems 
and biologically inspired network systems by fireflies phenomenon that suits sensor 
networks, and concentrates on time synchronization that uses the transmission 
scheduling in WSNs. Furthermore, the chapter explains the concepts and ideas used in 
previous related work and emphasizes the strengths and limitations of these models.  

Chapter 3 describes the research methodology used in this thesis. The chapter also 
explains our suggested algorithms. In this chapter, the system of the suggested 
mechanisms is give described through a clarification starting from the pre-process of the 
current mechanisms to the estimations. The chapter also gives an outline of the 
environmental resources, experimental parameters, and performance metric used.  
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Chapter 4 provides a detailed discussion of the structural design and evaluation of the 
proposed TWPCO method. This chapter also discusses the framework and the most 
important operations of the traveling wave. It is concluded with the results and the 
observations of some experiments conducted to confirm and test the proposed method 
in terms of the transmitting state, efficiency and gathering. 

Chapter 5 discuses the proposed EEPCO mechanism and its organization. The EEPCO 
is a self-organized method. It also presents a new mechanism to deal with the dynamic 
changes in WSN to counteract packet collision and at the same time, increase the data 
gathering and minimize the energy efficiency of the system. This chapter also introduces 
the performance evaluation of the EEPCO developed in this thesis.

Chapter 6 introduces the proposed RTWPCO mechanism by integrating the PCO 
mechanism with the random method that is based on the application requirements. It also 
presents and discusses the results and observations of several experiments performed 
with simulations. 

Chapter 7 concludes the whole thesis by describing the main features and capabilities 
of the proposed methodologies. It also provides several promising directions as 
guidelines for researchers to carry out future research in this area. 
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