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AN OPTIMIZED TEST CASE GENERATION TECHNIQUE FOR ENHANCING 

STATE-SENSITIVITY PARTITIONING 

By 

AMMAR MOHAMMED DAWOOD SULTAN 

November 2017 

Chair: Salmi binti Baharom, PhD  
Faculty: Computer Science and Information Technology 
 
 
Software testing is a vital phase in software development life cycle (SDLC) and its 
principal element is test case. Test case generation remains the most dominant 
the research area in software testing. One of the techniques that were proposed 
for generating test cases is State Sensitivity Partitioning (SSP). It aims to avoid 
the exhaustive testing of module’s entire states. It partitions the entire data states 
based on their sensitivities towards events, conditions and actions. The test data 
for SSP is in the form of event sequences. As there is no limit on the number of 
events that any sequence can hold, lengthy test cases might be generated. 
Besides, no constrains were applied in order to avoid retesting a component that 
was already tested. Subsequently, a state explosion might be encountered. 
 
 
The aim of this study was to address the problem of redundant states encountered 
within SSP test cases. An optimization technique was proposed, enSSP, featuring 
the generation of optimized test cases. The scope of this work is testing a module 
with memory where each module may consist of several programs. The essence 
of enSSP is to combine the features of Genetic Algorithm (GA) with a suite 
reduction technique to achieve optimization. GA removes redundant states from 
test cases while the reduction technique removes redundant sequences from the 
suite. Afterwards, a prioritization algorithm used for sorting the test cases so the 
first test case detects the highest number of mutants followed by the cases that 
kill its live mutants. Experiments were conducted using mutation analysis to 
compare the fault detection capabilities of enSSP and SSP. The main interest of 
the experiment is to demonstrate the capability of enSSP. With respect to both 
quality attributes, the effectiveness and the efficiency, the results indicate that 
enSSP is more effective and efficient than SSP. 
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TEKNIK PENJANAAN UJIAN KES DIOPTIMUMKAN BAGI MENINGKATKAN 

PEMBAHAGIAN SENSITIVITI KEADAAN 

  Oleh 

AMMAR MOHAMMED DAWOOD SULTAN 

November 2017 

Pengerusi: Salmi binti Baharom, PhD 
Fakulti: Sains Komputer dan Teknologi Maklumat 
 
 
Ujian perisian adalah sangat penting dalam Kitar Hidup Pembangunan Perisian 
(SDLC) dan bahan utamanya ialah ujian kes. Penjanaan ujian kes kekal menjadi 
paling dominan dalam penyelidikan ujian perisian. Salah satu teknik yang 
dicadangkan untuk penjanaan ujian kes ialah Fasa Sensitiviti Pembahagian 
(SSP). Ia bertujuan untuk mengelak ujian keseluruhan terhadap fasa model 
tersebut. Ia membahagikan keseluruhan keadaan data berdasarkan 
sensitivitinya terhadap situasi, keadaan dan tindakan. Ujian data untuk SSP 
adalah dalam bentuk urutan keadaan yang bersiri. Memandangkan tiada had 
maksimum untuk saiz urutan keadaan bersiri, jangka masa yang lama mungkin 
diperlukan untuk melaksanakan keseluruhannya. Tambahan pula, tiada 
kekangan dijalankan untuk mengelak daripada pengulangan ujian komponen 
yang telah diuji. Justeru itu, fasa ujian yang sangat besar mungkin berlaku. 
 
 
Tujuan kajian ini adalah untuk menangani masalah fasa pengulangan yang 
berlaku dalam ujian kes SSP. Maka satu teknik yang optimum dicadangkan, 
enSSP adalah satu teknik yang bercirikan generasi ujian kes SSP yang telah 
dioptimumkan. Bidang kajian ini adalah untuk menguji modul yang mengandungi 
memori di mana setiap modul mempunyai beberapa program di dalamnya. 
Keistimewaan enSSP adalah ia menggabungkan ciri-ciri Genetik Algoritma (GA) 
dengan suatu set program teknik pengurangan untuk mencapai kesan optimum. 
GA menyingkirkan fasa pengulangan daripada ujian kes yang dijalankan 
manakala teknik pengurangan bertindak menghapuskan urutan pengulangan 
daripada set program tersebut. Seterusnya, satu algoritma digunakan untuk 
menyusun ujian kes tersebut supaya penyusunan akan bermula dengan ujian 
kes yang dapat mengesan jumlah mutan yang tertinggi dan diikuti oleh ujian kes 
yang dapat menghapuskan mutan hidup yang lain. Eksperimen telah dijalankan 
dengan menggunakan mutan analisis untuk membandingkan kebolehan 
mengesan mutan diantara enSSP dan SSP. Tujuan utama eksperimen untuk 
membuktikan keupayaan enSSP. Melalui perbandingan dari segi atribut kualiti 
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antara enSSP dan SSP, keputusan menunjukkan enSSP lebih efektif dan efisien 
berbanding SSP. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 
 
The undertaken research presents a technique for generating optimal test cases 
in the form of sequences of events. It aims to overcome the problem of redundant 
states encountered in the suites generated by state-sensitivity partitioning (SSP) 
technique. Thus, the proposed technique minimizes the test suite while 
preserving its state coverage. The minimization was performed at two levels: test 
case and test suite. The former level targets the redundant states per sequence 
while the latter one focuses on the redundant states within the suite. Also, this 
study considers detecting all bugs within the fewest number of test cases rather 
than waiting until the end of the suite. This is done through prioritizing the 
minimized suite. Hence, this chapter presents a background on the investigated 
topic, an overview of the problem statement, research objectives, contributions 
and thesis organization. 
 
 
1.2  Background 
 
Software testing is one of the most crucial phases in the software development 
life cycle (SDLC). It stands for the process of executing a system or program with 
the intention of finding errors (Myers, Sandler, & Badgett, 2011). However, the 
software testing is a labor-intensive process that requires an extensive effort and 
consumes time, accounting about 50% of the total cost of software development 
(Pressman & Maxim, 2014). This includes detecting errors as much as possible 
within the specified time and validates that the software was built as intended by 
the users. Test case is the principal element for testing. It is a group of tests that 
are performed sequentially with the goal of meeting a test objective. Every test 
case produces a number of tests that comprise specific input values, observed 
output, expected output, and any further information that might be needed for 
running the test, such as environmental prerequisites (Fewster & Graham, 1999; 
Jorgensen, 2013; Mala & Mohan, 2007). The quality of test cases is evaluated 
through two factors, which are effectiveness and efficiency. The effectiveness 
stands for the coverage of the generated test cases with the goal of covering as 
much as possible of the software under test (SUT) with the minimum number of 
test cases. On the other hand, efficiency stands for the capability of detecting all 
mutants with the fewest number of test cases rather than waiting till the last test 
case in the suite to detect all mutants. 
 
 
However, the classical way of generating test cases is exhaustive testing which 
focuses on examining all possible combinations of inputs and preconditions with 
the goal of finding errors. Although it may be appropriate for small systems, 
exhaustive testing is infeasible, especially for non-trivial systems such as health 
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care systems. This adds more complexity for errors detection (Black, Graham, & 
Veenendaal, 2012). 
 
 
Relatively, several techniques were proposed for generating test cases non-
exhaustively. One of these techniques is State Sensitivity Partitioning (SSP) 
technique. It was proposed with the goal of avoiding the exhaustive testing of 
module’s entire states. It was invented by Baharom and Shukur based on Parnas 
formal specifications (Baharom & Shukur, 2008, 2010, 2011). SSP focuses on a 
module that consists of one or more access programs, which share the same 
data structure. As a result, the test data for a module might include a sequence 
of events rather than a single event. The overall mechanism of SSP includes 
partitioning the entire data states of the SUT based on their sensitivities towards 
events, conditions, and actions. It is based on all-transition coverage criterion 
where the test cases are manually selected. As there is no limit on the number 
of events that any sequence can hold, lengthy test cases might be generated. 
Besides, no constraints were applied in order to avoid retesting a component 
that was already tested. Consequently, a state explosion might be encountered 
as a result of an infinite or lengthy sequence of events that modify the internal 
data states. This will result in wasting testing efforts and times. Hence, there is 
a need to optimize the test cases so the states of SUT are covered with the 
minimal number of events. Accordingly, test suites have to be optimized, too, 
with the goal of including the minimal number of test cases that cover the SUT. 
 
 
As a result, several enhancements were proposed such as selecting a 
representative set of test cases based on heuristics to represent the test suite  
(Jeffrey & Gupta, 2005). Other researchers introduced a greedy algorithm for 
selecting test cases with the minimal redundancy whilst satisfying the maximum 
testing requirements (Parsa & Khalilian, 2010). Sapaat and Baharom (Sapaat & 
Baharom, 2011) proposed matrices to be used for analyzing the data flow of the 
SUT and eliminate its redundancies. Others adopted search techniques for the 
sake of generating optimized test cases (Alsmadi, Alkhateeb, Maghayreh, 
Samarah, & Doush, 2010; Kulkarni, Naveen, Singh, & Srivastava, 2011). 
 
 
Search techniques, also known as optimization techniques, were proposed for 
generating optimal test cases and prioritizing test cases such as genetic 
algorithm and tabu search. Each technique has its own strengths and 
weaknesses. However, among search techniques, genetic algorithm (GA) is the 
most common technique employed for generating test cases (Ali, Briand, 
Hemmati, & Panesar-Walawege, 2010). This is inspired by its simplicity and 
quality of results it provides, compared with other search techniques. 
 
 
The aforementioned issues in SSP provide a fundamental motivation for this 
research to look into this problem of what is an effective and efficient strategy to 
generate optimal test cases that cover all the SUT states and provides a faults 
detection with the minimum number of cases. Subsequently, a prioritization 
technique was applied on the minimized suite so that all bugs can be detected 
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with the fewest number of test cases. The tradeoff between effectiveness and 
efficiency has to be considered in order to achieve such a goal. 
 
 
1.3 Problem Statement 
 
SSP technique generates test cases for modules that consist of one or more 
access programs and share the same data structure. An access program is a 
program that is part of a module that can be used from outside the module. The 
module testing provides better coverage and higher detection rates of errors 
compared with other testing levels (McDonald, Murray, & Strooper, 1997). As it 
is impossible to exhaustively test all elements and their combinations, SSP 
partitions the entire data states based on the state’s sensitivity towards events, 
conditions (pre-conditions) and actions (post-conditions). 
 
 
However, SSP does not apply constraints on the generated sequences of 
events. Thus, the sequences might be lengthy with a number of redundant states 
(Sapaat & Baharom, 2011). A prior work towards minimizing SSP test suites by 
(Sapaat & Baharom, 2011) focused on reducing states redundancies which 
result from having a sequence that is subset from other sequences within the 
same suite. Nonetheless, another type of redundancies may exist in the 
sequence itself. This type results from having events that do not affect the SUT 
state. For example, adding to a full queue will repeat the full queue state and will 
not cause a new state to be generated. 
 
 
So, SSP states redundancies can exist at two levels: test case and test suite. 
Redundant states in the test case level results from having sensitive events that 
generate redundant states (i.e. will not affect the states of SUT in the same 
sequence of events). On the other hand, having test cases that present subset 
(part of) from others contribute to the redundancy in test suite as they produce 
identical states. Consequently, there is a need to optimize the sequences of 
events considering the SUT states rather than the events only. 
 
 
Unlike redundancies in the test suite level, some test cases include redundancies 
for the purpose of testing and these cases have to be preserved. For example, 
adding an item to a full queue results in a redundant state, but this has to be kept 
as part of the test. As a result, there is a need to feature the redundancies in the 
test case level along with the test suite level considering which redundancies are 
needed and which have to be eliminated. 
 
 
Besides, SSP does not provide a specific order of the generated suite which 
means that there is a need to wait until the end of the suite in order to identify all 
system bugs. Consequently, there is a need to detect all bugs with the first few 
test cases rather than waiting till completing the suite. 
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1.4 Research Objectives 
 
The objectives of this research are as follows: 

1. To propose an optimization technique for generating minimized and 
prioritized test suite to test a component that consists of several 
functions sharing the same data structure. 

2. To develop a prototype tool for the optimization technique. 
3. To empirically evaluate the effectiveness and efficiency of the proposed 

technique in detecting faults. 
 
 
1.5 Scope of Research 
 
A test case is defined by IEEE standards (IEEE, 2010) as a set of test inputs, 
execution conditions, and expected results developed for a particular objective, 
such as to exercise a particular program path or to verify compliance with a 
specific requirement. In this research, the focus is on test cases that are 
composed of sequences of events. Other forms of test cases will not be 
considered. 
 
 
Besides, this research focuses on SSP with the purpose of enhancement. SSP 
is module-based test case generation technique targeting modules that have 
memory. More specifically, it focuses on modules that store values as a result of 
specific triggers (i.e. sensitive events). It is based on Parnas specification 
documentations, specifically, Module Internal Design Document (MIDD). MIDD 
specifies the relations between SUT aspects. SSP combines the advantages of 
both Black-box and White-box. Similar to SSP, this research considers testing 
modules that have memories. Every module has a private data structure and one 
or more access programs. Hence, this research targets components that consist 
of several functions sharing a private data structure with the goal of avoiding 
exhaustive testing. 
 
 
1.6 Contributions of the Thesis 
 
This thesis has made the following contributions: 

i. It defined a technique for generating optimized test cases which are both 
effective and efficient. 

ii. It implemented a tool support for the test generation process suggested 
by the technique. Furthermore, the implemented tool, not only can be 
used to generate tests for SSP but also can be applied in any related 
experimental work. 

iii. It provides empirical evidence that the proposed technique can be 
effective in testing and test cases generation compared with the original 
SSP. 

iv. The comparison and evaluation results obtained from an empirical study 
made the advantages and disadvantages of the current SSP obvious for 
potential users. This contributes to a direction that can provide the basis 
of guidelines for testing practitioners for choosing techniques suiting 
their purposes and constraints. 
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1.7 Organization of the Thesis 
 
This thesis is divided into seven chapters. The first chapter is the introduction of 
the thesis. It describes the problem background and statement, research 
objectives, scope of the research and contributions of the thesis. 
 
 
The second chapter is the literature review. It presents a detailed study of the 
existing test case generation techniques alongside SSP, which are the key areas 
to lay the foundation of this work. This chapter also highlights gaps in the related 
literature. 
 
 
The third chapter is the methodology. It outlines a general overview of the 
research methods and materials used to define an optimized test generation 
technique, to implement the prototype tool support, and finally to conduct the 
empirical evaluation and analysis of the newly proposed technique. More specific 
details of how each objective was accomplished are presented in the respective 
chapters. 
 
 
The fourth chapter proposes an optimized test generation technique, specifically 
targeted towards enhancing SSP by generating test data to exercise the advice 
and pointcuts. An illustrative case study on how the proposed technique can be 
used to generate tests are provided. 
 
 
The fifth chapter is the implementation of the technique tool. The purpose of the 
tool is to automate the process of test generation and execution. 
 
 
The sixth chapter presents a comprehensive experiment whose aim was to 
provide empirical evidence to evaluate the proposed technique, in terms of 
effectiveness and efficiency. 
 
 
The seventh chapter is the conclusion and future work. It gives a general 
conclusion of the research presented in this thesis and also proposes some 
research directions that can be investigated as future work. 
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