
© C
OPYRIG

HT U
PM

UNIVERSITI PUTRA MALAYSIA

AN OPTIMIZED TEST CASE GENERATION TECHNIQUE FOR
ENHANCING

STATE-SENSITIVITY PARTITIONING

AMMAR MOHAMMED DAWOOD SULTAN

FSKTM 2018 9

© C
OPYRIG

HT U
PM

AN OPTIMIZED TEST CASE GENERATION TECHNIQUE FOR ENHANCING

STATE-SENSITIVITY PARTITIONING

By

AMMAR MOHAMMED DAWOOD SULTAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of

Philosophy

November 2017

© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained
within the thesis for non-commercial purposes from the copyright holder.
Commercial use of material may only be made with the express, prior, written
permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in

fulfilment of the requirement for the degree of Doctor of Philosophy

AN OPTIMIZED TEST CASE GENERATION TECHNIQUE FOR ENHANCING

STATE-SENSITIVITY PARTITIONING

By

AMMAR MOHAMMED DAWOOD SULTAN

November 2017

Chair: Salmi binti Baharom, PhD
Faculty: Computer Science and Information Technology

Software testing is a vital phase in software development life cycle (SDLC) and its
principal element is test case. Test case generation remains the most dominant
the research area in software testing. One of the techniques that were proposed
for generating test cases is State Sensitivity Partitioning (SSP). It aims to avoid
the exhaustive testing of module’s entire states. It partitions the entire data states
based on their sensitivities towards events, conditions and actions. The test data
for SSP is in the form of event sequences. As there is no limit on the number of
events that any sequence can hold, lengthy test cases might be generated.
Besides, no constrains were applied in order to avoid retesting a component that
was already tested. Subsequently, a state explosion might be encountered.

The aim of this study was to address the problem of redundant states encountered
within SSP test cases. An optimization technique was proposed, enSSP, featuring
the generation of optimized test cases. The scope of this work is testing a module
with memory where each module may consist of several programs. The essence
of enSSP is to combine the features of Genetic Algorithm (GA) with a suite
reduction technique to achieve optimization. GA removes redundant states from
test cases while the reduction technique removes redundant sequences from the
suite. Afterwards, a prioritization algorithm used for sorting the test cases so the
first test case detects the highest number of mutants followed by the cases that
kill its live mutants. Experiments were conducted using mutation analysis to
compare the fault detection capabilities of enSSP and SSP. The main interest of
the experiment is to demonstrate the capability of enSSP. With respect to both
quality attributes, the effectiveness and the efficiency, the results indicate that
enSSP is more effective and efficient than SSP.

© C
OPYRIG

HT U
PM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

TEKNIK PENJANAAN UJIAN KES DIOPTIMUMKAN BAGI MENINGKATKAN

PEMBAHAGIAN SENSITIVITI KEADAAN

 Oleh

AMMAR MOHAMMED DAWOOD SULTAN

November 2017

Pengerusi: Salmi binti Baharom, PhD
Fakulti: Sains Komputer dan Teknologi Maklumat

Ujian perisian adalah sangat penting dalam Kitar Hidup Pembangunan Perisian
(SDLC) dan bahan utamanya ialah ujian kes. Penjanaan ujian kes kekal menjadi
paling dominan dalam penyelidikan ujian perisian. Salah satu teknik yang
dicadangkan untuk penjanaan ujian kes ialah Fasa Sensitiviti Pembahagian
(SSP). Ia bertujuan untuk mengelak ujian keseluruhan terhadap fasa model
tersebut. Ia membahagikan keseluruhan keadaan data berdasarkan
sensitivitinya terhadap situasi, keadaan dan tindakan. Ujian data untuk SSP
adalah dalam bentuk urutan keadaan yang bersiri. Memandangkan tiada had
maksimum untuk saiz urutan keadaan bersiri, jangka masa yang lama mungkin
diperlukan untuk melaksanakan keseluruhannya. Tambahan pula, tiada
kekangan dijalankan untuk mengelak daripada pengulangan ujian komponen
yang telah diuji. Justeru itu, fasa ujian yang sangat besar mungkin berlaku.

Tujuan kajian ini adalah untuk menangani masalah fasa pengulangan yang
berlaku dalam ujian kes SSP. Maka satu teknik yang optimum dicadangkan,
enSSP adalah satu teknik yang bercirikan generasi ujian kes SSP yang telah
dioptimumkan. Bidang kajian ini adalah untuk menguji modul yang mengandungi
memori di mana setiap modul mempunyai beberapa program di dalamnya.
Keistimewaan enSSP adalah ia menggabungkan ciri-ciri Genetik Algoritma (GA)
dengan suatu set program teknik pengurangan untuk mencapai kesan optimum.
GA menyingkirkan fasa pengulangan daripada ujian kes yang dijalankan
manakala teknik pengurangan bertindak menghapuskan urutan pengulangan
daripada set program tersebut. Seterusnya, satu algoritma digunakan untuk
menyusun ujian kes tersebut supaya penyusunan akan bermula dengan ujian
kes yang dapat mengesan jumlah mutan yang tertinggi dan diikuti oleh ujian kes
yang dapat menghapuskan mutan hidup yang lain. Eksperimen telah dijalankan
dengan menggunakan mutan analisis untuk membandingkan kebolehan
mengesan mutan diantara enSSP dan SSP. Tujuan utama eksperimen untuk
membuktikan keupayaan enSSP. Melalui perbandingan dari segi atribut kualiti

© C
OPYRIG

HT U
PM

iii

antara enSSP dan SSP, keputusan menunjukkan enSSP lebih efektif dan efisien
berbanding SSP.

© C
OPYRIG

HT U
PM

iv

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful.

All praise and gratitude to Allah for His blessing, mercy, and guidance in complete
this work and seen me in every moment of my life.

I would like to express my gratitude to Dr. Salmi binti Baharom for her constant
encouragement, support, and guidance from the very early stage of this research
as well as giving me extraordinary experiences throughout the work.

I am deeply indebted to my committee members Prof. Abdul Azim Abd Ghani, Dr.
Jamilah Din and Dr. Hazura Zulzalil for their encouragement, support, and
invaluable suggestions.

© C
OPYRIG

HT U
PM

© C
OPYRIG

HT U
PM

vi

This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Doctor of
Philosophy. The members of the Supervisory Committee were as follows:

Salmi binti Baharom, PhD
Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Abdul Azim Abd Ghani, PhD
Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Hazura Zulzalil, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Jamilah Din, PhD
Senior Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

© C
OPYRIG

HT U
PM

vii

Declaration by graduate student

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other
degree at any other institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned
by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

 written permission must be obtained from supervisor and the office of
Deputy Vice-Chancellor (Research and Innovation) before thesis is
published (in the form of written, printed or in electronic form) including
books, journals, modules, proceedings, popular writings, seminar papers,
manuscripts, posters, reports, lecture notes, learning modules or any other
materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld as according to the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti
Putra Malaysia (Research) Rules 2012. The thesis has undergone
plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Ammar Mohammed Dawood Sultan (GS26764)

© C
OPYRIG

HT U
PM

viii

Declaration by Members of Supervisory Committee

This is to confirm that:

 the research conducted and the writing of this thesis was under our
supervision;

 supervision responsibilities as stated in the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman
of Supervisory
Committee:

Signature:

Name of Member of
Supervisory
Committee:

Signature:

Name of Member of
Supervisory
Committee:

Signature:

Name of Member of
Supervisory
Committee:

© C
OPYRIG

HT U
PM

ix

TABLE OF CONTENTS

 Page

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iv
APPROVAL v
DECLARATION vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
 1.1 Overview 1
 1.2 Background 1
 1.3 Problem Statement 3
 1.4 Research Objectives 4
 1.5 Scope of Research 4
 1.6 Contributions of the Thesis 4
 1.7 Organization of the Thesis 5

2 LITERATURE REVIEW 6
 2.1 Introduction 6
 2.2 Test Case Generation 6
 2.3 Test Suite Minimization 7
 2.4 Test Suite Prioritization 11
 2.4.1 Test Case Prioritization Metric 14
 2.5 State Sensitivity Partitioning (SSP) 15
 2.5.1 Identification of Sensitive Access

Programs
16

 2.5.2 Declaration of Equivalence Classes of
Data States

16

 2.5.3 State Transition Model Construction
based on Equivalence Classes

16

 2.5.4 Test Cases Selection based on All-
Transition-Coverage Criterion

17

 2.5.5 Addition of the Insensitive Event at the end
of each Test Sequence

17

 2.5.6 Boundary Value Analysis (BVA)
Application to Input Parameters

17

 2.6 Search Techniques 19
 2.6.1 Genetic Algorithm (GA) 21
 2.7 Mutation Testing 22
 2.8 Implication of Literature Review 24

© C
OPYRIG

HT U
PM

x

 2.8.1 An effective test case generation
technique for testing modules with
memory

24

 2.8.2 Adoption of search-based technique for
minimizing the test suite

24

 2.8.3 A technique for prioritizing the sequences
in a test suite

24

 2.8.4 A toolset to support the process of module
testing

24

 2.9 Summary 25

3 RESEARCH METHODOLOGY 26
 3.1 Introduction 26
 3.2 Research Design 27
 3.2.1 Literature Review 28
 3.2.2 Defining an enhanced state-sensitivity

partitioning technique
29

 3.2.3 Implementing a prototype tool of enSSP
technique

29

 3.2.4 Evaluation 30
 3.2.5 Experimental validity 31
 3.2.6 Data interpretation and analysis 32
 3.3 Summary 33

4 ENHANCED STATE SENSITIVITY PARTITIONING

(enSSP)
34

 4.1 Introduction 34
 4.2 Conceptual Design of enSSP 34
 4.2.1 Test Suite 35
 4.2.2 StatesExtractor 36
 4.2.3 TCOptimizer 36
 4.2.4 TSOptimizer 40
 4.2.5 MutantsGenerator 42
 4.2.6 TSPrioritizer 42
 4.3 Case Study: Generating Test Cases for

CircularQueue Program
44

 4.4 Summary 57

5 IMPLEMENTATION OF enSSP TOOL SUPPORT 58
 5.1 Introduction 58
 5.2 Programming Language 58
 5.3 The Development of StatesExtractor 58
 5.4 The Development of TCOptimizer 65
 5.5 The Development of TSOptimizer 72
 5.6 The Development of TSPrioritizer 76
 5.7 Summary 81

6 RESULTS ANALYSIS AND DISCUSSION 82
 6.1 Introduction 82
 6.2 Assessment Approach 82
 6.3 Experimental Definition 83

© C
OPYRIG

HT U
PM

xi

 6.4 Experimental Setup 84
 6.4.1 Selection of Subject Programs to Test 84
 6.4.2 Selection of Experimental Environment 90
 6.5 Experimental Procedure 91
 6.5.1 Mutation Generation 93
 6.5.2 Code Modification 96
 6.5.3 Execute the mutated versions on SSP and

enSSP (the 1st experiment)
96

 6.5.4 Execute the mutated versions on enSSP
(the 2nd experiment)

97

 6.6 Experimental Results 97
 6.6.1 Experiment Results for Mutant Score

Metric
98

 6.6.2 The Effectiveness of enSSP 101
 6.6.3 The Efficiency of enSSP 102
 6.6.4 Prioritization Rank 103
 6.6.5 APFD 109
 6.7 Discussion 111
 6.8 Threats to Validity 111
 6.9 Summary 112

7 CONCLUSION AND FUTURE WORK 113
 7.1 Introduction 113
 7.2 Conclusion 113
 7.3 Contribution of The Research 114
 7.4 Limitations of The Research Study 115
 7.5 Future Work 115
 7.5.1 Further Empirical Studies 115
 7.5.2 Allow Selection of Programming

Language
115

 7.5.3 Further Investigations on the enSSP
Technique

116

 7.5.4 Consideration of Test Oracles 116
 7.6 Summary 116

REFERENCES 117
BIODATA OF STUDENT 130
LIST OF PUBLICATIONS 131

© C
OPYRIG

HT U
PM

xii

LIST OF TABLES

Table Page

4.1 The test sequences of CircularQueue program resulted

from SSP technique
45

4.2 The Fitness Calculations for CircularQueue program 49
4.3 The Selected Sequences per CircularQueue category 52
4.4 Crossover application for CircularQueue program 53
4.5 Mutation application for CircularQueue program 54
4.6 GA Application on CircularQueue program 55
4.7 The Minimized Suite for CircularQueue program 56
4.8 The prioritized suite for CircularQueue program 57
6.1 Categories of sequences of events in CircularQueue

program
85

6.2 Categories of sequences of events in BoundedStack
program

86

6.3 Categories of sequences of events in Tic-Tac-Toe
program

87

6.4 Categories of sequences of events in
OptimumRequestOrder program

88

6.5 Categories of sequences of events in ArraybasedList
program

89

6.6 The Subject Programs used in the experiment 90
6.7 Mutation Operators by Jester 93
6.8 Number of mutants generated per subject program 93
6.9 Mutants generated for CircularQueue program 94
6.10 Mutants generated for BoundedStack program 94
6.11 Mutants generated for Tic-Tac-Toe program 95
6.12 Mutants generated for OptimumRequestOrder

program
95

6.13 Mutants generated for ArraybasedList program 95
6.14 The distribution of faults detected by CircularQueue

program
98

6.15 The distribution of faults detected by BoundedStack
program

98

6.16 The distribution of faults detected by Tic-Tac-Toe
program

99

6.17 The distribution of faults detected by
OptimumRequestOrder program

99

6.18 The distribution of faults detected by ArraybasedList
program

100

6.19 Percentage of SSR by enSSP 102
6.20 Prioritization ranks for all subject programs 103
6.21 The suite of CircularQueue program after prioritization 103
6.22 The suite of BoundedStack program after prioritization 104
6.23 The suite of Tic-Tac-Toe program after prioritization 105
6.24 The suite of OptimumRequestOrder program after

prioritization
105

6.25 The suite of ArraybasedList program after prioritization 107

© C
OPYRIG

HT U
PM

xiii

6.26 Descriptive results of APFD for SSP and enSSP 110
6.27 Analysis results of APFD based on paired t-test 110

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

2.1 SSP Workflow 15
2.2 Main Search Techniques 20
2.3 GA Workflow 21
2.4 Workflow of mutation testing 23
3.1 Research Methodology 28
3.2 Experimental Methodology 31
4.1 The Conceptual Design of enSSP 35
4.2 The TCOptimizer workflow for enSSP 37
4.3 TSOptimizer Algorithm for Test Suite Minimization 41
4.4 The Algorithm of TSPrioritizer 42
4.5 FSM of the CircularQueue program 44
5.1 Input, Process, and Output of StatesExtractor 59
5.2 enSSP GUI 61
5.3 The output of TCOptimizer in Excel sheet 72
5.4 The output of TCOptimizer in text file 72
5.5 The output of TSOptimizer in Excel sheet 76
5.6 The output of TSOptimizer in text file 76
5.7 The output of TSPrioritizer in Excel sheet 80
5.8 The output of TSPrioritizer in Text file 81
6.1 The Experimental Framework 92
6.2 The mutant score of SSP and enSSP by each subject

program
101

6.3 The SSR Percentage 102
6.4 Comparison of APFD for SSP and enSSP 109

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony
ACO Ant Colony Optimization
AI Artificial Intelligence
APFD Average Percentage of Fault Detection
BVA Boundary Value Analysis
BVR Case Based Reasoning
df Degree of Freedom
DU Define Use
EDS Event Driven Systems
enSSP Enhanced State Sensitivity Partitioning
FSM Finite State Machine
GA Genetic Algorithm
GDP Gross Domestic Product
HC Hill Climbing
LM Live Mutant
LR Literature Review
MC/DC Modified Condition/Decision Coverage
MIDD Module Internal Design Document
MIS Module Interface Specification
NIST National Institute of Standards and Technology
OO Object Oriented
PSO Particle Swarm Optimization
SA Simulated Annealing
SBSE Search Based Software Engineering
SBST Search Based Software Testing
SDLC Software Development Life Cycle
SSP State Sensitivity Partitioning
SUT Software Under Test
TS Tabu Search

© C
OPYRIG

HT U
PM

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The undertaken research presents a technique for generating optimal test cases
in the form of sequences of events. It aims to overcome the problem of redundant
states encountered in the suites generated by state-sensitivity partitioning (SSP)
technique. Thus, the proposed technique minimizes the test suite while
preserving its state coverage. The minimization was performed at two levels: test
case and test suite. The former level targets the redundant states per sequence
while the latter one focuses on the redundant states within the suite. Also, this
study considers detecting all bugs within the fewest number of test cases rather
than waiting until the end of the suite. This is done through prioritizing the
minimized suite. Hence, this chapter presents a background on the investigated
topic, an overview of the problem statement, research objectives, contributions
and thesis organization.

1.2 Background

Software testing is one of the most crucial phases in the software development
life cycle (SDLC). It stands for the process of executing a system or program with
the intention of finding errors (Myers, Sandler, & Badgett, 2011). However, the
software testing is a labor-intensive process that requires an extensive effort and
consumes time, accounting about 50% of the total cost of software development
(Pressman & Maxim, 2014). This includes detecting errors as much as possible
within the specified time and validates that the software was built as intended by
the users. Test case is the principal element for testing. It is a group of tests that
are performed sequentially with the goal of meeting a test objective. Every test
case produces a number of tests that comprise specific input values, observed
output, expected output, and any further information that might be needed for
running the test, such as environmental prerequisites (Fewster & Graham, 1999;
Jorgensen, 2013; Mala & Mohan, 2007). The quality of test cases is evaluated
through two factors, which are effectiveness and efficiency. The effectiveness
stands for the coverage of the generated test cases with the goal of covering as
much as possible of the software under test (SUT) with the minimum number of
test cases. On the other hand, efficiency stands for the capability of detecting all
mutants with the fewest number of test cases rather than waiting till the last test
case in the suite to detect all mutants.

However, the classical way of generating test cases is exhaustive testing which
focuses on examining all possible combinations of inputs and preconditions with
the goal of finding errors. Although it may be appropriate for small systems,
exhaustive testing is infeasible, especially for non-trivial systems such as health

© C
OPYRIG

HT U
PM

2

care systems. This adds more complexity for errors detection (Black, Graham, &
Veenendaal, 2012).

Relatively, several techniques were proposed for generating test cases non-
exhaustively. One of these techniques is State Sensitivity Partitioning (SSP)
technique. It was proposed with the goal of avoiding the exhaustive testing of
module’s entire states. It was invented by Baharom and Shukur based on Parnas
formal specifications (Baharom & Shukur, 2008, 2010, 2011). SSP focuses on a
module that consists of one or more access programs, which share the same
data structure. As a result, the test data for a module might include a sequence
of events rather than a single event. The overall mechanism of SSP includes
partitioning the entire data states of the SUT based on their sensitivities towards
events, conditions, and actions. It is based on all-transition coverage criterion
where the test cases are manually selected. As there is no limit on the number
of events that any sequence can hold, lengthy test cases might be generated.
Besides, no constraints were applied in order to avoid retesting a component
that was already tested. Consequently, a state explosion might be encountered
as a result of an infinite or lengthy sequence of events that modify the internal
data states. This will result in wasting testing efforts and times. Hence, there is
a need to optimize the test cases so the states of SUT are covered with the
minimal number of events. Accordingly, test suites have to be optimized, too,
with the goal of including the minimal number of test cases that cover the SUT.

As a result, several enhancements were proposed such as selecting a
representative set of test cases based on heuristics to represent the test suite
(Jeffrey & Gupta, 2005). Other researchers introduced a greedy algorithm for
selecting test cases with the minimal redundancy whilst satisfying the maximum
testing requirements (Parsa & Khalilian, 2010). Sapaat and Baharom (Sapaat &
Baharom, 2011) proposed matrices to be used for analyzing the data flow of the
SUT and eliminate its redundancies. Others adopted search techniques for the
sake of generating optimized test cases (Alsmadi, Alkhateeb, Maghayreh,
Samarah, & Doush, 2010; Kulkarni, Naveen, Singh, & Srivastava, 2011).

Search techniques, also known as optimization techniques, were proposed for
generating optimal test cases and prioritizing test cases such as genetic
algorithm and tabu search. Each technique has its own strengths and
weaknesses. However, among search techniques, genetic algorithm (GA) is the
most common technique employed for generating test cases (Ali, Briand,
Hemmati, & Panesar-Walawege, 2010). This is inspired by its simplicity and
quality of results it provides, compared with other search techniques.

The aforementioned issues in SSP provide a fundamental motivation for this
research to look into this problem of what is an effective and efficient strategy to
generate optimal test cases that cover all the SUT states and provides a faults
detection with the minimum number of cases. Subsequently, a prioritization
technique was applied on the minimized suite so that all bugs can be detected

© C
OPYRIG

HT U
PM

3

with the fewest number of test cases. The tradeoff between effectiveness and
efficiency has to be considered in order to achieve such a goal.

1.3 Problem Statement

SSP technique generates test cases for modules that consist of one or more
access programs and share the same data structure. An access program is a
program that is part of a module that can be used from outside the module. The
module testing provides better coverage and higher detection rates of errors
compared with other testing levels (McDonald, Murray, & Strooper, 1997). As it
is impossible to exhaustively test all elements and their combinations, SSP
partitions the entire data states based on the state’s sensitivity towards events,
conditions (pre-conditions) and actions (post-conditions).

However, SSP does not apply constraints on the generated sequences of
events. Thus, the sequences might be lengthy with a number of redundant states
(Sapaat & Baharom, 2011). A prior work towards minimizing SSP test suites by
(Sapaat & Baharom, 2011) focused on reducing states redundancies which
result from having a sequence that is subset from other sequences within the
same suite. Nonetheless, another type of redundancies may exist in the
sequence itself. This type results from having events that do not affect the SUT
state. For example, adding to a full queue will repeat the full queue state and will
not cause a new state to be generated.

So, SSP states redundancies can exist at two levels: test case and test suite.
Redundant states in the test case level results from having sensitive events that
generate redundant states (i.e. will not affect the states of SUT in the same
sequence of events). On the other hand, having test cases that present subset
(part of) from others contribute to the redundancy in test suite as they produce
identical states. Consequently, there is a need to optimize the sequences of
events considering the SUT states rather than the events only.

Unlike redundancies in the test suite level, some test cases include redundancies
for the purpose of testing and these cases have to be preserved. For example,
adding an item to a full queue results in a redundant state, but this has to be kept
as part of the test. As a result, there is a need to feature the redundancies in the
test case level along with the test suite level considering which redundancies are
needed and which have to be eliminated.

Besides, SSP does not provide a specific order of the generated suite which
means that there is a need to wait until the end of the suite in order to identify all
system bugs. Consequently, there is a need to detect all bugs with the first few
test cases rather than waiting till completing the suite.

© C
OPYRIG

HT U
PM

4

1.4 Research Objectives

The objectives of this research are as follows:

1. To propose an optimization technique for generating minimized and
prioritized test suite to test a component that consists of several
functions sharing the same data structure.

2. To develop a prototype tool for the optimization technique.
3. To empirically evaluate the effectiveness and efficiency of the proposed

technique in detecting faults.

1.5 Scope of Research

A test case is defined by IEEE standards (IEEE, 2010) as a set of test inputs,
execution conditions, and expected results developed for a particular objective,
such as to exercise a particular program path or to verify compliance with a
specific requirement. In this research, the focus is on test cases that are
composed of sequences of events. Other forms of test cases will not be
considered.

Besides, this research focuses on SSP with the purpose of enhancement. SSP
is module-based test case generation technique targeting modules that have
memory. More specifically, it focuses on modules that store values as a result of
specific triggers (i.e. sensitive events). It is based on Parnas specification
documentations, specifically, Module Internal Design Document (MIDD). MIDD
specifies the relations between SUT aspects. SSP combines the advantages of
both Black-box and White-box. Similar to SSP, this research considers testing
modules that have memories. Every module has a private data structure and one
or more access programs. Hence, this research targets components that consist
of several functions sharing a private data structure with the goal of avoiding
exhaustive testing.

1.6 Contributions of the Thesis

This thesis has made the following contributions:

i. It defined a technique for generating optimized test cases which are both
effective and efficient.

ii. It implemented a tool support for the test generation process suggested
by the technique. Furthermore, the implemented tool, not only can be
used to generate tests for SSP but also can be applied in any related
experimental work.

iii. It provides empirical evidence that the proposed technique can be
effective in testing and test cases generation compared with the original
SSP.

iv. The comparison and evaluation results obtained from an empirical study
made the advantages and disadvantages of the current SSP obvious for
potential users. This contributes to a direction that can provide the basis
of guidelines for testing practitioners for choosing techniques suiting
their purposes and constraints.

© C
OPYRIG

HT U
PM

5

1.7 Organization of the Thesis

This thesis is divided into seven chapters. The first chapter is the introduction of
the thesis. It describes the problem background and statement, research
objectives, scope of the research and contributions of the thesis.

The second chapter is the literature review. It presents a detailed study of the
existing test case generation techniques alongside SSP, which are the key areas
to lay the foundation of this work. This chapter also highlights gaps in the related
literature.

The third chapter is the methodology. It outlines a general overview of the
research methods and materials used to define an optimized test generation
technique, to implement the prototype tool support, and finally to conduct the
empirical evaluation and analysis of the newly proposed technique. More specific
details of how each objective was accomplished are presented in the respective
chapters.

The fourth chapter proposes an optimized test generation technique, specifically
targeted towards enhancing SSP by generating test data to exercise the advice
and pointcuts. An illustrative case study on how the proposed technique can be
used to generate tests are provided.

The fifth chapter is the implementation of the technique tool. The purpose of the
tool is to automate the process of test generation and execution.

The sixth chapter presents a comprehensive experiment whose aim was to
provide empirical evidence to evaluate the proposed technique, in terms of
effectiveness and efficiency.

The seventh chapter is the conclusion and future work. It gives a general
conclusion of the research presented in this thesis and also proposes some
research directions that can be investigated as future work.

© C
OPYRIG

HT U
PM

118

REFERENCES

Afzal, W., Torkar, R., & Feldt, R. (2009). A systematic review of search-based

testing for non-functional system properties. Information and Software
Technology, 51(6), 957–976.
https://doi.org/10.1016/j.infsof.2008.12.005

Ahmad, J., & Baharom, S. (2017). A Systematic Literature Review of the Test
Case Prioritization Technique for Sequence of Events. International
Journal of Applied Engineering Research, 12(7), 1389–1395.

Ahmed, B. S. (2016). Test case minimization approach using fault detection and
combinatorial optimization techniques for configuration-aware structural
testing. Engineering Science and Technology, an International Journal,
19(2), 737–753. https://doi.org/10.1016/j.jestch.2015.11.006

Ali, S., Briand, L. C., Hemmati, H., & Panesar-Walawege, R. K. (2010). A
Systematic Review of the Application and Empirical Investigation of
Search-Based Test Case Generation. IEEE Transactions on Software
Engineering, 36(6), 742–762. https://doi.org/10.1109/tse.2009.52

Alsmadi, I., Alkhateeb, F., Maghayreh, E. A., Samarah, S., & Doush, I. A. (2010).
Effective Generation of Test Cases Using Genetic Algorithms and
Optimization Theory. Journal of Communication and Computer, 7(11),
72–82.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., …
Mcminn, P. (2013). An orchestrated survey of methodologies for
automated software test case generation. Journal of Systems and
Software, 86(8), 1978–2001. https://doi.org/10.1016/j.jss.2013.02.061

Andrews, J. H., Briand, L. C., & Labiche, Y. (2005). Is mutation an appropriate
tool for testing experiments? (pp. 402–411). Presented at the
Proceedings of the 27th International Conference on Software
Engineering (ICSE ’05), Saint Louis, MO, USA: IEEE.
https://doi.org/10.1109/ICSE.2005.1553583

Andrews, J. H., Briand, L. C., Labiche, Y., & Namin, A. S. (2006). Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE
Transactions on Software Engineering, 32(8), 608–624.
https://doi.org/10.1109/tse.2006.83

Babbie, E. R. (2016). The Practice of Social Research (14th ed.). Boston, MA,
USA: Cengage Learning.

Bagnall, A. J., Rayward-Smith, V. J., & Whittley, I. M. (2001). The next release
problem. Information and Software Technology, 43(14), 883–890.
https://doi.org/10.1016/s0950-5849(01)00194-x

Baharom, S., & Shukur, Z. (2008). Module documentation based testing using
Grey-Box approach (Vol. 2, pp. 1–6). Presented at the 3rd International
Symposium on Information Technology 2008, ITSim, Kuala Lumpur,
Malaysia: IEEE. https://doi.org/10.1109/ITSIM.2008.4631651

Baharom, S., & Shukur, Z. (2010). State-Sensitivity Partitioning Technique for
Module Documentation-based testing. In K. S. Soliman (Ed.) (Vol. 1, pp.
472–483). Presented at the Business Transformation through Innovation
and Knowledge Management: An Academic Perspective - Proceedings
of the 14th International Business Information Management Association

© C
OPYRIG

HT U
PM

119

Conference, IBIMA 2010, Istanbul: International Business Information
Management Association, IBIMA.

Baharom, S., & Shukur, Z. (2011). An experimental assessment of module
documentation-based testing. Information and Software Technology,
53(7), 747–760. https://doi.org/10.1016/j.infsof.2011.01.005

Basili, V. R., & Selby, R. W. (1987). Comparing the Effectiveness of Software
Testing Strategies. IEEE Transactions on Software Engineering, 13(12),
1278–1296. https://doi.org/10.1109/TSE.1987.232881

Baskarada, S. (2009). IQM-CMM: Information Quality Management Capability
Maturity Model (2010 edition). Weisbaden, Germany: Vieweg+Teubner
Verlag.

Black, J., Melachrinoudis, E., & Kaeli, D. (2004). Bi-criteria models for all-uses
test suite reduction (pp. 106–115). Presented at the Proceedings of the
26th International Conference on Software Engineering (ICSE ’04),
Edinburgh, UK: IEEE Computer Society.
https://doi.org/10.1109/ICSE.2004.1317433

Black, R., Graham, D., & Veenendaal, E. V. (2012). Foundations of Software
Testing: ISTQB Certification (3rd ed.). Cengage Learning.

Bogacki, B., & Walter, B. (2006). Evaluation of Test Code Quality with Aspect-
Oriented Mutations. In P. Abrahamsson, M. Marchesi, & G. Succi (Eds.),
Extreme Programming and Agile Processes in Software Engineering:
7th International Conference, XP 2006, Oulu, Finland, June 17-22, 2006.
Proceedings (pp. 202–204). Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/11774129_26

Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011). A proposed
test case generation technique based on activity diagrams. International
Journal of Engineering & Technology IJET-IJENS, 11(03).

Bradbury, J. S. (2007). Using program mutation for the empirical assessment of
fault detection techniques: a comparison of concurrency testing and
model checking (Doctoral Dissertation). Queen’s University, Kingston,
Ont., Canada.

Bradbury, J. S., Cordy, J. R., & Dingel, J. (2005). An Empirical Framework for
Comparing Effectiveness of Testing and Property-based Formal
Analysis. ACM SIGSOFT Software Engineering Notes, 31(1), 2–5.
https://doi.org/10.1145/1108768.1108795

Bryce, R. C., & Colbourn, C. J. (2006). Prioritized interaction testing for pair-wise
coverage with seeding and constraints. Information and Software
Technology, 48(10), 960–970.
https://doi.org/10.1016/j.infsof.2006.03.004

Bryce, R. C., Colbourn, C. J., & Cohen, M. B. (2005). A Framework of Greedy
Methods for Constructing Interaction Test Suites (pp. 146–155).
Presented at the Proceedings of the 27th International Conference on
Software Engineering (ICSE ’05), St. Louis, MO, USA: ACM.
https://doi.org/10.1145/1062455.1062495

Bryce, R. C., & Memon, A. M. (2007). Test Suite Prioritization by Interaction
Coverage (pp. 1–7). Presented at the Workshop on Domain Specific
Approaches to Software Test Automation: In Conjunction with the 6th
ESEC/FSE Joint Meeting (DOSTA ’07), Dubrovnik, Croatia: ACM.
https://doi.org/10.1145/1294921.1294922

Bryman, A., & Bell, E. (2015). Business Research Methods (4th ed.). Oxford
University Press.

© C
OPYRIG

HT U
PM

120

Catal, C., & Mishra, D. (2013). Test case prioritization: a systematic mapping
study. Software Quality Journal, 21(3), 445–478.
https://doi.org/10.1007/s11219-012-9181-z

Chen, L., Wang, Z., Xu, L., Lu, H., & Xu, B. (2010). Test Case Prioritization for
Web Service Regression Testing (pp. 173–178). Presented at the
Proceedings of the Fifth IEEE International Symposium on Service
Oriented System Engineering (SOSE ’10), Nanjing, China: IEEE.
https://doi.org/10.1109/SOSE.2010.27

Chilenski, J. J., & Miller, S. P. (1994). Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, 9(5), 193–
193. https://doi.org/10.1049/sej.1994.0025

Clark, I. (2006). Writing the successful thesis and dissertation: entering the
conversation (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall.

Cohen, M. B., Dwyer, M. B., & Jiangfan, S. (2008). Constructing Interaction Test
Suites for Highly-Configurable Systems in the Presence of Constraints:
A Greedy Approach. IEEE Transactions on Software Engineering, 34(5),
633–650. https://doi.org/10.1109/TSE.2008.50

Conrad, A. P., Roos, R. S., & Kapfhammer, G. M. (2010). Empirically Studying
the Role of Selection Operators During search-based Test Suite
Prioritization (pp. 1373–1380). Presented at the Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation (GECCO
’10), Portland, Oregon, USA: ACM.
https://doi.org/10.1145/1830483.1830735

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches (4th ed.). SAGE Publications.

Dandan, G., Tiantian, W., Xiaohong, S., & Peijun, M. (2013). A test-suite
reduction approach to improving fault-localization effectiveness.
Computer Languages, Systems & Structures, 39(3), 95–108.
https://doi.org/10.1016/j.cl.2013.04.001

Del Grosso, C., Antoniol, G., Merlo, E., & Galinier, P. (2008). Detecting buffer
overflow via automatic test input data generation. Computers &
Operations Research, 35(10), 3125–3143.
https://doi.org/10.1016/j.cor.2007.01.013

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints on Test Data
Selection: Help for the Practicing Programmer. Computer, 11(4), 34–41.
https://doi.org/10.1109/c-m.1978.218136

Dennis, A., Wixom, B. H., & Tegarden, D. (2015). Systems Analysis and Design:
An Object-Oriented Approach with UML (5th ed.). John Wiley & Sons.

Denzin, N. K., & Lincoln, Y. S. (2017). The SAGE Handbook of Qualitative
Research (5th ed.). CA, USA: SAGE Publications.

Do, H., Rothermel, G., & Kinneer, A. (2004). Empirical studies of test case
prioritization in a JUnit testing environment (pp. 113–124). Presented at
the Proceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE ’04), IEEE Computer Society.
https://doi.org/10.1109/ISSRE.2004.18

Donghua, C., & Wenjie, Y. (2011). The research of test-suite reduction technique
(pp. 4552–4554). Presented at the Proceedings of the International
Conference on Consumer Electronics, Communications and Networks
(CECNet), XianNing, China: IEEE.
https://doi.org/10.1109/CECNET.2011.5768284

© C
OPYRIG

HT U
PM

121

Elbaum, S., Gable, D., & Rothermel, G. (2001). Understanding and Measuring
the Sources of Variation in the Prioritization of Regression Test Suites
(pp. 169–179). Presented at the Proceedings of the 7th International
Symposium on Software Metrics (METRICS ’01), London, UK: IEEE
Computer Society. https://doi.org/10.1109/METRIC.2001.915525

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2000). Prioritizing test cases
for regression testing. ACM SIGSOFT Software Engineering Notes,
25(5), 102–112. https://doi.org/10.1145/347636.348910

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization:
A family of empirical studies. IEEE Transactions on Software
Engineering, 28(2), 159–182.

Elghondakly, R., Moussa, S., & Badr, N. (2016). A Comprehensive Study for
Software Testing and Test Cases Generation Paradigms (p. 50:1-50:7).
Presented at the Proceedings of the International Conference on
Internet of Things and Cloud Computing (ICC ’16), Cambridge, United
Kingdom: ACM. https://doi.org/10.1145/2896387.2896435

Fewster, M., & Graham, D. (1999). Software test automation: effective use of
test execution tools. New York, NY, USA: Addison-Wesley.

Fraser, G., & Zeller, A. (2012). Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2), 278–292.
https://doi.org/10.1109/TSE.2011.93

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting.
Journal of Japanese Society For Artificial Intelligence, 14(5), 771–780.

Gendreau, M., & Potvin, J. Y. (2010). Handbook of Metaheuristics (2nd ed., Vol.
146). Springer US.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning (1st ed.). Addison-Wesley Professional.

Gray, D. E. (2017). Doing Research in the Real World (4th ed.). SAGE
Publications.

Haidry, S.-Z., & Miller, T. (2013). Using Dependency Structures for Prioritization
of Functional Test Suites. IEEE Transactions on Software Engineering,
39(2), 258–275. https://doi.org/10.1109/tse.2012.26

Hao, D., Zhang, L., Zang, L., Wang, Y., Wu, X., & Xie, T. (2016). To Be Optimal
or Not in Test-Case Prioritization. IEEE Transactions on Software
Engineering, 42(5), 490–505.
https://doi.org/10.1109/TSE.2015.2496939

Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. (2014). A Unified Test
Case Prioritization Approach. ACM Transactions on Software
Engineering and Methodology, 24(2), 1–31.
https://doi.org/10.1145/2685614

Harder, M., Mellen, J., & Ernst, M. D. (2003). Improving test suites via operational
abstraction (pp. 60–71). Presented at the Proceedings of the 25th
International Conference on Software Engineering (ICSE ’03), Portland,
Oregon, USA: IEEE Computer Society.
https://doi.org/10.1109/ICSE.2003.1201188

Harman, M., Mansouri, S. A., & Zhang, Y. (2009). Search based software
engineering: A comprehensive analysis and review of trends techniques
and applications. Department of Computer Science, King’s College
London, Technical Report TR-09-03.

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software
engineering: Trends, techniques and applications. ACM Computing

© C
OPYRIG

HT U
PM

122

Surveys (CSUR), 45(1), 1–61.
https://doi.org/10.1145/2379776.2379787

Harris, P., & Raju, N. (2015). Towards test suite reduction using maximal
frequent data mining concept. International Journal of Computer
Applications in Technology, 52(1), 48–58.
https://doi.org/10.1504/ijcat.2015.071419

Harrold, M. J. (1999). Testing evolving software. Journal of Systems and
Software, 47(2–3), 173–181. https://doi.org/10.1016/s0164-
1212(99)00037-0

Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling
the size of a test suite. ACM Transactions on Software Engineering and
Methodology, 2(3), 270–285. https://doi.org/10.1145/152388.152391

Harrold, M. J., & Kolte, P. (1992). Combat: A compiler based data flow testing
system (pp. 311–323). Presented at the Proceedings of the 10th Pacific
Northwest Software Quality Conference.

Heimdahl, M. P. E., & George, D. (2004). Test-suite reduction for model based
tests: effects on test quality and implications for testing (pp. 176–185).
Presented at the Proceedings of the 19th IEEE International Conference
on Automated Software Engineering (ASE ’04), Linz, Austria: IEEE
Computer Society. https://doi.org/10.1109/ASE.2004.1342735

Hierons, R. M., Krause, P., Lüttgen, G., Simons, A. J. H., Vilkomir, S.,
Woodward, M. R., … Kapoor, K. (2009). Using formal specifications to
support testing. ACM Computing Surveys, 41(2), 1–76.
https://doi.org/10.1145/1459352.1459354

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence
(1st ed.). University of Michigan Press.

Horgan, J. R., & London, S. (1992). A data flow coverage testing tool for C (pp.
2–10). Presented at the Proceedings of the Second Symposium on
Assessment of Quality Software Development Tools, New Orleans, LA,
USA: IEEE. https://doi.org/10.1109/AQSDT.1992.205829

Hsu, H.-Y., & Orso, A. (2009). MINTS: A general framework and tool for
supporting test-suite minimization (pp. 419–429). Presented at the
Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09), Vancouver, BC, Canada: IEEE Computer
Society. https://doi.org/10.1109/ICSE.2009.5070541

Hu, P., Zhang, Z., Chan, W. K., & Tse, T. H. (2006). An Empirical Comparison
Between Direct and Indirect Test Result Checking Approaches (pp. 6–
13). Presented at the Proceedings of the 3rd International Workshop on
Software Quality Assurance (SOQUA ’06), Portland, Oregon, USA:
ACM. https://doi.org/10.1145/1188895.1188901

Huang, C.-Y., Chen, C.-S., & Lai, C.-E. (2016). Evaluation and analysis of
incorporating Fuzzy Expert System approach into test suite reduction.
Information and Software Technology, 79, 79–105.
https://doi.org/10.1016/j.infsof.2016.07.005

IEEE. (2010). Systems and software engineering -- Vocabulary, 1–418.
https://doi.org/10.1109/IEEESTD.2010.5733835

Isabella, A., & Retna, E. (2012). Study paper on test case generation for GUI
based testing. International Journal of Software Engineering &
Applications, 3(1), 139–147.

© C
OPYRIG

HT U
PM

123

Jeffrey, D., & Gupta, N. (2005). Test suite reduction with selective redundancy
(pp. 549–558). Presented at the Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM0́5),
Budapest, Hungary, Hungary: IEEE Computer Society.
https://doi.org/10.1109/ICSM.2005.88

Jeffrey, D., & Gupta, N. (2006). Test Case Prioritization Using Relevant Slices
(pp. 411–420). Presented at the Proceedings of the 30th Annual
International Computer Software and Applications Conference
(COMPSAC0́6), Chicago, IL, USA: IEEE.
https://doi.org/10.1109/COMPSAC.2006.80

Jeffrey, D., & Gupta, N. (2007). Improving fault detection capability by selectively
retaining test cases during test suite reduction. IEEE Transactions on
Software Engineering, 33(2), 108–123.

Jia, Y., & Harman, M. (2009). Higher Order Mutation Testing. Information and
Software Technology, 51(10), 1379–1393.
https://doi.org/10.1016/j.infsof.2009.04.016

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, 37(5),
649–678. https://doi.org/10.1109/TSE.2010.62

Jones, J. A., & Harrold, M. J. (2003). Test-suite reduction and prioritization for
modified condition/decision coverage. IEEE Transactions on Software
Engineering, 29(3), 195–209. https://doi.org/10.1109/tse.2003.1183927

Jonker, J., & Pennink, B. (2010). The Essence of Research Methodology: A
Concise Guide for Master and PhD Students in Management Science
(1st ed.). Springer-Verlag Berlin Heidelberg.

Jorgensen, P. C. (2013). Software Testing: A Craftsman’s Approach (4th ed.).
Auerbach Publications.

Juristo, N., & Moreno, A. M. (2010). Basics of Software Engineering
Experimentation (2001st ed.). Springer US.

Kandl, S. (2015). Cost Effectiveness of Coverage-Guided Test-Suite Reduction
for Safety-Relevant Systems. In H. Selvaraj, D. Zydek, & G. Chmaj
(Eds.), Progress in Systems Engineering: Proceedings of the Twenty-
Third International Conference on Systems Engineering (pp. 595–601).
Cham: Springer International Publishing. https://doi.org/10.1007/978-3-
319-08422-0_84

Khalilian, A., Azgomi, M. A., & Fazlalizadeh, Y. (2012). An improved method for
test case prioritization by incorporating historical test case data. Science
of Computer Programming, 78(1), 93–116.
https://doi.org/10.1016/j.scico.2012.01.006

Khan, F. A., Gupta, A. K., & Bora, D. J. (2015). An Efficient Technique to Test
Suite Minimization using Hierarchical Clustering Approach. International
Journal of Emerging Science and Engineering (IJESE), 3(11).

Khan, S. U. R., Lee, S. P., Ahmad, R. W., Akhunzada, A., & Chang, V. (2016).
A survey on Test Suite Reduction frameworks and tools. International
Journal of Information Management, 36(6), 963–975.
https://doi.org/10.1016/j.ijinfomgt.2016.05.025

Kim, J.-M., & Porter, A. (2002). A history-based test prioritization technique for
regression testing in resource constrained environments (pp. 119–129).
Presented at the Proceedings of the 24th International Conference on
Software Engineering (ICSE ’02), Orlando, FL, USA: IEEE.
https://doi.org/10.1109/ICSE.2002.1007961

© C
OPYRIG

HT U
PM

124

Korel, B., Koutsogiannakis, G., & Tahat, L. H. (2007). Model-based Test
Prioritization Heuristic Methods and Their Evaluation (pp. 34–43).
Presented at the Proceedings of the 3rd International Workshop on
Advances in Model-based Testing (A-MOST ’07), London, UK: ACM.
https://doi.org/10.1145/1291535.1291539

Korel, B., Koutsogiannakis, G., & Tahat, L. H. (2008). Application of system
models in regression test suite prioritization (pp. 247–256). Presented at
the Proceedings of the International Conference on Software
Maintenance (ICSM ’08), Beijing, China: IEEE.
https://doi.org/10.1109/ICSM.2008.4658073

Krishnamoorthi, R., & Mary, S. A. (2009). Factor oriented requirement coverage
based system test case prioritization of new and regression test cases.
Information and Software Technology, 51(4), 799–808.
https://doi.org/10.1016/j.infsof.2008.08.007

Kulkarni, N. J., Naveen, K. V., Singh, P., & Srivastava, P. R. (2011). Test case
optimization using artificial bee colony algorithm (pp. 570–579).
Presented at the International Conference on Advances in Computing
and Communications, Springer. https://doi.org/10.1007/978-3-642-
22720-2_60

Kumar, S. V., & Kumar, M. (2010). Test case prioritization using fault severity.
International Journal of Computer Science and Technology, 1(1).

Lakhotia, Kiran, Harman, Mark, & Gross, Hamilton. (2010). AUSTIN: A Tool for
Search Based Software Testing for the C Language and Its Evaluation
on Deployed Automotive Systems. In 2nd International Symposium on
Search Based Software Engineering (pp. 101–110).
https://doi.org/10.1109/SSBSE.2010.21

Leavens, G. T. (2009). The Java Modeling Language (JML) Home Page.
Retrieved August 5, 2017, from
http://www.eecs.ucf.edu/~leavens/JML//index.shtml

Leedy, P. D., & Ormrod, J. E. (2016). Practical Research: Planning and Design,
Global Edition (11th ed.). Pearson Education Limited.

Leitner, A., Oriol, M., Zeller, A., Ciupa, I., & Meyer, B. (2007). Efficient Unit Test
Case Minimization (pp. 417–420). Presented at the Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated
Software Engineering (ASE ’07), Atlanta, Georgia, USA: ACM.
https://doi.org/10.1145/1321631.1321698

Leon, D., & Podgurski, A. (2003). A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases (pp.
442–453). Presented at the Proceedings of the 14th International
Symposium on Software Reliability Engineering (ISSRE ’03), Denver,
CO, USA: IEEE Computer Society.
https://doi.org/10.1109/ISSRE.2003.1251065

Li, J., Dai, G., & Li, H. (2009). Mutation Analysis for Testing Finite State Machines
(pp. 620–624). Presented at the Proceedings of the Second
International Symposium on Electronic Commerce and Security (ISECS
’09), Nanchang City, China: IEEE.
https://doi.org/10.1109/ISECS.2009.158

Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering,
33(4), 225–237. https://doi.org/10.1109/TSE.2007.38

© C
OPYRIG

HT U
PM

125

Liu, S., & Chen, Y. (2008). A relation-based method combining functional and
structural testing for test case generation. Journal of Systems and
Software, 81(2), 234–248. https://doi.org/10.1016/j.jss.2007.05.036

LocMetrics. (2007, October). LocMetrics - Source Code Line Counting Tool.
Retrieved August 5, 2017, from http://www.locmetrics.com/index.html

Ma, Y.-S., Offutt, J., & Kwon, Y.-R. (2006). MuJava: A Mutation System for Java
(pp. 827–830). Presented at the Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06), Shanghai, China:
ACM. https://doi.org/10.1145/1134285.1134425

Mala, D. J., Kamalapriya, M., Shobana, R., & Mohan, V. (2009). A non-
pheromone based intelligent swarm optimization technique in software
test suite optimization (pp. 1–5). Presented at the Proceedings of the
International Conference on Intelligent Agent & Multi-Agent Systems
(IAMA ’09), Chennai, India: IEEE.
https://doi.org/10.1109/IAMA.2009.5228055

Mala, D. J., & Mohan, V. (2007). IntelligenTester-Software Test Sequence
Optimization Using Graph Based Intelligent Search Agent (pp. 22–27).
Presented at the International Conference on Computational Intelligence
and Multimedia Applications (ICCIMA 2007), Sivakasi, Tamil Nadu,
India: IEEE. https://doi.org/10.1109/ICCIMA.2007.161

Mayer, J., & Schneckenburger, C. (2006). An Empirical Analysis and
Comparison of Random Testing Techniques (pp. 105–114). Presented
at the Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE ’06), Rio de Janeiro, Brazil:
ACM. https://doi.org/10.1145/1159733.1159751

McDonald, J., Murray, L., & Strooper, P. (1997). Translating Object-Z
Specifications to Object-Oriented Test Oracles (pp. 414–423).
Presented at the Proceedings of Joint 4th International Computer
Science Conference and 4th Asia Pacific Software Engineering
Conference, Hong Kong: IEEE Computer Society.
https://doi.org/10.1109/APSEC.1997.640198

Mcmaster, S. D. (2008). A context-sensitive coverage criterion for test suite
reduction (Doctoral Dissertation). University of Maryland, College Park.

McMinn, P. (2004). Search-based software test data generation: a survey:
Research Articles. Software Testing, Verification and Reliability, 14(2),
105–156. https://doi.org/10.1002/stvr.v14:2

McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y., & Wegener, J. (2012). Input
Domain Reduction through Irrelevant Variable Removal and Its Effect on
Local, Global, and Hybrid Search-Based Structural Test Data
Generation. IEEE Transactions on Software Engineering, 38(2), 453–
477. https://doi.org/10.1109/TSE.2011.18

Miao, H., Liu, P., Mei, J., & Zeng, H. (2009). A new approach to automated
redundancy reduction for test sequences (pp. 93–98). Presented at the
Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC’09), Shanghai, China: IEEE.
https://doi.org/10.1109/PRDC.2009.23

Mirarab, S., & Tahvildari, L. (2007). A Prioritization Approach for Software
Test Cases Based on Bayesian Networks. In M. B. Dwyer & A. Lopes
(Eds.), Fundamental Approaches to Software Engineering: 10th
International Conference, FASE 2007, Held as Part of the Joint
European Conferences, on Theory and Practice of Software, ETAPS

© C
OPYRIG

HT U
PM

126

2007, Braga, Portugal, March 24 - April 1, 2007. Proceedings (pp. 276–
290). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-71289-3_22

Momoh, J. A. (2015). Adaptive Stochastic Optimization Techniques with
Applications. CRC Press.

Moore, I. (2001). Jester a JUnit test tester. In M. Marchesi & G. Succi (Eds.).
Presented at the Proceedings of the 2nd International Conference on
Extreme Programming and Flexible Processes in Software Engineering.
Retrieved from
http://cf.agilealliance.org/articles/system/article/file/881/file.pdf

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive Models for the
Breeder Genetic Algorithm I. Continuous Parameter Optimization.
Evolutionary Computation, 1(1), 25–49.
https://doi.org/10.1162/evco.1993.1.1.25

Mungara, M. B. (2003). A Method for Systematically Generating Tests for Object-
Oriented Class Interfaces (Master of Science). Virginia Polytechnic
Institute & State University, Blacksburg, Virginia, USA.

Myers, G., Sandler, C., & Badgett, T. (2011). The Art of Software Testing (3rd
ed.). Wiley.

Nam, D. H., Mousset, E. C., & Levy, D. C. (2007). Automating the Testing of
Object Behaviour: A Statechart-Driven Approach. International Journal
of Computer, Electrical, Automation, Control and Information
Engineering, 1, 3686–3691.

Nardo, D. D., Alshahwan, N., Briand, L., & Labiche, Y. (2015). Coverage-based
regression test case selection, minimization and prioritization: a case
study on an industrial system. Software Testing, Verification and
Reliability, 25(4), 371–396. https://doi.org/10.1002/stvr.1572

Ng, P. (2007). A Concept Lattice Approach for Requirements Validation with
UML State Machine Model (pp. 393–400). Presented at the Proceedings
of the 5th ACIS International Conference on Software Engineering
Research, Management & Applications (SERA 2007), Busan, South
Korea. https://doi.org/10.1109/SERA.2007.8

Ng, P., & Fung, R. Y. K. (2009). An Incremental Approach for Model-Based Test
Suite Reduction Using Formal Concept Analysis (pp. 1–6). Presented at
the Proceedings of the 4th International Conference on Ubiquitous
Information Technologies & Applications (ICUT ’09), Fukuoka, Japan:
IEEE. https://doi.org/10.1109/ICUT.2009.5405725

Nie, C., & Leung, H. (2011). A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 43(2), 1–29.
https://doi.org/10.1145/1883612.1883618

Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996). An
experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology (TOSEM), 5(2),
99–118. https://doi.org/10.1145/227607.227610

Offutt, J. (2011). A mutation carol: Past, present and future. Information and
Software Technology, 53(10), 1098–1107.
https://doi.org/10.1016/j.infsof.2011.03.007

Offutt, J. A., Pan, J., & Voas, J. M. (1995). Procedures for reducing the size of
coverage-based test sets (pp. 111–123). Presented at the Proceedings
of the Twelfth International Conference on Testing Computer Software.

© C
OPYRIG

HT U
PM

127

O’Keeffe, M., & Cinneide, M. O. (2006). Search-Based Software Maintenance
(pp. 249–260). Presented at the Proceedings of the Conference on
Software Maintenance and Reengineering (CSMR ’06), Bari, Italy: IEEE
Computer Society. https://doi.org/10.1109/CSMR.2006.49

Orlov, M., & Sipper, M. (2011). Flight of the FINCH Through the Java Wilderness.
IEEE Transactions on Evolutionary Computation, 15(2), 166–182.
https://doi.org/10.1109/TEVC.2010.2052622

Orso, A., & Rothermel, G. (2014). Software Testing: A Research Travelogue
(2000--2014) (pp. 117–132). Presented at the Proceedings of the on
Future of Software Engineering (FOSE 2014), Hyderabad, India: ACM.
https://doi.org/10.1145/2593882.2593885

Parnas, D. L. (1992). Tabular Representation of Relations
(http://citeseer.ist.psu.edu/parnas92tabular.html). McMaster University:
Communications Research Laboratory.

Parnas, D. L. (1997). Precise Description and Specification of Software (pp. 1–
14). Presented at the Proceedings of the Second International
Conference on Mathematics of Dependable Systems II (MDS ’95), Univ.
of York, England: Oxford University Press, Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=294012.294013

Parnas, D. L., & Madey, J. (1995). Functional documents for computer systems.
Science of Computer Programming, 25(1), 41–61.

Parsa, S., & Khalilian, A. (2010). On the optimization approach towards test suite
minimization. International Journal of Software Engineering and Its
Applications, 4(1), 15–28.

Peters, J. F. (1998). Computational intelligence in software engineering. River
Edge, NJ, USA: World Scientific Publishing.

Poggenpohl, S., & Sato, K. (2003). Models of Dissertation Research in Design
(pp. 125–132). Presented at the Proceedings of the 3rd Doctoral
Education in Design Conference, Tsukuba, Japan.

Prema, P., Ramadoss, B., & Balasundaram, S. R. (2013). Identification and
deletion of duplicate subtrees in classification tree for test case
reduction. International Journal of Information Systems and Change
Management, 6(4), 374–388.
https://doi.org/10.1504/ijiscm.2013.060986

Pressman, R., & Maxim, B. (2014). Software Engineering: A Practitioner’s
Approach (8th ed.). McGraw-Hill Education.

Ray, M., & Mohapatra, D. P. (2014). Multi-objective test prioritization via a
genetic algorithm. Innovations in Systems and Software Engineering,
10(4), 261–270. https://doi.org/10.1007/s11334-014-0234-2

Rothermel, G., Harrold, M. J., Ostrin, J., & Hong, C. (1998). An Empirical Study
of the Effects of Minimization on the Fault Detection capabilities of Test
Suites (pp. 34–43). Presented at the Proceedings of the International
Conference on Software Maintenance (ICSM ’98), Bethesda, MD, USA:
IEEE Computer Society. https://doi.org/10.1109/ICSM.1998.738487

Rothermel, G., Harrold, M. J., Von Ronne, J., & Hong, C. (2002). Empirical
studies of test‐suite reduction. Software Testing, Verification and
Reliability, 12(4), 219–249.

Rothermel, G., Untch, R. H., Chengyun, C., & Harrold, M. J. (2001). Prioritizing
test cases for regression testing. IEEE Transactions on Software
Engineering, 27(10), 929–948. https://doi.org/10.1109/32.962562

© C
OPYRIG

HT U
PM

128

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999). Test Case
Prioritization: An Empirical Study (pp. 179–188). Presented at the
Proceedings of International Conference on Software Maintenance
(ICSM ’9́9), IEEE Computer Society Press.
https://doi.org/10.1109/ICSM.1999.792604

Saifan, A. A. (2016). Test Case Reduction Using Data Mining Classifier
Techniques. Journal of Software, 11(7), 656–663.

Salkind, N. J. (2010). Encyclopedia of Research Design. SAGE Publications.
https://doi.org/10.4135/9781412961288.n222

Sampath, S., Mihaylov, V., Souter, A., & Pollock, L. (2004). A scalable approach
to user-session based testing of web applications through concept
analysis (pp. 132–141). Presented at the Proceedings of the 19th
International Conference on Automated Software Engineering (ASE
’04), Linz, Austria: IEEE Computer Society.
https://doi.org/10.1109/ASE.2004.6

Sapaat, M. A., & Baharom, S. (2011). A preliminary investigation towards test
suite optimization approach for enhanced State-Sensitivity Partitioning
(pp. 40–45). Presented at the 2nd International Conference on
Instrumentation, Communications, Information Technology, and
Biomedical Engineering (ICICI-BME)., Bandung, Indonesia: IEEE.
https://doi.org/10.1109/ICICI-BME.2011.6108592

Shahbazi, A., Tappenden, A. F., & Miller, J. (2013). Centroidal Voronoi
Tessellations- A New Approach to Random Testing. IEEE Transactions
on Software Engineering, 39(2), 163–183.
https://doi.org/10.1109/TSE.2012.18

Sharma, P. (2014). Automated Software Testing Using Metahurestic Technique
Based on Improved Ant Algorithms for Software Testing. International
Journal on Recent and Innovation Trends in Computing and
Communication, 2(11), 3505–3510.

Siami Namin, A., Andrews, J. H., & Murdoch, D. J. (2008). Sufficient Mutation
Operators for Measuring Test Effectiveness (pp. 351–360). Presented
at the Proceedings of the 30th International Conference on Software
Engineering (ICSE ’08), Leipzig, Germany: ACM.
https://doi.org/10.1145/1368088.1368136

Sidi, F., Jabar, M. A., Selamat, M. H., Ghani, A. A. A., Sulaiman, M. N., &
Baharom, S. (2011). Malay interrogative knowledge corpus. American
Journal of Economics and Business Administration, 3(1), 171–171.

Smith, A. M., Geiger, J., Kapfhammer, G. M., & Soffa, M. L. (2007). Test Suite
Reduction and Prioritization with Call Trees (pp. 539–540). Presented at
the Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ACM.
https://doi.org/10.1145/1321631.1321733

Spillner, A., Linz, T., & Schaefer, H. (2014). Software Testing Foundations: A
Study Guide for the Certified Tester Exam (4th ed.). Rocky Nook.

Srikanth, H., Williams, L., & Osborne, J. (2005). System test case prioritization
of new and regression test cases. Presented at the International
Symposium on Empirical Software Engineering (ISESE ’05), Noosa
Heads, Qld., Australia: IEEE.
https://doi.org/10.1109/ISESE.2005.1541815

© C
OPYRIG

HT U
PM

129

Srivastava, A., & Thiagarajan, J. (2002). Effectively prioritizing tests in
development environment. ACM SIGSOFT Software Engineering Notes,
27(4), 97–106. https://doi.org/10.1145/566171.566187

Tallam, S., & Gupta, N. (2006). A concept analysis inspired greedy algorithm for
test suite minimization. ACM SIGSOFT Software Engineering Notes,
31(1), 35–35. https://doi.org/10.1145/1108768.1108802

Tan, R. P., & Edwards, S. H. (2004). Experiences evaluating the effectiveness
of JML-JUnit testing. ACM SIGSOFT Software Engineering Notes,
29(5), 1–4. https://doi.org/10.1145/1022494.1022545

Tassey, G. (2002). The Economic Impacts of Inadequate Infrastructure for
Software Testing. Diane Publishing Company.

Tonella, P., Avesani, P., & Susi, A. (2006). Using the Case-Based Ranking
Methodology for Test Case Prioritization (pp. 123–133). Presented at
the Proceedings of the 22Nd IEEE International Conference on Software
Maintenance (ICSM ’06), Philadelphia, PA, USA: IEEE Computer
Society. https://doi.org/10.1109/ICSM.2006.74

Usaola, M. P., Mateo, P. R., & Lamancha, B. P. (2012). Reduction of Test Suites
Using Mutation. In J. de Lara & A. Zisman (Eds.), Fundamental
Approaches to Software Engineering: 15th International Conference,
FASE 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings (pp. 425–438). Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-28872-2_29

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5),
297–312. https://doi.org/10.1002/stvr.456

Wagner, N. R. (2005). Queue in Java. Retrieved August 5, 2017, from
http://www.cs.utsa.edu/~wagner/CS2213/queue/queue.html

Wang, R., Jiang, S., Chen, D., & Zhang, Y. (2016). Empirical Study of the Effects
of Different Similarity Measures on Test Case Prioritization.
Mathematical Problems in Engineering, 2016, 19 pages.
https://doi.org/10.1155/2016/8343910

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Experimentation in software engineering (1st ed.). Springer-
Verlag Berlin Heidelberg.

Wong, W. E., Horgan, J. R., London, S., & Mathur, A. P. (1998). Effect of test set
minimization on fault detection effectiveness. Software: Practice and
Experience, 28(4), 347–369. https://doi.org/10.1002/(sici)1097-
024x(19980410)28:4%3C347::aid-spe145%3E3.0.co;2-l

Wong, W. E., Horgan, J. R., Mathur, A. P., & Pasquini, A. (1999). Test set size
minimization and fault detection effectiveness: A case study in a space
application. Journal of Systems and Software, 48(2), 79–89.
https://doi.org/10.1016/s0164-1212(99)00048-5

Yang, X. S., & Koziel, S. (2011). Computational Optimization and Applications in
Engineering and Industry (1st ed.). Springer-Verlag Berlin Heidelberg.

Yoo, S., & Harman, M. (2009). TR-09-09: Regression Testing Minimisation,
Selection and Prioritisation-A Survey.

Yoo, S., & Harman, M. (2010). Using hybrid algorithm for pareto efficient multi-
objective test suite minimisation. Journal of Systems and Software,
83(4), 689–701. https://doi.org/10.1016/j.jss.2009.11.706

© C
OPYRIG

HT U
PM

130

Yoo, S., & Harman, M. (2012). Test data regeneration: generating new test data
from existing test data. Software Testing, Verification and Reliability,
22(3), 171–201. https://doi.org/10.1002/stvr.435

Yoo, S., Harman, M., Tonella, P., & Susi, A. (2009). Clustering Test Cases to
Achieve Effective and Scalable Prioritisation Incorporating Expert
Knowledge (pp. 201–212). Presented at the Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis
(ISSTA ’09), Chicago, IL, USA: ACM.
https://doi.org/10.1145/1572272.1572296

Yuan, X., Cohen, M. B., & Memon, A. M. (2011). GUI Interaction Testing:
Incorporating Event Context. IEEE Transactions of Software
Engineering, 37(4), 559–574. https://doi.org/10.1109/tse.2010.50

Zabinsky, Z. B. (2013). Stochastic Adaptive Search for Global Optimization (Vol.
72). Springer US.

Zhang, R., Jiang, J., Yin, J., Jin, A., Lou, J., & Wu, Y. (2008). A New Method for
Test Suite Reduction (pp. 1211–1216). Presented at the Proceedings of
the 9th International Conference for Young Computer Scientists (ICYCS
’08), Hunan, China: IEEE. https://doi.org/10.1109/ICYCS.2008.501

Zhang, W., Wei, B., & Du, H. (2014). Test Case Prioritization Based on Genetic
Algorithm and Test-Points Coverage. In X. Sun, W. Qu, I. Stojmenovic,
W. Zhou, Z. Li, H. Guo, … L. Liu (Eds.), Algorithms and Architectures for
Parallel Processing: 14th International Conference, ICA3PP 2014,
Dalian, China, August 24-27, 2014. Proceedings, Part I (pp. 644–654).
Cham: Springer International Publishing. https://doi.org/10.1007/978-3-
319-11197-1_50

Zheng, J. (2005). In Regression Testing Selection when Source Code is Not
Available (pp. 752–755). Presented at the Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE ’05), Long Beach, CA, USA: ACM.
https://doi.org/10.1145/1101908.1101997

