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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

MODELLING OF BIOGAS PRODUCTION PROCESS WITH
EVOLUTIONARY ARTIFICIAL NEURAL NETWORK AND

GENETIC ALGORITHM

By

ABDUL SAHLI BIN FAKHARUDIN

July 2017

Chair: Associate Prof. Md Nasir bin Sulaiman, PhD
Faculty: Computer Science and Information Technology

In recent years, several researchers have actively pursued the application of
machine learning to biogas production processes. The application of artificial
neural network (ANN) to generate the production model is used to improve the
modelling accuracy. The model output optimisation by genetic algorithm (GA)
produces higher biogas production compared to the optimisation using
statistical methods.

This study utilised the evolutionary artificial neural network (EANN) modelling
to improve the model accuracy. The EANN modelling was used to represent
the biogas production process. One of the issues of ANN implementation is to
correctly select the output activation function in achieving higher output. The
EANN used a modified activation function to meet the optimisation requirement.

To evaluate the EANN model, 19 samples of experimental data from Zainol on the
regression modelling of biogas production from banana stem waste were selected.
Thirteen samples were used for training (70%) and six samples were used for
testing (30%). The second dataset fromMahanty which consisted of 36 samples on
the modelling and optimisation of biogas production from industrial sludge were
divided into 25 training samples and 11 testing samples. Meanwhile, 34 samples
from Tedesco on the optimisation of mechanical pretreatment of Laminariaceae
spp. biomass for the production of biogas were divided into 24 training samples
and 10 testing samples. The last dataset from the domain expert containing 143
samples were divided into 100 training samples and 43 testing samples.

The model performance was evaluated using root mean square error (RMSE)
and coefficient of determination (R2) and the maximum output from the
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optimisation was compared to the mathematical modelling. The experiment was
conducted with 50 trial runs on each dataset and EANN method produced
better modelling results compared to the mathematical modelling. The model
output from the optimisation using GA also produced better results than the
mathematical model and able to limit the maximum output of the
back-propagation and Levenberg-Marquardt ANN models which used linear
function output.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PERMODELAN PROSES PENGHASILAN BIOGAS
MENGGUNAKAN RANGKAIAN NEURAL BUATAN

TEREVOLUSI DAN ALGORITMA GENETIK

Oleh

ABDUL SAHLI BIN FAKHARUDIN

Julai 2017

Pengerusi: Prof. Madya Md Nasir bin Sulaiman, PhD
Fakulti: Sains Komputer and Teknologi Maklumat

Sejak kebelakangan ini, terdapat penyelidik yang aktif menggunakan aplikasi
pembelajaran mesin di dalam proses penghasilan biogas. Penggunaan rangkaian
neural buatan untuk memodelkan proses penghasilan tersebut telah
meningkatkan kejituan model. Pengoptimuman model output oleh algoritma
genetik menghasilkan biogas yang lebih tinggi berbanding pengoptimuman
menggunakan kaedah statistik.

Kajian ini telah menggunakan rangkaian neural buatan terevolusi untuk
meningkatkan kejituan model. Rangkaian neural buatan terevolusi digunakan
untuk mewakilkan proses penghasilan biogas. Salah satu isu di dalam
penggunaan rangkaian neural buatan ialah pemilihan fungsi pengaktifan yang
betul dalam mencapai output yang lebih tinggi. Rangkaian neural buatan
terevolusi telah menggunakan fungsi pengaktifan yang telah diubahsuai untuk
memenuhi keperluan proses pengoptimuman.

Untuk menilai model rangkaian neural buatan terevolusi, 19 sampel data
eksperiman Zainol yang menggunakan permodelan regresi untuk penghasilan
biogas dari sisa batang pisang telah dipilih. Tiga belas sampel digunakan untuk
set latihan (70%) dan enam sampel digunakan untuk set pengujian (30%). Set
daata yang kedua adalah dari Mahanty yang mengandungi 36 sampel
permodelan dan pengoptimuman proses penghasilan biogas dari enap cemar
industri, telah dipecahkan kepada 25 set latihan dan 11 sampel pengujian.
Manakala, 34 sampel dari Tedesco bagi pengoptimuman proses pra-rawatan
mekanikal biomas Laminariaceae spp. untuk peghasilan biogas telah
dibahagikan kepada 24 sampel latihan dan 10 samapel pengujian. Data terakhir
daripada pakar domain yang mengandungi 143 sampel dan telah dibahagikan
kepada 100 sampel latihan dan 43 sampel pengujian.
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Prestasi model telah dinilai menggunakan punca kuasa min ralat dan pekali
penentuan dan maksimum output dari proses pengoptimuman telah
dibandingkan dengan permodelan matematik. Ujikaji telah dijalankan dengan
50 larian bagi setiap set data dan kaeda rangkaian neural buatan terevolusi
menghasilkan keputusan model lebih baik dari permodelan matematik. Model
output melalui pengoptimuman algoritma genetik juga menghasilkan keputusan
lebih baik daripada model matematik dan dapat menghadkan output maksimum
dari rangkaian neural buatan perambatan balik dan Levenberg-Marquardt yang
menggunakan fungsi linear pada output.
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CHAPTER 1

INTRODUCTION

This chapter will provide the background of previous studies, problem
statements, objectives and scope of the study including the predicted output. It
also contained research benefits and overall organisations of the thesis to give a
general perspective of the research flow.

1.1 Background

The consumption of renewable energy from 2000 to 2011 has increased by 30% and
the highest absolute increase among the renewable energy consumption was the
bioenergy source (WBA, 2014). The bioenergy categories into the solid biomass,
liquid biofuels, wastes and biogas. Interest in converting biomass resources to an
alternative fuel such as biogas, have received more attention in recent times (Yang
et al., 2013). A feasibility study on biogas production and utilisation as a source
of renewable energy in Malaysia by Hosseini and Wahid (2013) discussed the used
of palm oil industry by-product as the sources to extract biogas. A review by
Ahmed et al. (2015) presented the biogas production and performance evaluation
of the treatment process from palm oil mill effluent.

This biogas yield can be improved with better process design, which include the
modelling, simulation and optimisation process as an integrated part of modern
design practice (Betiku and Ajala, 2014). Work by Sendjaja et al. (2015)
mentioned about two main types of modelling approach in anaerobic digestion,
including biogas production, which are the mathematical based model derived
from mathematical equations and data or statistical approach using multivariate
regression and machine learning approach.

Modelling of biogas generation using mathematical and statistical approach was a
proven knowledge used by many researchers (Zainol et al., 2009; Mahanty et al.,
2014; Tedesco et al., 2014). They used a regression model to represent their
process and the model output was being optimised using statistical method to
obtain the maximum biogas output. The predicted maximum biogas output from
the generated model was presented and its successfully improved the biogas output
from the actual production.

The improvement of the biogas production using modern computer science field
also has advantages than the mathematical modelling. Such area that is being
explored (Behera et al., 2015; Dhussa et al., 2014; Yetilmezsoy et al., 2012) was a
specific intelligent computing area, which used artificial neural networks (ANN) to
model their process. These researchers had reported the application of ANN had
succeeded to model their biogas production process. Most of the ANN training
(Yetilmezsoy et al., 2012; Abu Qdais et al., 2010) was set from a small number of
hidden neurons to the maximum number according to each specification.
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1.2 Problem Statements

This study addressed the problem of the model output optimisation done by
Akbaş et al. (2015) which unable to generate higher output (Abu Qdais et al.,
2010; Gueguim Kana et al., 2012) than the actual process. He used ANN
modelling with hyperbolic tangent as the activation function and the
maximisation of biogas output was limited to highest function range. The
optimal biogas output from the model could not achieve the actual biogas
output let alone more than it.

Gueguim Kana et al. (2012) used ANN modelling with linear activation function
and the optimisation process produced higher maximum output than the actual
process because the linear function was not limited to a certain maximum range.
The implementation of linear activation on output layer made it as a threshold
layer even the hidden layer used sigmoid activation function. If the linear function
output being optimised by an efficient optimiser, then the maximum output value
could produce a very high, unrealistic output, because the unlimited range of the
linear activation function.

It is important to develop a predictive model for engineering process that can
maximise the production. A proper implementation of specialised ANN with a
modified activation function should be able to regulate the network output from
producing an unlimited output and should be able to produce maximum output
more than one to ensure the model output is better than the actual output.

1.3 Objectives

The main objective of this research is to model the biogas process with
evolutionary artificial neural network (EANN) for optimum production. The
specific objectives of this research are as follows:

1. To propose an implementation of evolutionary artificial neural network
modelling to improve the mathematical modelling accuracy of biogas
process.

2. To propose a modified activation function in evolutionary artificial neural
network modelling to find the best biogas representation and to fulfil the
output optimisation requirements.

3. To propose an appropriate parameter for genetic algorithm to optimise the
selected biogas process representation.

1.4 Scope of Study

The study used a dataset from Zainol et al. (2009) in order to model the biogas
process where she used mathematical modelling and optimisation of biogas
production from banana stem waste. Three additional datasets also being used
to determine the model accuracy improvement and the output optimisation

2
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comparison. These four datasets will be normalised and divided into training
and testing set.

The results from the modelling of biogas process representation will be evaluated
using root mean square errors (RMSE) and correlation determination (R2) for
performance evaluation. The accuracy measurements were based on traditional
ANN evaluation with an additional engineering process modelling validation.

The best model will be selected and it will be used to find the optimal biogas
output using the genetic algorithm (GA). The predicted optimised output will
be collected from the model output and will be compared with the mathematical
optimisation.

1.5 Research Benefits

There are two main benefits of this research:
1. The EANN modelling for biogas production representation; it will be

proposed as an alternative to ANN which reduce the guesswork and
complexity.

2. The modified activation function; it will present the important of specific
ANN design and architecture in solving a problem even though the ANN
generalisation mostly works.

1.6 Organisation of the Thesis

The thesis consists of six chapters. Chapter 1 discussed the introduction to
biogas production modelling and optimisation. The purpose of this chapter was
to explain the problem statements, objectives of the study, the scopes of the
study and the benefits. It concluded by the organisation of the thesis.

In Chapter 2 it discussed the literature review of the research. This chapter
contains the information on the biogas production and research related to the
topic. Followed by the previous study of modelling of biogas production from
waste using a mathematical approach. The next part discussed about the ANN
and the used of ANN for modelling and followed by previous study that used
ANN for modelling biogas production. The next topic discussed about issues in
ANN modelling and suggested solutions. The final part of the chapter discussed
about GA and the previous study which utilising GA optimisation.

The next Chapter 3 discussed about the research methodology to perform the
modelling and optimisation process. It started with the research framework
followed by the biogas production data processing. The brief information of
biogas modelling and optimisation was presented next. The experimental setup

3
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was discussed later followed by the evaluation on both modelling and
optimisation results.

In chapter 4, the details of the modelling and optimisation of biogas production
were presented. The EANN modelling was discussed first and followed by the
benchmark modelling. The optimisation of the model using GA algorithms was
discussed last on this chapter.

Chapter 5 presented the results of the modelling using EANN and the benchmark
modelling. It followed by the details on the result of GA optimisation from the
models generated by EANN and ANN.

Finally, chapter 6 concluded the findings. The purpose of this chapter is to make
the conclusion of the research and the future research that can be continued from
this research.
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