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ABSTRACT

The coupling of a solar cell with a super capacitor is gaining interest owing to its superior 

photo-to-electrical conversion efficiency and its in-situ energy storage ability for green and 

sustainable energy development. In this work, the electrochemical performances of the

fabricated super capacitor and perovskite solar cell were individually measured for the

fabrication of a photo-super capacitor. 

A Bi2O3/MnO2 based symmetrical and asymmetrical super capacitor were fabricated. The 

symmetrical super capacitor could charge up to 1.0 V, which gave a specific capacitance of 

136.4 F/g at a scan rate of 2 mV/s. The power and energy densities of the bismuth-based 

symmetrical super capacitor were 51.8 W/kg and 7.1 Wh/kg, respectively and were improved 

to 25.6 Wh/kg and 115.3 W/kg when a Bi2O3/MnO2 positive electrode was integrated to a 

polypyrrole/reduced graphene oxide (PyR) negative electrode. It thus proven the feasibility of 

an asymmetrical super capacitor to promote the performance of a super capacitor. The 

dissatisfying stability performance of the Bi2O3/MnO2//PyR asymmetrical super capacitor (60% 

capacitance retained) prompted for screening of other pseudocapacitive materials. An

asymmetrical super capacitor comprising a positive cobalt oxide/zinc oxide/reduced graphene 

oxide electrode (RZCo) and a negative polypyrrole/reduced graphene oxide electrode was then 

fabricated. A wide operational potential range for the RZCo//PyR asymmetrical super capacitor 

resulted in a high specific capacitance of 470.8 F/g, as opposed to the Bi2O3/MnO2 symmetrical 

super capacitor of 136.4 F/g and 144.1 F/g for the bismuth-based asymmetrical super capacitor, 

at a scan rate of 2mV/s, additionally exhibited 1.6-fold higher in energy and power densities, 

which fulfilling the criteria as the energy storage device for the photo-super capacitor.
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Perovskite solar cells were fabricated from a series of cesium based halide mixtures perovskite 

harvesting materials, denoted as CsPbBr3-xIx, where x = 0-0.3. An optimum iodide 

concentration of CsPbBr2.9I0.1 perovskite solar cell with an efficiency of 3.9% was fabricated. 

The solar cell achieved an open circuit voltage of more than 1.0 V and a fill factor of 64% by 

employing Spiro-OMeTAD as a hole transporting material with enhanced stability. The 

performances of the CsPbBr2.9I0.1 solar cell with P3HT/MoO3 hole transporting material was 

also investigated.  The deeper HOMO and shallower LUMO level of the hole and electron 

transporting materials, respectively has achieved high Voc of 1.23 V, but with lower power 

conversion efficiency of 2.51% due to reduction in the Jsc, implies an additional charge loss 

processes at the interface of perovskite/HTM. In high humidity of more than 80 percent, the 

perovskite solar cell comprising CsPbBr2.9I0.1 achieved an efficiency of 0.46%. The perovskite 

solar cell retains 70% of its original efficiency after a week storage in dark and 33% efficiency 

retained under UV and air exposure at a high relative humidity of more than 80% for 24 hours.

The integration of the perovskite solar cell and the asymmetrical super capacitor enabled 

simultaneous photoconversion and charge storage within the photo-super capacitor. The 

photovoltage and photocurrent measurements were successfully performed, evidencing that the 

photo-super capacitor was responsive to light illumination. Referred to the photovoltage 

measurement, zero voltage was presented at the first 50 s without the shine of light. 

Subsequently, the photovoltage was abruptly shooted up to ~80 mV and continue increasing to 

90 mV for 100 s in the presence of light, and was then decreases drastically when light was 

switched off. To further proof the energy conversion and storage of the photo-super capacitor, 

the photocharged integrated device was galvanostatically discharged in dark at the current of 

0.1 mA. As the integrated device reaches the cut off  potential of 0.07 V, the discharging 

process took place in dark with the connection of only super capacitor’s electrodes, thus shows 

the workability of the photo-super capacitor. To enable practical application, improvizations 
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such as optimizing thickness of each active layer and encapsulation of the photo-super

capacitor are needed to prevent electrolyte loss.
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CHAPTER 1

INTRODUCTION

1.1 Background

The photo-super capacitor is a green energy device which utilizes the non-depletable solar 

energy as the prime energy source for photo-to-electrical conversion, subsequently storing of 

energy within the energy storage devices such as batteries, capacitors, and the super capacitors.

Considerable attention has been allocated on the progression of solar energy conversion and 

electric energy storage to cope the raising energy demands in daily lives, to minimize the usage 

of non-renewable energy resources, and to use the harvested solar energy during night when 

an energy storage device is integrated to an energy conversion device (Xu et al., 2014). The 

present existing photo-super capacitor are composed of dye-sensitized solar cell (DSSC)-

battery or DSSC-super capacitor. When a DSSC was incorporated to a lithium ion battery, the 

power pack device was charged up to 3 V in 8 min and exhibited a total energy conversion and 

storage efficiency of 0.82%, which is considerably low (Guo et al., 2012). To improve the 

power output performance of the photo-super capacitor, a silicon based photo-super capacitor 

where the energy conversion device composed of titania based DSSC, while the super capacitor 

composed of silicon wafer was therefore integrated and rendered an overall efficiency of 2.1% 

(Cohn et al., 2015). In 2017, a photo-super capacitor made up of DSSC and 

polypyrrole/reduced graphene oxide super capacitor achieved a specific capacitance retention 

of 70.9% after 50 consecutive charge discharge cycles at a current density of 5 mA/cm2 (Lau 

et al., 2017). Nevertheless, DSSC-based photo-super capacitor suffered from low charging 

voltage owing to low open circuit voltage obtained from the DSSC, consequently led to low 

energy density of photo-super capacitor. In addition, self-discharging of photo-super capacitor 
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could restrain the charge storage ability of the photo-super capacitor. The reason of self-

discharging is owing to the energy storage device has certain internal resistance, which in turn 

consume energy. Additionally, the electrons of the solar cell part flows back to the cathode of 

the energy storage part and thus recombination between electrons and holes occur. Hence, 

prioritizing materials used for energy conversion and storage devices is important for energy 

harvest and storage surge.

So far, the super capacitor has been overriding all kinds of energy storage devices owing to its 

high power density (2-10 kW/kg), fast charging/discharging, and longer lifespan (104-106

cycles) properties (Vidyadharan et al., 2014; Xia et al., 2012; Xie et al., 2013). Super capacitor 

is classified into two classes, namely the electric double layer capacitor (EDLC) and pseudo-

capacitor. The distinctive feature between EDLC and pseudo-capacitor solely relies on their 

charging mechanisms where the EDLC electrode materials are electrochemically inactive and 

dependence on its accumulation of charges at the electrode/electrolyte interface; whereas the 

occurrence of faradaic reaction on pseudo-capacitor enables the storage of charges during 

charging and discharging process (Chen et al., 2014; Y. Cheng et al., 2013; Lim et al., 2013; 

Lim et al., 2014; Wang et al., 2012). The EDLC materials such as carbonaceous materials are 

profound in establishing a cyclic stability, whereas the pseudo-capacitive materials comprise 

transition metal oxides with multi-oxidative transition states and conducting polymer are of 

high capacitive spices in the energy storage family. The transition metal oxides are profound 

in their oxidation and reduction reversibility over the wider potential range which is favorable 

in the super capacitor application.

Relentless efforts have been done to maximize the super capacitor performances. The 

limitations of a symmetrical super capacitor such as low overall power and energy density 

hence prompted the switching of the symmetric configuration of the super capacitor to 



© C
OP

UPM

 
 

3 
 

asymmetric configuration ascribed to narrower potential range applied (Wang et al., 2012). An 

asymmetrical super capacitor is made up of the combination of a battery-type faradaic cathode 

and a capacitor-type anode that is able to increase the potential window range, subsequently,

maximizes the operation voltage of asymmetrical super capacitor (Luan et al., 2013; Ng et al., 

2017; Tang et al., 2013) and increases the energy density of the energy storage device (Fan et 

al., 2011; Lin et al., 2014). The occurrence of redox reaction with or without the non-Faradaic 

reaction and EDL (electrostatic adsorption/desorption) on either of the electrodes, respectively, 

clearly distinguishes the difference between an asymmetric and symmetric configuration of 

super capacitor (Ng et al., 2015; Wang et al., 2013).

In an effort to increase the surface area of active materials, tailoring nanostructure electrode is 

essential as it renders shorter ion insertion/desertion diffusion path to enable efficient charge 

and mass transfer without compromising its double layer capacitance (Luan et al., 2013). In 

addition, the merit point of binder-less electrode is credited to its excellence in charge 

transportation (Luan et al., 2013), in order to minimize the supercapacitive resistance and “dead 

volumes” in electrode materials (Fan et al., 2011; Liu et al., 2011). All in all, the key features

to attain high performance super capacitor are large surface area, controlled pore size, layer 

stacking, and distribution of electrode materials (Brownson et al., 2011). These merit points 

thus revealed that super capacitor is the most considerable candidate for photo-super capacitor 

association upon integrated with the photovoltaic device.

Taking into consideration of the energy conversion device, owing to the high fabrication cost 

of the first generation silicon solar cells, focus has therefore diverted to the second-generation 

thin-film semiconductors (copper indium gallium diselenide) and third-generation DSSCs,

which have good cost effectiveness and easy fabrication methods without compromising their
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high efficiency performances. The efforts to incorporate three-dimensional (3D) perovskite 

light harvester materials (CH3NH3PbX3) into DSSCs produced efficiencies of 3.1% and 3.8% 

for X = Br and X = I, respectively, in 2009 (Kojima et al., 2009). These undesirable efficiencies 

were ascribed to the ionic crystal of organolead halide perovskite, which is highly soluble in a 

polar solvent, and subsequently affected the stability in a liquid electrolyte-based sensitized 

solar cell (Park, 2015a). In addition, the leakage of electrolyte was the main encumbering issue 

in stabilizing the photovoltaic performances of DSSCs. Thus, in an effort to curb the energy 

conversion limitation, the focus has switched to the fabrication of perovskite solar cells, where 

a solid hole transporting material (HTM) is used instead of liquid electrolyte, with the goal of 

achieving a higher stability relative to DSSCs.

The excellent ability of perovskite solar cells to convert solar energy to electrical energy is 

unquestionable based on the evidence of the organic-inorganic methylammonium lead iodide

perovskite solar cell (CH3NH3PbI3 or MAPbI3), which has a high efficiency of 15% (Xing et 

al., 2013; Xu et al.,  2014). CH3NH3PbI3 is excellent at producing optimal band gaps, high 

absorption coefficients, and long-range exciton diffusion lengths (Choi et al., 2014; Xing et al., 

2013). In addition, photovoltaic (PV) cells with a power conversion efficiency (PCE) of 19%

and certified PCE of 20% were reported in 2014 (Park, 2015b; Yakunin et al., 2015). Many

studies and investigations on the performances of perovskite solar cells are still ongoing in the 

effort to surpass this PCE of 20%, as well as to establish a stable performance for a perovskite 

solar cell, in an effort to eliminate costly silicon PV cells (Boix et al., 2014). The perovskite 

solar cell has been expected to be the next most promising light harvesting PV device compared 

to silicon-based photovoltaic cells and DSSCs, owing to its price effectiveness and high 

efficiency. To the best of our knowledge, the most suitable light absorbing material band gap 

for a single junction solar cell is 1.4 eV, according to the Shockley-Queisser limit curve
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(Shockley and Queisser, 1961). CH3NH3PbI3 has an energy band gap of ~1.55 eV, which 

surpasses the optimum band gap range of 1.1–1.4 eV (Kitazawa et al., 2002; Wang et al., 2014).

Hence, solar cells with a high open circuit voltage (Voc) such as those that incorporate bromide-

based perovskite solar cells with a Voc of ~1.5 eV (Kulbak et al., 2016; Xu et al., 2015) are 

highly desirable for electrochemical reactions and a high-energy photon absorber in a system 

with spectral splitting in order to widen the solar absorption ability (Edri et al., 2013; Rühle et 

al., 2009).

Despite perovskite solar cell has achieved impressive PCE of 22.1% in 2016 (Sun et al., 2017),

however, its low stability performance under operative conditions is apparently the main barrier 

for commercialization purpose. The CH3NH3PbX3 perovskite material is highly sensitive to 

moisture, ultraviolet light (UV), and thermal stress where irreversible degradation and 

decomposition happen when the perovskite material is exposed to moisture. A thin film of 

CH3NH3PbI3 thermally degrades to PbI2 at >85 °C (Sutton et al., 2016). Relentless efforts such 

as using cross-linking additives, compositional engineering, and encapsulation have been done 

to mitigate photo-instability of perovskite solar cells. However, this approach increases the 

overall solar cell’s fabrication cost and device complexity. Replacing an organic 

methylammonium cation with an inorganic cesium cation is an approach to decelerate 

degradation process. CsPbBr3 and CsPbI3 are compositionally stable up to their melting point 

(>460 °C). At room temperature, CsPbBr3 crystallizes in orthorhombic phase and it transited 

to tetragonal phase at 88 °C. At 130 °C, the orange cubic perovskite phase is formed.

Conversely, an orthorhombic non-perovskite (yellow phase) CsPbI3 is stable at room 

temperature. When it is heated >300 °C, the orthorhombic non-perovskite CsPbI3 perovskite 

structure consequently transited to cubic perovskite phase (black phase). However, the CsPbI3

is unstable in black perovskite phase in ambient condition and rapidly reverse to non-perovskite 
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yellow phase. (Sutton et al., 2016). Hence, engineering mixed-halide perovskite materials is 

envisioned to be able to improve its absorption ability, stability, and subsequently the 

performance of the solar cell.

Though a photovoltaic device (perovskite-sensitized solar cell) accomplishes high energy 

conversion efficiency, however, its inability to store the converted energy, thus requires an 

additional energy storage device such as a super capacitor for a storage system, in addition to 

serve as the main power delivery output in most applications such as optoelectronic devices 

(Bagheri et al., 2014). Considerable attention and efforts have been underway to improve and 

achieve a strikingly high efficiency, capacitance, and storage ability of a photo-super capacitor 

by studying and extensively investigating and analyzing the utility of active materials and 

preparation methods. Overall, the compatibility of active materials is the primary factor 

ensuring a striking performance for a photo-super capacitor due to the synergic effect of each 

material, which increases the conversion efficiency of the perovskite solar cell by suppressing 

electron recombination and simultaneously providing a surge of electrons for storage in the 

reservoir of the super capacitor, proving the concept of the energy storage system. In this works, 

the electrochemical performances of super capacitor and perovskite based solar cell were 

individually being studied towards the coupling of photo-super capacitor. Voltage and current

response measurements were performed, thus proved the energy conversion and storage 

concept of photo-super capacitor.

1.2 Problem Statement/Hypothesis

The depletion of fossil fuels and natural resources has urgently called for green energy 

substitution. The utilization of solar cell or energy storage device solely cannot be the best 

solution to minimize energy wastage or to replace the usage of non-replenishing resources as 
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the solar cell could not store energy by its own and the energy storage device still require the 

sparking of electrical power for energy generation. Herein, the integration of an energy storage 

and conversion device (photo-super capacitor) as a wholly solar generated power-back device 

is envisaged to becoming the next energy saver for most optoelectronic applications by 

applying the energy converting, storage, and delivery system; without any usage of non-

renewable sources. The conventional photo-super capacitor was composed of DSSC-battery or 

DSSC-super capacitor. However, the limitations of present technologies aforementioned are 

low efficiencies of traditional DSSC and hybrid organic solar cells, leakage of electrolyte, and 

low storage capacity of the energy storage device. Thus, the super capacitor is employed as the 

energy storage and power output device for the photo-super capacitor as it bridges the 

performances gap between the battery and capacitor featuring with fast charging/discharging 

properties. The electrode materials and super capacitor’s configuration are important features 

for high performing super capacitor. 

In realizing the integration of the solar generated power-pack device, firstly, a bismuth 

oxide/manganese oxide (Bi2O3/MnO2) symmetrical super capacitor was fabricated and was 

tested through various electrochemical measurements. The limitation of the symmetrical 

Bi2O3/MnO2 super capacitor, which could only charge up to 1.0 V led to low energy and power 

densities of 7.1 Wh/kg and 51.8 W/kg, respectively. The energy density performance is 

proportional to the cell voltage of the super capacitor, which is tunable when both of the super

capacitor electrodes are composed of different active materials. Thus, to overcome the 

limitation of the bismuth-based symmetrical super capacitor, a Bi2O3/MnO2 positive electrode 

was integrated to a polypyrrole/reduced graphene oxide (PyR) negative electrode. The 

Bi2O3/MnO2//PyR asymmetrical super capacitor exhibited 3.6-fold and 2.2-fold higher in 

energy and power densities, respectively when the potential window of the asymmetrical super
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capacitor was extended to 1.6 V. Despite the electrochemical performances of the bismuth-

based asymmetrical super capacitor have been improved, however the cyclic stability is the 

next shortcoming that needed prompt addresses. The Bi2O3/MnO2//PyR super capacitor could 

only retain 60% of its original capacitance after 1000 continuous charge/discharge cycles, 

implies the incompatibility of positive and negative active materials. The non-sustaining cyclic 

performance of the Bi2O3/MnO2//PyR super capacitor has urged for the next screening of 

potential active materials that contribute for high capacitance without compromises its cyclic 

stability. The incorporation of small amount of reduced graphene oxide (rGO) to the hybrid 

zinc oxide (ZnO) and cobalt oxide (Co3O4), in short denoted as RZCo as the positive super

capacitor electrode has significantly enhanced the stability performance (1.4-fold increment) 

upon coupled to a PyR negative electrode. 

For the energy conversion device, a highly performing perovskite solar cell is not solely relying 

on the power conversion efficiency, but also emphasizing on the surface morphology, 

interfaces of each layer, and stability of the devices. Getting a well-coated and compact film 

are truly important for efficient charge extraction and delivery system. Thus far, the racing 

efficiency of a perovskite solar cell is said to be achieved and is still forwarding (efficiency 

leap), however, the stability performance of the perovskite solar cell is still far left behind, 

especially under high humidity influence. As per discussed in most literature reports, the 

organic perovskite material, for instance, methylammonium lead iodide (CH3NH3PbI3) is 

highly vulnerable and prone to materials degradation. The solutions over the stability issue are 

(i) substituting the organic based perovskite material (methylammonium-based) to an inorganic 

material (cesium-based), and (ii) varies the halides composition. 
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Switch to the case in a tropical country with humidity >80% relative humidity (RH), the 

inorganic perovskite light harvester will be the best choice for solar cell synthesis. The 

degradation of methylammonium precursor was observed (color of solution turned from 

colorless to dark brown) during stirring process, which shows the unsuitability of CH3NH3PbI3

to be used for perovskite material in an ambient condition. In my work, a series of CsPbBr3-xIx

perovskite materials in the molar ratio of 0, 0.1, 0.2, and 0.3, respectively were synthesized, 

which not merely enhance the morphological perovskite surface, as well as enhancing its 

stability performances.

The inaccessibility of the equipment such as the metal evaporator and glove box is one of the 

encumbers during the fabrication of the solar cells. The metal evaporator is used to prepare the 

counter electrode or back contact of the solar cell. Due to inaccessibility of the evaporator, a 

PEDOT:PSS is spin coated as the counter electrode to replace the metal counter electrode. In 

addition, due to inaccessible glove box, the solar cell fabrication process was conducted in 

ambient condition, which accelerate the degradation process.    

1.3 Research Scope

There are six chapters in total in this thesis, which comprises the Introduction (Chapter 1), 

Literature review (Chapter 2), Materials and methods (Chapter 3), Results and discussion 

(Chapter 4 and 5), and Conclusion and recommendations (Chapter 6). Generally, the physical 

and material properties of the catalysts/active materials used were carried out through X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform infrared 

spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission 

electron microscopy (TEM), and RAMAN spectroscopy.
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A systematic research background (Chapter 1) is presented, which includes an introductory to 

the super capacitor such as the classification and kinds of super capacitors, as well as the 

advantageous and disadvantageous of the super capacitor, followed by the discussion on the 

photovoltaic devices. The history and development of the photovoltaic device, especially the 

third generation photovoltaic devices (DSSC and perovskite solar cell) are briefly included.

Lastly, we will look into the integration of both devices for photo-super capacitor application. 

Additionally, problem statements and objectives are included in Chapter 1. Chapter 2 is about 

the thorough literature reviews on the topics which cover the super capacitor, solar cell, and 

photo-super capacitor; while chapter 3 is reporting on the methodologies of each device’s 

fabrication, characterizations, and measurements. 

The results and discussion section is presented in Chapter 4 and 5 where chapter 4 is reporting 

on the performances of the super capacitors; while chapter 5 is focusing on the photovoltaic 

device (perovskite solar cell) and towards the emergence of the photo-super capacitor. Firstly, 

the performances of a symmetrical super capacitor were studied through various 

electrochemical characterizations such as the cyclic voltammetry (CV), galvanostatic charge 

discharge, electrochemical impedance spectroscopy (EIS), and cyclic stabilities. The 

dissatisfactory capacitive performance of the symmetrical super capacitor thus led to the 

coupling of an asymmetric configured super capacitor, which widen the cell voltage with 

improved energy and power density performances for photo-super capacitor application.

Chapter 5 presents the photovoltaic performances of the CsPbBr3-xIx perovskite solar cell (x = 

0, 0.1, 0.2, and 0.3) evaluated through photocurrent density-photovoltage (J-V) curves, EIS,

and stability of the perovskite solar cells. It shows that the perovskite solar cell performs the 

best when x=0.1. The CsPbBr2.9I0.1 perovskite solar cell is still performing the best even at high 
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humidity >80% RH. The champion cell was then integrated to the asymmetrical super capacitor 

for photo-super capacitor application. Conclusions are drawn in Chapter 6, accompanied with 

recommendations for further improvisation in achieving a highly efficient and stable photo-

super capacitor.  

1.4 Objectives

The aim of this project is to devise and develop a photo-super capacitor by studying the

electrochemical and photovoltaic performances of super capacitor and perovskite solar cell 

respectively. In line with the increasing demand of energy, the use of renewable, green and 

clean energy is important for energy sustaining purpose. In this regards, the solar energy, which 

is one of the most cost effective renewable resources should be fully utilized in most 

applications. While the efficiency race is still progressing, the stability of the perovskite solar 

cell should not be compromised though. Thus, the focus of this work is to investigate and 

evaluate stability of the perovskite solar cell, especially at a high humidity influence.  The next 

objective of this project is to validate the improved charge extraction and power conversion 

efficiency of the halide mixture solar cell upon the addition of small amount of iodide into the 

bromide matrix, as well as to examine the morphology of the perovskite surface after the 

inclusion of iodide. 

Apart from the solar cell, the performances of the super capacitor as the primary energy storage 

and output device are also being investigated. In this context, the energy storage capacity and 

the rate of power output are essentially important for the photo-super capacitor application. 

Prioritize the electrode materials for capacitance, energy, and power densities surge for the 

super capacitor is an objective to be achieved. Attaining a highly reversible and sustainable 
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super capacitor is the next objective to achieve. The super capacitor with high recyclability fits 

the criteria for practical use and commercialization. 
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