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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

DIFFERENTIAL GAMES PROBLEMS DESCRIBED BY SYSTEM OF
INFINITE DIFFERENTIAL EQUATIONS IN HILBERT SPACE

By

USMAN WAZIRI

January 2018

Chair: Associate Professor Ibragimov Gafurjan, PhD 
Faculty: Science

This thesis deals with the solutions of differential game problems described by some
infinite systems of ordinary differential equations in Hilbert space. The infinite system
arises from the solution of some control and differential game of problems described
by some partial differential equations. By using decomposition method, some of these
problems can be reduced to the one described by some infinite system of ordinary
differential equations.

Therefore, this thesis focuses on different types of infinite systems using various
approaches in Hilbert space. The first system is an infinite system of first order
differential equations, and the second system is an infinite system of 2-systems of
first order differential equations. For all the systems, we study the existence and
uniqueness, and then we consider control and differential game problems with some
forms of constraints on controls of the players.

For the first system, we present solution of optimal pursuit problems with negative
coefficients, where the controls of the players are subjected to integral constraints.
Pursuer’s goal is to force the state of the system toward the origin and the evader tries
to avoid this.

Secondly, we extend the first system and introduce another state away from that of
the initial state. In this game, pursuer attempts to bring the state of the system toward
another the evader’s purpose is opposite where we study pursuit game problems with
negative coefficients.
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Furthermore, the second game is improved with various constraints and the coefficients
assumed to be any real numbers, the condition of completion of pursuit with geometric
and integral constraints is proposed.

For the second system, we solve pursuit differential game problem of 2-system of
first-order that involves a generalization of all considered games with conjugate
complex, the case of integral constraints.

The main findings and contributions of this thesis is to study differential game described
by infinite system of differential equations. For the first system, we propose an optimal
pursuit time. For the second the third cases, we propose a new approach of completion
of pursuit and for the second system, a guaranteed pursuit time is also proposed.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MASALAH PERMAINAN PEMBEZAAN YANG DIHURAIKAN OLEH
SISTEM PERSAMAAN PEMBEZAAN YANG TIDAK TERHINGGA

DALAM RUANG HILBERT

Oleh

USMAN WAZIRI

Januari 2018

Pengerusi: Profesor Madya Ibragimov Gafurjan, PhD 
Fakulti: Sains

Tesis ini mengendalikan penyelesaian kepada masalah permainan pembezaan yang
diterangkan oleh beberapa sistem tak terhingga persamaan pembezaan biasa dalam
ruang Hilbert. Sistem tak terhingga berkenaan muncul dari penyelesaian bagi beberapa
kawalan dan permainan pembezaan bagi masalah yang diterangkan oleh beberapa
persamaan pembezaan separa. Dengan menggunakan kaedah pemecahan, beberapa
masalah ini boleh dimudahkan kepada masalah yang diterangkan oleh sistem tak
terhingga bagi persamaan pembezaan biasa.

Oleh itu, tesis ini memfokuskan kepada jenis sistem tak terhingga yang berbeza
dengan menggunakan berbagai pendekatan dalam ruang Hilbert. Sistem yang pertama
adalah sistem tak terhingga persamaan pembezaan peringkat pertama, dan sistem
kedua adalah sistem tak terhingga bagi sistem-2 bagi persamaan pembezaan peringkat
pertama. Untuk semua sistem, kami mengkaji kewujudan dan keunikan, dan kemudian
kami pertimbangkan kawalan dan masalah permainan pembezaan dengan beberapa
bentuk kekangan terhadap kawalan pemain.

Untuk sistem pertama, kami mempersembahkan selesaian kepada masalah pengejaran
optimal dengan pekali negatif, di mana kawalan pemain adalah bergantung kepada
kekangan kamiran. Tujuan pengejar adalah untuk memaksa keadaan sistem kearah
asalan dan pengelak cuba untuk mengelak dari ini berlaku.

Kedua, kami memperkembangkan sistem pertama dan memperkenalkan keadaan
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yang lain, pada kedudukan yang lain dari keadaan permulaan. Dalam permainan ini,
pengejar cuba untuk membawa keadaan sistem ke arah yang lain. Tujuan pengelak
adalah bertentangan di mana kami mengkaji masalah permainan pengejaran dengan
pekali negatif.

Di samping itu, permainan kedua diperbaiki dengan pelbagai kekangan dan pekali
adalah dianggap sebagai sebarang nombor nyata, keadaan bagi penyempurnaan
pengejaran dengan kekangan geometri dan kamiran dicadangkan.

Untuk sistem kedua, kami menyelesaikan masalah permainan pembezaan pengejaran
2-sistem peringkat pertama yang melibatkan pengitlakan semua masalah yang diper-
timbangkan dengan konjugat kompleks, kes kekangan kamiran.

Hasil dan sumbangan utama tesis ini adalah untuk mengkaji permainan pembezaan
yang diterangkan oleh sistem tak terhingga persamaan pembezaan. Untuk sistem yang
pertama, kami mencadangkan masa pengejaran optimal. Untuk kes kedua dan ketiga
, kami cadangkan pendekatan baru bagi penyempurnaan pengejaran dan untuk sistem
kedua, dicadangkan juga satu masa pengejaran yang pasti.
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CHAPTER 1

INTRODUCTION

This chapter presents the background about differential game problems. It also contains
important definitions and standard results used. Then followed by motivation of study.
Objectives of the study, scope and limitation and organization of the thesis are also
discussed.

1.1 Introduction

Differential game of pursuit and evasion problems are a special kind of mathematical
problems related to the modeling and analysis of conflicts in the background of
dynamical systems. The game usually consists of two players with different goals.
The goal of the 1st-player is to capture the 2nd-player in some sense, while that of
the 2nd-player tries all the possibilities to escape from this capture. For instance, the
capture could be minimizing the distance between the 1st-player and 2nd-player as
much as possible while that of the avoidance is opposite. Conventionally, we call the
1st-player to be a pursuer and 2nd-players to be an evader.

The game of pursuit and evasion examines conflict problems in systems which driven
by a model. A model that describes the behavior of the players which is determined
by the players input through their respective control functions contained in the model.
The model is usually a system of differential equation, and each player tries as much
as possible to control the state of the system so that the goal will be achieved.

Differential game problems that require to finding the condition for which pursuer can
capture the evader is called pursuit differential problem. Similarly, a differential game
problems that requires to finding the condition for which the evader can avoid the
capture from pursuer is called evasion differential problem. The system of differential
equation is usually the space where pursuit and evasion differential game problems
played.

Pursuit and evasion differential game are differential game of kind in which a pursuer
attempts to capture evader in a minimal possible time and the evader attempts to avoid
that by maximizing the capture time. A very good example of pursuit and evasion
differential game is the popular Lion and Man problem. The game considers a lion and
a man to be the pursuer and the evader respectively, enclosed in a circular environment.
The problem required to address some questions:

1. How long can the evader ( that is a man) escapes from the pursuer (that is a lion)
?

1
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2. If the evader (i.e. a man) succeeds to escape from the pursuer (i.e. a lion) all the
time, what is the least distance can the evader (i.e. a man) has between the him
and the pursuer (i.e. a lion) ?

Question 1 and 2 are formulated from the man’s view point, while question 3 and 4
below are formulated from the lion point of view:

3. How long does it take for the pursuer (i.e. a lion) to capture the evader (i.e. a
man) ?

4. If the pursuer (i.e. a lion) does not succeed in capture the evader (i.e. a man),
how close to evader (i.e. a man) can pursuer (i.e. a lion) go?

The problem that involves question 1 and 2 is referred to as evasion differential
game problem. Like wise the problem concerning question 3 and 4 is called pursuit
differential game problem. This problem has been investigated thoroughly in works
such as Croft (1964), Flynn (1973), Lewin (1986), and Bollobas et al. (2012).

The theory of differential games constitutes a group of problems that related to game
theory and optimal control theory. Differential game related to optimal control theory
in the sense that optimal control problem consists of a single control function in
the model and a single criterion to be optimized. However, control problem can
be extended to a differential game by introducing control function of the second
player to the game model. Indeed, differential game problems represent a class of op-
timal control problem in cases where there are more than one control function or player.

In differential game problems, the control functions are usually subjected to constraints
reflecting a natural phenomenon. Conventionally, the constraints could either be
integral or geometric. If the players control belong to the subset of Rn, then they are
said to be subjected to geometric constraint. A constraint is referred to as integral if
the resources of the player are bounded.

Nowadays, the differential game has become an active research area with many
applications. It has been applied to solve practical problems related to artificial
intelligence, economics, engineering, military operation and so. For example, it has
been employed for an aircraft combat, missile control, and other military strategies.
There are a tremendous amount of applications in the field of mathematical finance and
marketing. Most recent developments include adding stochastic to differential games.
Stochastic differential game models are increasingly used in various fields ranging from
market development, competition policy and investment. Another potential applica-
tion includes searching the building for intruders and surgical operations to name a few.

2
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1.2 Standard Results

In the present section, we present some standard results and basic definition which will
be used in the next chapters.

1.2.1 Hilbert space

Definition 1.2.1 Let X be a complex linear space, then a function 〈., .〉 : X×X → C

is referred to as the inner product, if it satisfied the following axioms:

i. 〈x,x〉 ≥ 0 and 〈x,x〉= 0 if and only if x = 0.

ii. 〈λx,y〉= λ 〈x,y〉.

iii. 〈x,y〉= 〈y,x〉, the complex conjugate of 〈x,y〉.

iv. 〈x+ y,z〉= 〈x,z〉+ 〈y,z〉 .

where x,y,z ∈ X and λ is a complex number.
A linear space X which has an inner product 〈., .〉 is called an inner product space
denoted by (X ,〈., .〉).

Example 1.2.2 A finite dimensional space (Euclidean space) Rn with dot product

〈(x1,x2...,xn),(y1,y2...,yn)〉=
n

∑
k=1

xkyk,

is an inner product space.

(Pedersen (1999))

Definition 1.2.3 Let {xn} be a sequence in an inner product space (X ,〈., .〉). A se-
quence {xn} is said to be a Cauchy sequence if, for every positive number ε > 0, there
is an integer Nε > 0 such that ‖xn− xm‖< ε for all natural number m,n > Nε .

Brian et al. (2001)

Definition 1.2.4 A Hilbert space is an inner-product space in which every Cauchy
sequence in the space converges to a point in the space. In other words, complete
inner-product space is called Hilbert space.

Ponnusamy (2002)

3
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Example 1.2.5 Cn is a Hilbert space with an inner-product defined by

〈x,y〉=
n

∑
k=1

xkyk

where x = x1,x2, ...,xn, y = y1,y2, ...,yn is finite dimensional space in Cn.

Example 1.2.6 Let E be a measurable subset of R. Then the space of all square
integrable function denoted by L2(E) with inner product defined by

〈 f ,g〉=
∫

E
f ḡdµ

is Hilbert space.

Definition 1.2.7 Let X be a linear space. A norm on X is a real-valued function with
function ‖·‖ on X satisfying the following axiom:

i. ‖x‖ ≥ 0 ∀x ∈ X,

ii. ‖x‖= 0 if and only if x = 0

iii. ‖λx‖= |λ |‖x‖ for all x ∈ X, and for all scalar λ

iv. ‖x+ y‖ ≤ ‖x‖+‖y‖ ∀x,y ∈ X

A linear space X with a norm ‖·‖ on it is called a normed linear space denoted by
(X , ‖·‖). The norm is also referred to as the length of the vector x. Rao (2006).

Theorem 1.1 Every inner-product space is a normed linear space with norm defined
by

‖x‖=
√
〈x,x〉.

For this proof see Rao (2006)

Definition 1.2.8 The sequence space lp (1 ≤ p ≤ ∞) for which the norm for the
sequence {xn} ∈ lp is defined by

‖x‖p =


(
∑

∞
n=1 |xn|p

)1/p
< ∞, i f 1≤ p < ∞,

sup1≤n<∞, |xn|< ∞, i f p = ∞,

is normed space.

The norm defined for 1≤ n < ∞ is called lp norm (or simply p-norm) and for p = ∞ is
called l∞ norm or simply sup-norm. Ponnusamy (2002)

4
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1.2.2 Standard Inequalities

Theorem 1.2 (Cauchy-Schwartz inequality).
Let (X ,〈., .〉) be an inner-product space. Cauchy-Schwartz inequality states that

| 〈x,y〉 |2 ≤ 〈x,x〉 · 〈y,y〉 ,

for all vectors x,y ∈ X .

Rao (2006)

Example 1.2.9 In Euclidean space Rn with the standard inner product, the Cauchy-
Schwartz inequality is

n

∑
i=1

xiyi ≤

(
n

∑
i=1

x2
i

)1/2( n

∑
i=1

y2
i

)1/2

Example 1.2.10 For the inner product space of square-integrable complex-valued
functions, Cauchy-Schwartz inequality is∣∣∣∣∫ f (x)g(x)dx

∣∣∣∣2 ≤ ∫ | f (x)|2dx
∫
|g(x)|2dx

where g(x) is the conjugate of g(x).

Theorem 1.3 (Minkowski’s inequality).
Let p≥ 1 and f ,g ∈ Lp(R). Then

‖ f +g‖p ‖ f‖p +‖g‖p .

For the proof see Pedersen (1999)

Example 1.2.11 (Minkowski’s sum inequality).
If p≥ 1 and xk,yk ∈ R, k = 1,2, ..., then[

n

∑
k=1
|xk + yk|p

]1/p

≤

[
n

∑
k=1
|xk|p

]1/p

+

[
n

∑
k=1
|yk|p

]1/p

This result is true for infinite sum and for the details, see Rao (2006).

Example 1.2.12 (Minkowski’s integral inequality).

5
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If p≥ 1 and f ,g ∈C[a,b], then[∫ b

a
| f (x)+g(x)|p

]1/p
≤
[∫ b

a
| f (x)|p

]1/p
+

[∫ b

a
|g(x)|p

]1/p
.

For the details see Ponnusamy (2002)

1.2.3 Measurable Functions

Definition 1.2.13 Let X be a set. A collection Σ of subsets of X is called σ - algebra
on set X, if it satisfies the following properties:

i. X belongs to Σ, i.e.
X ∈ Σ.

ii. if A belong to Σ, then the complement of A belongs to Σ, i.e.

Ac = {x ∈ X | x /∈ A} ∈ Σ.

iii. if Ak is a sequence of Σ, then the union of the all Ak belongs to Σ, i.e.

Ak ∈ Σ⇒
∞⋃

k=1
Ak ∈ Σ.

The members of ∑ are called measurable sets.

Definition 1.2.14 Let Σ be a σ - algebra over set X. A function µ : σ → R is called
a measure if it satisfies the following:

i. µ(E)≥ 0 for all E ∈ Σ,

ii. µ(∪k∈IEk) = Σk∈I µ(Ek), for all countable {Ek}k∈I pairwise disjoint members
of Σ,

iii. µ(�) = 0.

Definition 1.2.15 Let X be a set and let Σ be a σ - algebra defined on X. A set X
together with Σ is called a measurable space and is denoted as (X , Σ).

Definition 1.2.16 Let (X , Σ1) and (Y, Σ2) be measurable spaces. A measurable
function is a function f : (X , Σ1)→ (Y, Σ2) such that f−1(E) ∈ Σ1 for all E ∈ Σ2. i.e.
preimage of any measurable set is measurable.

6
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Definition 1.2.17 In measure theory, a property holds almost everywhere, if the set
of elements for which the property does not hold has a measure zero.

For example, if f : [a,b]→ R is a monotonic function, then it is differentiable almost
everywhere. Aliprantis and Burkinshaw (1981).

1.3 Motivation

The differential game of pursuit and evasion problem is derived from the fact that the
trajectories of pursuer and evader are given as the solution of differential equations.
Also, the strategies of pursuer and evader are given as control functions occurring in
the differential equations. The system of differential equations describing differential
game problem could be ordinary or partial differential equations. The later seems to be
of broader applications from the fact that many physical system and biological process
are often governed by partial differential equations, where the state of the system is a
function of time.

In the early works such as Bukovskii (1961) and Wang (1965), variation technique
was employed to study differential game problem described by partial differential
equations. Some further and recent works on the differential game problem described
by partial differential equations include that of Chernous’ko (1996) and Tukhtasinov
(1995). In each of these works decomposition method is used to reduce the problem
described by partial differential equations to the one described by an infinite system of
ordinary differential equations.

The later can be studied in an independent framework. For example, Ibragimov and
Hasim (2010) and Ibragimov (2013a), studied differential game problem described
by an infinite system of differential equations with positive coefficients. This serves
as a motivations factor in attracting my attention to study differential game problem
described by an infinite system of ordinary differential equations, in the case of
negative coefficients.

1.4 Objectives of the Thesis

The following are objectives of the thesis:

• To obtain solution of optimal pursuit differential game problem of the following
IS-ODE

żk +λkzk =−uk + vk,zk(0) = z0
k ,k = 1,2, ...,

where zk,uk,vk ∈ R1,z0 = (z0
1,z

0
2, ...) ∈ l2

r+1,u1,u2, ..., are control parameters of

7
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the pursuer and v1,v2, ..., are that of the evader, {λ1,λ2, ...} are bounded se-
quence of negative numbers. Pursuer tries to force the state of the system toward
the origin and the evader tries to avoid this, where we obtain an equation to find
the optimal pursuit time and construct the optimal strategies for players.

• To obtain a solution of pursuit game for an IS-1st-Order of ordinary differential
equations with integral constraints in the case of negative coefficients

żk +λkzk =−uk + vk,zk(0) = z0
k ,k = 1,2, ..., (1.1)

where z0 =(z0
1, z0

2, . . . ,)∈ l2
r+1. We denote a given state z1 =(z1

1, z1
2, . . . ,)∈ l2

r+1,
of the system (1.1) and all other parameters are stated as in the first system above.
In this case, pursuer actions to bring the state of the system toward another and
evader actions to stop this.

• To obtain condition of completion of pursuit with geometric and integral con-
straints described by IS-1st-Order of ordinary differential equations of the space
l2

żk =−λkzk−uk + vk,zk(0) = z0
k ,k = 1,2, ..., (1.2)

where zk,uk,vk ∈ R1, z0 = (z0
1, z0

2, . . . ,) ∈ l2, {λ1,λ2, ...} are assumed to be any
real numbers. We denote a given state z1 = (z1

1, z1
2, . . . ,)∈ l2, of the system (1.2).

Pursuer tries to brings the state of the system to coincides with another state of
the space l2.

• To obtain guaranteed pursuit time for an IS-2-Systems of 1st-Order of ordinary
differential equations in Hilbert space l2

ẋk =−βkxk−αkyk−u1k + v1k,

ẏk = αkxk−βkyk−u2k + v2k,

xk(0) = x0
k , yk(0) = y0

k , k = 1,2, ...

where, αk,βk are real numbers, βk ≥ 0 with initial state x0 =(x0
1,x

0
2, ...)∈ l2, y0 =

(y0
1,y

0
2, ...) ∈ l2. We denote x1 = (x1

1,x
1
2, ...) ∈ l2, y1 = (y1

1,y
1
2, ...) ∈ l2 be another

state, a control parameters of the pursuer is given by u = (u11,u12,u21,u22, ...),
and that of the evader is given by v = (v11,v12,v21,v22, ...). In the game, the
goal of the pursuer is to force the state of the system toward another state and the
evader actions in the opposite. Integral constraints are imposed on the control
functions of the players

1.5 Scope and Limitation

In this thesis, we focus our attention on pursuit and evasion differential game problem
described by infinite systems of differential equations in Hilbert space and limited only

8
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to systems of infinite first-order ordinary differential equations.

1.6 Organization of the Thesis

This thesis is organized into eight chapters. The remaining part of the thesis is
presented as follows:

In Chapter 2, we give an introduction to the chapter. We brief on a history of the
emergence of differential games and review the related literature on some important
works.

Chapter 3 begins with an introduction. The solution of 1st-order linear equation is
presented. The proof of existence-uniqueness theorem to the considered systems is
also discussed.

Chapter 4 focuses on the solution of optimal pursuit time for an IS-1st-Order ordinary
differential equations with negative coefficients, where the control functions of the
players are subjected to integral constraints. At first, we give an introduction to the
chapter and then proceed with a solution of control problem involving infinite system
of ordinary differential equations. The chapter is then concluded.

After introducing the chapter, we study a control problem described by infinite system
of differential equations in Chapter 5. The condition of completion of pursuit in
differential game problem described by IS-1st-Order ordinary differential equations
with integral constraints are then presented. The chapter ends with a brief conclusion.

In Chapter 6, after introducing the chapter, then we focuses to the solution of pursuit
game problem described by infinite system of differential equations where the control
geometric and integral constraints are imposed to the control functions of the player.
Furthermore, the chapter includes control problems described by infinite system of
differential equations with geometric and integral constraints. The chapter ends with
conclusion.

In Chapter 7, we present differential game pursuit time for an IS-2-Systems of
1st-Order in Hilbert space. Following an introduction, control problem described by an
an IS-2-Systems of 1st-Order are considered. Each component of the control functions
of players is subjected to integral constraints. An equation to find guaranteed pursuit
time is obtained. Finally, we conclude the chapter.

Last but not the least, we give the general conclusion and some future research works

9
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in Chapter 8.
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