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January 2018 
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Phase-pure bismuth tantalate fluorites were successfully prepared via 
conventional solid-state method at 900 ˚C in 24 – 48 hours. The solid solution 
was proposed with the general formula of Bi3+xTa1-xO7-x (0 ≤ x ≤ 0.184), wherein 
the formation mechanism involved a one-to-one replacement of Ta5+cation by 
Bi3+cation within ~4.6 mol% difference. These samples crystallised in a cubic 
symmetry, space group Fm-3m with lattice constants, a=b=c in the range 
5.4477(±0.0037) – 5.4580(±0.0039) Å. A slight increment in the unit cell was 
discernible with increasing Bi2O3 content and this may attribute to the 
incorporation of relatively larger Bi3+cation in the host structure. The linear 
correlation between lattice parameter and composition variable showed that the 
Vegard’s Law was obeyed. Both TGA and DTA analyses showed Bi3+xTa1-xO7-x 
samples to be thermally stable as neither phase transition nor weight loss was 
observed within ~28–1000 ˚C. The correct stoichiometry of sample was 
confirmed using inductively coupled-plasma optical emission spectroscopy 
(ICP-OES), in which a close agreement between experimental and theoretical 
values had been achieved. Electrical properties of Bi3+xTa1-xO7-x solid solution 
samples were measured over the frequency range 5 Hz – 13 MHz. At 
intermediate temperatures, ~350 – 850 ˚C, Bi3+xTa1-xO7-x solid solution was a 
modest oxide ion conductor with conductivity, ~10-6 – 10-3 S cm-1; the activation 
energy was in the range 0.98 – 1.08 eV. Bi-rich sample, Bi3.184Ta0.816O6.816 
exhibited the highest conductivity of ~1.50x10-3 S cm-1 at 650 ˚C. The improved 
electrical conductivity could be a result of the structural change in terms of the 
grain size, surface morphology and oxygen vacancies with increasing bismuth 
content. 

Solid solutions with general formula of Bi3Ta1-xLnxO7-x (Ln = Nd, Gd and La) had 
been successfully prepared. The formation mechanism involved a proportion 
amount of Ta5+ cation replaced by Ln3+ cation with creation of oxygen vacancy 
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for charge compensation. Therefore, the overall charge electroneutrality of the 
system was preserved through a mechanism: Ln3+ ↔ Ta5+ + O2. The solid 
solution limit was up to x = 0.2 for Nd-doped Bi3Ta1-xNdxO7-x, with a slight 
increased lattice constants, a=b=c in the range 5.4477(±0.0037) – 
5.4682(±0.0009) Å. The increment of unit cell may attribute to the larger Nd3+ 
ionic radius of 0.983 Å if compare to Ta5+ of 0.64 Å at 6-fold coordination. 
Meanwhile, only limited solid solution range, i.e. x = 0.1 for both Gd- and La- 
series. The recorded lattice constants, a=b=c were 5.4635(±0.0002) and 
5.4687(±0.0002) Å, respectively. Bi3Ta0.8Nd0.2O6.8 exhibited the highest 
conductivity for the doped lanthanide series at all temperatures, i.e. ~350 to 
850 ˚C. The recorded conductivity was 9.26x10-3 S cm-1 at 650 C.  
 
 
A selection of pentavalent cations was introduced at either Bi-site or Ta-site of 
Bi3TaO7. However, only substitution of Ta-site was able to yield new solid 
solution using Nb5+ and V5+, respectively. The solid solution mechanism is 
proposed to be a one-to-one replacement of Ta by Nb or V, with the general 
formula of Bi3Ta1-xMxO7 (M = V or Nb). The solid solution limit for Nb–doped 
Bi3Ta1-xNbxO7 was up to x = 0.5. Bi3Ta1-xNbxO7solid solution adopted similar 
defective fluorite structure, space group Fm-3m with lattice parameters, a=b=c 
in the range 5.4477(±0.0037) – 5.4654(±0.0011) Å.The Nb-doped samples 
showed an increase in electrical conductivity with increasing Nb content; 
Bi3Ta0.5Nb0.5O7 exhibited the highest conductivity, ~5.96x10-3 S cm-1 at 650 ˚C. 
The enhanced electrical conductivity for Bi3Ta1-xNbxO7solid solution may 
attribute to the large and well-connected grains that could reduce the 
impedance barrier for the charge transfer in samples. On the other hand, a 
limited solid solution range of x = 0.1 was attainable for Bi3Ta1-xVxO7solid 
solution with lattice parameters, a=b=c, 5.4559 ((±0.0011) Å. The ionic 
conductivity exhibited by Bi3Ta0.9V0.1O7 was ~4.17x10-3 S cm-1 at 650 ˚C with 
activation energy of 1.01 eV. 
 
 
On the other hand, tungsten substituted solid solution, Bi3Ta1-xWxO7+(x/2) (0 ≤ x ≤ 
0.2) with lattice constants, a=b=c in the range 5.4477(±0.0037) – 
5.4668(±0.0001) Å. The conductivity values of Bi3Ta1-xWxO7+(x/2) solid solution, x 
= 0.1 and x = 0.2 were ~5.15x10-3 S cm-1 and ~6.78x10-3 S cm-1at 650 C, 
respectively. These conductivity values appeared to be comparable to other 
doped series, e.g. Nb, V, and slightly higher than that of the parent phase. The 
relatively higher conductivity of tungsten doped samples may somewhat 
correlate to minor contribution of electronic conductivity that resulted from the 
variable oxidation state of tungsten.  
 
 
In conclusion, Bi3TaO7 and related materials were successfully synthesised by 
solid-state reaction at the optimised conditions. These materials exhibited 
interesting oxide ionic conductivity that may attribute to the high concentration 
of oxygen vacancy in the host lattice. The structural and electrical properties of 
Bi3TaO7 and related materials had been demonstrated to be highly dependent 
on the composition and crystal structure.  
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Bismut tantalate fluorit yang berfasa tulen telah disintesis melalui tindak balas 
keadaan pepejal pada suhu 900 C, dalam masa 24 – 48 jam. Larutan pepejal 
ini dicadangkan dengan satu formula umum, Bi3+xTa1-xO7-x (0 ≤ x ≤ 0.184), di 
mana pembentukan mekanisme melibatkan penggantian satu kation Ta5+ 

dengan satu kation Bi3+ dalam perbezaan peratusan ~4.6 mol%. Sampel-
sampel tersebut menghablur dalam struktur simetri kubik, kumpulan ruang Fm-
3m dan pemalar kekisi, a=b=c yang berada dalam julat 5.4477(±0.0037) – 
5.4580(±0.0039) Å. Peningkatan sel unit yang tidak ketara telah diperhatikan 
dengan kuantiti Bi2O3 yang semakin meningkat. Pemerhatian ini mungkin 
disebabkan oleh kation Bi3+ yang bersaiz lebih besar di dalam struktur 
perumah. Sifat korelasi yang linear di antara parameter kekisi dengan 
komposisi menunjukkan bahawa Hukum Vegard telah dipatuhi. Kedua-dua 
analisis TGA dan DTA menunjukkan sampel Bi3+xTa1-xO7-x adalah stabil secara 
terma memandangkan tidak ada sebarang peralihan fasa mahupun 
pengurangan berat yang diperhatikan dalam julat suhu ~28 – 1000 ˚C. 
Komposisi stoikiometri sampel yang tepat telahditentukan dengan spektroskopi 
pancaran atomik plasma ganding induktif (ICP-OES), di mana persetujuan 
yang rapat antara nilai eksperimen dan teori telah tercapai. Sifat elektrik larutan 
pepejal Bi3+xTa1-xO7-x telah diukur dalam julat frekuensi 5 Hz – 13 MHz. Pada 
perantaraan suhu, ~350 – 850 ˚C, larutan pepejal Bi3+xTa1-xO7-x merupakan 
konduktor ion oksida yang sederhana dengan kekonduksian, ~10-6 – 10-3 S cm-

1; tenaga pengaktifan adalah di dalam julat 0.98 – 1.08 eV. Sampel yang kaya 
dengan bismut, Bi3.184Ta0.816O6.816 mempunyai nilai kekonduksian yang paling 
tinggi, ~1.50x10-3 S cm-1 pada suhu 650 ˚C. Peningkatan dalam kekonduksian 
elektrik adalah hasil daripada perubahan struktur dari segi saiz butiran, 
morfologi permukaan dan kekosongan oksigen yang disebabkan oleh 
kandungan bismut yang meningkat. 
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Larutan pepejal dengan formula umum, Bi3Ta1-xLnxO7-x (Ln = Nd, Gd,dan La) 
telah berjaya disediakan. Mekanisme pembentukan melibatkan satu amaun 
perkadaran kation Ta5+ digantikan oleh kation Ln3+ dan penghasilan 
kekosongan oksigen demi pampasan cas. Oleh itu, cas elektoneutral 
keseluruhan dalam sistem ini dapat dikekalkan melalui mekanisme: Ln3+ ↔ 
Ta5+ + O2-. Had larutan pepejal adalah sehingga x = 0.2 untuk Nd-terdop 
Bi3Ta1-xNdxO7-x, yang menunjukkan sedikit peningkatan dalam pemalar kekisi, 
a=b=c dalam julat 5.4477(±0.0037) – 5.4682(±0.0009) Å. Peningkatan pemalar 
kekisi mungkin disebabkan oleh saiz jejari ion Nd3+ yang lebih besar iaitu 0.983 
Å jika dibandingkan dengan Ta5+, iaitu 0.64 Å pada koordinasi enam. 
Sementara itu, had larutan pepejal sangat terbatas, iaitu x = 0.1 untuk kedua-
dua siri Gd- dan La-. Pemalar kekisi mereka, a=b=c adalah 5.4635(±0.0002) 
dan 5.4687(±0.0002) Å. Bi3Ta0.8Nd0.2O6.8 menunjukkan kekonduksian yang 
tertinggi pada ke semua suhu yang dikaji dalam siri lantanid terdop dari suhu 
~350 ke 850 ˚C. Nilai kekonduksiannya yang direkodkan pada suhu 650 C 
ialah 9.26x10-3 S cm-1. 
 
 
Kation pentavalensi telah diperkenalkan dalam Bi3TaO7 sama ada pada tapak 
Bi atau Ta. Akan tetapi, hanya penggantian pada tapak Ta boleh menghasilkan 
larutan pepejal yang baru dengan menggunakan Nb5+ dan V5+. Mekanisme 
larutan pepejal dicadangkan sebagai penggantian satu kepada satu Ta oleh Nb 
atau V, dengan formula umum Bi3Ta1-xMxO7 (M = V atau Nb). Had larutan 
pepejal untuk Nb–terdop Bi3Ta1-xNbxO7 adalah sehingga x = 0.5. Larutan 
pepejal Bi3Ta1-xNbxO7 juga mempunyai struktur fluorit yang tercacat, kumpulan 
ruang Fm-3m dengan pemalar kekisi, a=b=c di dalam julat nilai 
5.4477(±0.0037) – 5.4654(±0.0011) Å. Sampel Nb-terdop menunjukkan 
peningkatan kekonduksian elektrik yang seiring dengan pertambahan 
komposisi Nb; Bi3Ta0.5Nb0.5O7 mempunyai kekonduksian yang tertinggi, 
~5.96x10-3 S cm-1 pada suhu 650 ˚C. Peningkatan kekonduksian elektrik dalam 
larutan pepejal Bi3Ta1-xNbxO7 mungkin disebabkan oleh saiz butiran yang besar 
dan rapat sehingga rintangan impedans untuk pemindahan cas di dalam 
sampel dapat dikurangkan. Sebaliknya, had larutan pepejal terbatas untuk 
Bi3Ta1-xVxO7, iaitu x = 0.1 dengan pemalar kekisi, a=b=c, 5.4559 ((±0.0011) Å. 
Kekonduksian ion yang diperolehi oleh Bi3Ta0.9V0.1O7 ialah ~4.17x10-3 S cm-1 

pada suhu 650 ˚C dengan tenaga pengaktifan 1.01 eV. 
 
 
Selain itu, larutan pepejal penggantian tungsten (wolfram), Bi3Ta1-xWxO7+(x/2) (0 
≤ x ≤ 0.2) dengan pemalar kekisi, a=b=c dalam julat nilai 5.4477(±0.0037) – 
5.4668(±0.0001) Å telah disediakan. Nilai kekonduksian larutan pepejal Bi3Ta1-

xWxO7+(x/2), x = 0.1 dan x = 0.2 adalah ~5.15x10-3 S cm-1 dan ~6.78x10-3 S cm-1 

pada suhu 650 C. Nilai-nilai kekonduksian tersebut adalah setanding dengan 
siri terdop yang lain, seperti Nb, V, walaupun hanya sedikit lebih tinggi 
daripada fasa induk. Kekonduksian yang lebih tinggi untuk sampel wolfram-
terdop mungkin berkaitan rapat dengan kekonduksian elektron yang terhasil 
daripada perubahan keadaan pengoksidaan wolfram. 
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Sebagai kesimpulan, Bi3TaO7 dan bahan-bahan berkaitan telah berjaya 
disintesis melalui tindak balas keadaan pepejal pada keadaan yang optimum. 
Bahan-bahan ini mempunyai kekonduksian ion oksida yang disebabkan oleh 
kekosongan oksigen yang tinggi di dalam kekisi perumah. Didapati juga sifat 
struktur dan elektrik bagi Bi3TaO7 serta bahan-bahan berkaitan adalah sangat 
bergantung terhadap komposisi bahan dan struktur hablur. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
1.1 Solid State Ionics 
 
 
Solid state ionic is a study of ionic migration phenomenon by jumping or 
hopping of charge carrier into vacancy or interstitial sites in the crystal 
structure. The transportation of charge carriers by electric field is known as 
electrical conduction. Electrical conduction has two types of mechanism, which 
are either electronic or ionic conduction that basically depends on the nature of 
electrical properties in materials. The current carriers for electronic conduction 
are electrons which responsible for the electrical characteristics of metals, 
semiconductors, and superconductors. Meanwhile, the current carriers for ionic 
conduction are charged ions which occur in materials that known variously as 
solid electrolytes, superionic conductors or fast ion conductors. Those 
materials exhibit electronic and ionic conductivity have typical values as 
summarised in Table 1.1.  
 
 
In many years, there are exhaustive investigations had been performed on 
oxide ion conductors owing to their high technological applications that have 
high economical interest. Solid oxide ion conductors are a very interesting 
group of solid electrolytes with which these materials are applied for numerous 
applications including oxygen sensors, solid oxide fuel cells (SOFCs), dense 
ceramic membranes for oxygen separation, and various types of sensors (Ng 
et al., 2009; Sammes et al., 1999). Oxide ion conducting solid electrolytes play 
important role in electrochemical cell for measuring oxygen activities and the 
thermodynamic data in solid, liquid and gaseous phases. 
 
 
Table 1.1: Typical electrical conductivity of electronic and ionic materials 

(West, 1999) 

Conduction 
mechanism 

Material Conductivity, σ (ohm-1 cm-1) 

Ionic Ionic crystals < 10-18 – 10-4 
 Solid electrolytes  10-3 – 101 
 Strong (liquid) electrolytes  10-3 – 101 
Electronic Metals  10-1 – 105 
 Semiconductors  10-5 – 102 
 Insulators < 10-12 
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1.2 Solid Electrolytes 
 
 
In the area of solid state ionics, solid electrolytes or also known as fast ionic 
conductors are important due to their applications in batteries, solid oxide fuel 
cells and various sensors. Solid electrolytes are the crystal solids which have 
cations and anions that are free to move throughout crystal structure and thus 
conducting electric current. The cations are ionic bonded to anions at the lattice 
sites in ionic solids. Solid electrolytes are the intermediate solid structure 
between typical ionic solids and liquid electrolytes. Normal crystalline solid has 
a regular network structure with immobile ions, in which all ions are fixed at 
their lattice sites, while all ions are mobile in liquid electrolytes. Solid 
electrolytes with highly mobile ions, which have high values of ionic 
conductivity as high as 1 Ω-1 cm-1, are due to the rapid diffusion of ionic species 
through a lattice formed by immobile counter ions. The high mobility of ionic 
species within their crystal structures is the major feature that distinguishes 
materials that can act as solid electrolytes.  
 
 
Most of ions in crystalline solids are trapped at their lattice sites, vibrate, and 
have no tendency to escape from their lattice sites. They need high activation 
energy to change position in the lattice and therefore, exhibit low conductivity 
value. Solid electrolytes that allowing the phenomena of electrical charge 
transport by the motion of ions in solids have low conductivity at low 
temperature, but possessing high conductivity at high temperature. At elevated 
temperature, the ions have greater thermal energy causing them to vibrate 
more vigorously and thus leading to high ionic migration. 
 
 
It is noteworthy to highlight that the movement of trapped charged ions into the 
adjacent lattice sites could be due to the ionic conduction, migration, hopping, 
or diffusion mechanisms. The minimum requirement for the ionic conduction to 
occur is either by the presence of vacant sites, that enabling the adjacent ions 
to hop into that vacancies and leaving their own sites vacant, or by having ions 
in interstitial sites which can hop into the adjacent interstitial sites. Two 
important factors that could facilitate the ionic conduction are high 
temperatures and high concentration of crystal defects, with vacancies or 
interstitials. Ions or atoms cannot escape from their lattice sites, but can only 
move via crystal defects. At high temperatures, the ions in crystal lattice have 
greater thermal energy that causes them to vibrate vigorously and makes the 
ionic conduction is easier, as mentioned earlier. This factor meets one of 
significant conditions required by ionic conduction to occur, that a large number 
of same species ions should be mobile. Other conditions that must be satisfied 
by significant ionic conduction to occur in crystals are as follows (West, 1999): 
 
 
1. A large number of empty sites are available for the mobile ions to jump into. 
This is essentially a corollary of having large number of mobile ions since ions 
can be mobile only if there are empty sites available for them to occupy. 
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2. The empty and occupied sites should have similar potential energies with a 
low activation barrier for jumping between neighboring sites.  

3. The structure should have a 3D framework permeated by open channels 
through which mobile ions may migrate. 

4. The anion framework should he highly polarizable. 
 
 
1.3 Bismuth oxide 
 
 
One of the oxide conductors that captured much attention is bismuth-based 
electrolytes as these materials could demonstrate high ionic conductivity as 
high as 1 Ω-1 cm-1 at 750 ˚C. Bismuth oxide, Bi2O3 could exist in four 
polymorphic forms, which are monoclinic α-, tetragonal β-, body centered cubic 
γ-, and face centered cubic δ–phase. The δ-Bi2O3 is the most interesting phase 
among other polymorphs of bismuth oxides, since it shows very high oxide ion 
conductivity, 1 Ω-1 cm-1 at 750 ˚C, whereas the other polymorphs only exhibit 
low ionic conductivity. The polymorph δ-Bi2O3 with an oxygen-deficient fluorite-
type crystal structure is known as one of the best oxide ion conductors, due to 
its high concentration of intrinsic oxygen vacancies in the structure that 
contributes to the ionic conduction properties (Castro et al., 1998; Ling et al., 
1998; Struzik et al., 2012; Zhou 1992). 
 
 
The preservation of δ-Bi2O3 with the fluorite structure to lower temperatures is 
of great research interest. However, this δ-Bi2O3 only stable in a limited 
temperature range, i.e. 725 ˚C up to its melting point of 825 ˚C (Shuk et al., 
1996). This phase requires thermal quenching in order to bring down to room 
temperature for certain practical applications. It is believed that the instability of 
δ-Bi2O3 phase mainly resulted from high oxygen vacancies, i.e. 25% of the 
anionic sites, are vacant (Zhou, 1992). Therefore, chemical substitution of Bi by 
a variety of cations may help to stabilise the cubic δ-phase. For example, Ta5+ 
is such a cation, with the Bi2O3–Ta2O5 system could yield a number of ordered 
fluorite type phase. Bi3TaO7 is one of phases that had been extensively studied 
for its structural properties by various researchers; but, still only limited 
information is available on its electrical properties.  
 
 
It is worthwhile to highlight that a solid solution is referred as a crystalline 
phase that can have variable compositions. Two simple types of solid solution 
are substitutional solid solution and interstitial solid solution. Substitutional solid 
solutions need replacement of atom or homovalent ion in the host structure by 
another species, while the interstitial solid solution involves the introduced 
species occupies a site that is either empty or no ion/atoms are left out. In 
order to form substitutional solid solutions, there are prerequisites that must be 
met, i.e. the ions that replace each other must have same charge and similar 
ionic radius. Meanwhile, ions that are substituted by other ions of different 
charges and the additional changes may involve the creation of vacancies or 
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interstitial (ionic compensation) or electrons or holes (electronic compensation) 
are known as heterovalent or aliovalent substitution, where these are solid 
solutions require a more complex formation mechanism. In addition, two 
substitutions could take place simultaneously and the substituting ions may be 
of different charge, providing that overall electroneutrality is preserved (West, 
1999). 
 
 
Practically, solid solution in Bi2O3–Ta2O5 system could be formed by 
substitution of cations at Bi or Ta sites. Certainly, the substitution may lead to 
the formation of vacancies, holes, or interstitial oxygen that may contribute to 
the interesting electrical properties. 
 
 
1.4 Electrical Properties 
 
 
In this study, the electrical properties of prepared materials are of the main 
focus, i.e. the electrical conductivity and the dielectric behavior. Electrical 
conduction is primarily governed by the manner of generating charge carriers in 
materials. The electrical conductivities of the materials are ranging from 
superconductors through those of metals, semiconductors, and highly resistive 
insulators. Electrical conductivity can be divided into three different categories 
which are intrinsic, extrinsic, and injected-controlled conductivity. It is 
categorised as intrinsic conductivity if the charge carriers are developed in the 
material based on its chemical structure. On the contrary, the extrinsic 
conductivity takes place if the charge carriers are initiated by introducing 
impurities either through fabrication processes or doping activity into material 
for a distinct purpose. Meanwhile, injected-controlled conductivity occurred if 
the charge carriers are injected into material, mainly from metallic electrodes 
via a metal-material interface. The electrical conductivity follows the Arrhenius 
equation as given below: 
 

σ = σ0 exp(-Ea/kT)      (1.1) 

Where σ0 is the pre-exponential factor, Ea is the activation energy, k is the 
Boltzman constant, and T is the temperature in Kelvin. In reality, the electrical 
conduction involves various transport processes and may involve both ionic 
and electronic conductions, under certain condition. Generally, the fundamental 
charge carriers involving cations, anions, electrons, and electron holes and all 
these carriers contribute to the total conductivity in a material as shown below: 

σ = σc + σa + σn + σp      (1.2) 

σ = σion + σel       (1.3) 

Where σc, σa, σn and σpare the cation, anion, electron, and electron hole 
conductivities, respectively. The summation of σc and σa gives ionic conductivity 
value, while the summation of σn and σp gives the electronic conductivity value. 
The summation of both ionic and electronic conductivities then gives rise to the 
total electrical conductivity, Equation (1.3). It is common that only one type of 
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charge carrier prevails the charge transport and the contribution from minority 
carriers are insignificant. The mobilities of electrons and electron holes in 
oxides are generally several orders of magnitude greater than those of the ions 
(Wang et al., 2006; Bo et al., 2006).  
 
 
On the contrary, dielectric material has a unit set of electrical characteristics 
that dependent on its dielectric properties. Measurements on these dielectric 
properties could provide scientists and engineers with valuable information to 
properly incorporate the material into its intended application for more solid 
designs and could provide the critical design parameter information for many 
electronic applications. 
 
 
1.5 Problem Statement 
 
 
Exhaustive investigation has been performed on bismuth based oxide ion 
conductors owing to their applications in various technological devices. The δ-
Bi2O3 exhibits high oxide ion conductivity properties due to its fluorite-type 
sesquioxide lattice with high concentration of oxygen vacancies. However, the 
large number of vacancies in the structure causes a long-range order easily 
occurs at low temperature and undergoes a phase transition on cooling, 
accompanied by a dramatic three orders of magnitude lowering of its 
conductivity (Fruth et al., 2004). Therefore, the δ-phase requires thermal 
quenching in order to bring down to room temperature for certain practical 
applications. The substitution for Bi3+ by another cation through chemical 
doping, e.g. W6+, Ta5+, Nb5+, Sb3+, Y3+ could prevent the long-range ordering 
being established on cooling. One material that has been studied by many 
researchers is Bi3NbO7 due to its interesting polymorphic structures and 
electrical properties. Such phase possesses good ionic conductivity and the 
resulted Ta-analogue, Bi3TaO7 could have comparable electrical performance 
especially both phases have an ordered fluorite structure. However, there is 
only limited information available on the structural and electrical properties of 
Bi3TaO7. An attempt to enhance the electrical properties of Bi3TaO7 materials 
by chemical doping is also part of the investigation. Therefore, the focus of this 
study is to develop an understanding of the correlation between compositions 
and the electrical properties of various phases and related solid solution in the 
Bi2O3–Ta2O5 system. 
  
  
1.6  Objectives 
 
 
The key objectives of this work are outlined as below: 
 
 
1. To synthesise phase pure bismuth tantalate Bi3TaO7 and its solid solution 
using conventional solid state method. 
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2. To perform characterisations on the crystal structure, surface morphology, 
thermal stability, and the electrical properties of the phase pure samples 
through a series of systematic investigations. 

3. To enhance the electrical properties of prepared materials through chemical 
doping at the Ta-site of Bi3TaO7 with suitable metal oxides, e.g. Nd3+, Gd3+, 
La3+, Nb5+, V5+, and W6+. 
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