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 INTEGRATED ARTIFICIAL INTELLIGENCE-BASED CLASSIFICATION 

APPROACH FOR PREDICTION OF ACUTE CORONARY SYNDROME 

 
 By  

 

NADER SALARI 

 

November 2014 

 

Chairperson: Shamarina Shohaimi, PhD 

Faculty: Science 

 

 
Coronary heart disease (CHD) is one of the most life-threatening diseases all over the 

world. One of the common medical emergencies and the leading cause of 

hospitalization, morbidity and mortality is known as acute coronary syndrome 

(ACS). ACS, which refers to a wide range of acute myocardial ischaemic conditions, 

is a dynamic and unstable process. The failure in timely diagnosis and prompt 

treatment of ACS may lead to fatal outcomes. The existing gap of knowledge in 

“timely and accurate” diagnosis and classification of the patients with suspected ACS 

is an extremely challenging issue for the practicing emergency physicians. Therefore, 

application of an innovative approach is required. Using “AI-based” classification 

models could be considered as an innovative, creative, and multi-disciplinary 

strategy.  

 

Recently, the “hybrid AI-based” classification models have gained more attraction 

due to the inefficiency of conventional “single AI-based” models in accurate 

classification. Accordingly, the present study attempts to introduce a novel hybrid 

classification model for the prediction of ACS to fill the multi-stages gaps.  

 

To this end, as the initial stage, the pros and cons of the “single AI-based” were 

evaluated toward providing a strategy in development of the best classification 

models for prediction of heart failure based on the Perth data set. In the second stage, 

a registry entitled “Acute Coronary Syndrome Event — in Kermanshah, Iran 

(ACSEKI)” was designed and established as the first ACS registry in Iran.  The 

following results were obtained when classification of the ACS types used the 

conventional “single AI-based” methods. The comparison results of the classifiers 

showed the highest accuracy of 83.2% and 82.9% for the Feed-forward back-

propagation neural network (FFBPNN) and K-nearest neighbors (K-NNs) methods 

respectively. Although FFBPNN classifier is slightly more accurate than K-NN, 

there are some advantages such as simple implementability, understandability and 

interpretability for the latter. In the development of the “hybrid AI-based” 

classification models, the proposed model (K1-K2- NN), was basically introduced 

through combining AI approaches of modified K-NN, genetic algorithm (GA), 

Fisher’s discriminant ratio (FDR) and class separability criteria (CSC). The 

classification performance of K1-K2-NN model was benchmarked against 13 
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commonly used classification models using repeated random sub-sampling cross-

validation on ACSEKI data set. The optimized K1-K2-NN model (3-5-NN) 

demonstrated higher performance accuracy with an average of 94.4% ± 0.9%.  

 

As the core component of the present study, the previous models were improved by 

introducing a “Developed Feed Forward Back Propagation Neural Network” 

(DFFBPNN). Performance evaluation of the proposed model were conducted by 

comparing 13 well-known classification models based on various commonly used 

evaluation criteria on seven data sets (ACSEKI data set as well as six data sets taken 

from the University of California Irvine (UCI) machine-learning repository). 

Statistical analysis was performed using the Friedman test followed by post-hoc 

tests. Finally, the performance results of the proposed model was benchmarked 

against the best ones reported as the state-of-the-art classifiers in terms of 

classification accuracy for the same data sets. The experimental findings indicated 

that the novel proposed hybrid model resulted in significantly better classification 

performance compared with all 13 classification methods. The classification 

accuracy of the “hybrid model” and “K1-K2-NN” on ACSEKI data set were 95.2% 

and 94.2%, respectively, showing 0.08% improvement for the “hybrid model”. 

Furthermore, substantial findings of the comprehensive comparative study revealed 

that performance of the proposed model in terms of classification accuracy is 

desirable, promising, and competitive to the existing state-of-the-art classification 

models. Accordingly, the proposed “hybrid model” demonstrated to be applicable for 

classification problems in different medical areas, particularly for early detection of 

ACS. 

 

To recapitulate, the study demonstrated that an integrated AI-based classification 

approach could be a significant potential for prediction of ACS. Thus, the proposed 

model could be effectively used for a clinician with less experience or as a second 

opinion for an experienced senior clinician to their quickly, timely, and accurately 

decision making process. The model could also be utilized for classification tasks in 

the other medical fields such as breast cancer and diabetes. This model is expected to 

make a significant contribution to the literature of integrated AI-based approach for 

classification of ACS with high accuracy and efficiency. 
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Penyakit jantung koronari (CHD) adalah salah satu penyakit yang paling mengancam 

nyawa di seluruh dunia. Salah satu daripada kecemasan perubatan yang biasa dan 

penyebab utama kemasukan ke hospital, morbiditi dan mortaliti dikenali sebagai 

sindrom koronari akut (ACS). ACS, yang merujuk kepada pelbagai keadaan iskemia 

miokardium akut, adalah satu proses yang dinamik dan tidak stabil. Kegagalan dalam 

diagnosis yang tepat pada masanya dan rawatan segera ACS boleh membawa maut. 

Jurang yang sedia ada dalam pengetahuan dalam diagnosis ACS yang "tepat pada 

masanya dan tepat" dan pengelasan pesakit yang disyaki menghidap ACS merupakan 

satu isu yang amat mencabar bagi pakar perubatan kecemasan. Oleh itu, penggunaan 

pendekatan yang inovatif adalah diperlukan. Menggunakan model pengelasan 

berasaskan kecerdasan buatan boleh dianggap sebagai satu strategi yang inovatif, 

kreatif, serta merangkumi pelbagai disiplin. 

 

Kebelakangan ini, model pengelasan  berasaskan kecerdasan buatan hibrid telah 

mendapat perhatian lebih disebabkan oleh ketidakcekapan model konvensional 

berasaskan kecerdasan buatan tunggal dalam pengelasan yang tepat. Oleh itu, kajian 

ini memperkenalkan model pengelasan hibrid baru bagi meramalACS bagi mengisi 

jurang pelbagai aras. 

 

Untuk tujuan ini, pada peringkat awal kebaikan dan keburukan model pengelasan 

berasaskan kecerdasan buatan tunggal telah dinilai bagi menyediakan satu strategi 

dalam pembangunan model pengelasan terbaik untuk meramal kegagalan jantung 

berdasarkan set data yang diperolehi daripada Perth. Langkah kedua melibatkan 

pembangunan sebuah registry bertajuk "Kejadian Sindrom Koronari Akut- di 

Kermanshah, Iran (ACSEKI)" yang merupakanregistry ACS pertama di Iran. Hasil 

dapatan daripada pengelasan jenis ACS menggunakan kaedah konvensional 

berasaskan kecerdasan buatan tunggalmenunjukkan ketepatan tertinggi iaitu 83.2% 

dan 82.9% bagi kaedah Feed-Hadapan  rangkaian neural perambatan balik 

(FFBPNN) dan K-jiran terdekat (K-NN) masing-masing. Walaupun pengelas 

FFBPNN adalah sedikit lebih tepat daripada K-NN, terdapat beberapa kelebihan K-

NN seperti kaedah pelaksanaan, memahami dan mentafsir yang lebih mudah 

berbanding pengelas FFBPNN. Dalam pembangunan model pengelasan berasaskan 

kecerdasan buatan hibrid, model yang dicadangkan (K1-K2-NN), pada asasnya 

diperkenalkan melalui penggabungan pendekatan kecerdasan buatan iaitu K-NN 
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yang diubahsuai, algoritma genetik (GA), nisbah diskriminan Fisher (FDR) dan 

kriteria kelas dapat dipisahkan (CSC). Prestasi pengelasan model K1-K2-NN telah 

ditanda aras dengan 13 model pengelasan yang biasa digunakan menggunakan sub-

pensampelan rawak berulang pengesahsahihan silang pada set data ACSEKI. Oleh 

itu, model K1-K2-NN yang dioptimumkan (3-5-NN) telah menunjukkan prestasi 

ketepatan yang lebih tinggi dengan purata 94.4% ± 0.9%.  

 

Sebagai komponen teras kajian ini, model-model sebelum ini ditambah baik dengan 

memperkenalkan rangkaian neural perambatan balik (DFFBPNN). Penilaian prestasi 

model yang dicadangkan telah dijalankan dengan membandingkan 13 model 

pengelasan terkenal berdasarkan pelbagai kriteria penilaian yang lazim pada tujuh set 

data (data ACSEKI yang ditetapkan serta enam set data yang diambil daripada 

University of California Irvine (UCI) repositori mesin-pembelajaran). Analisis 

statistik dilakukan dengan menggunakan ujian Friedman diikuti dengan ujian post-

hoc. Akhirnya, keputusan prestasi model yang dicadangkan telah ditanda aras dengan 

pengelas terbaik yang telah dilaporkan dari segi ketepatan pengelasan untuk set data 

yang sama. Hasil dapatan kajian menunjukkan bahawa novel model hibrid yang 

dicadangkan telah menghasilkan prestasi pengelasan yang jauh lebih baik berbanding 

semua ketigabelas kaedah pengelasan. Ketepatan pengelasan model hibrid dan K1-

K2-NN pada set data ACSEKI adalah 95.2% dan 94.2%, masing-masing, 

menunjukkan peningkatan 0.08% bagi model hibrid. Tambahan pula, penemuan 

besar kajian perbandingan komprehensif mendedahkan bahawa prestasi model yang 

dicadangkan dari segi ketepatan pengelasan adalah wajar  dan berdaya saing dengan 

model pengelasan terbaik yang sedia ada. Oleh itu, model hibrid yang dicadangkan 

menunjukkan bahawa ia boleh dipakai untuk masalah pengelasan perubatan dalam 

bidang yang lain, terutamanya bagi pengesanan awal ACS. 

 

Sebagai kesimpulan, kajian ini menunjukkan bahawa pendekatan pengelasan 

berasaskan kecerdasan buatan bersepadu boleh menjadi potensi yang besar untuk 

meramalkan ACS. Oleh itu, model yang dicadangkan boleh digunakan dengan 

berkesan untuk pakar klinikal yang kurang berpengalaman atau sebagai pendapat 

kedua untuk doktor senior yang berpengalaman dalam proses membuat keputusan 

mereka yang cepat, tepat pada masanya, dan tepat. Model ini juga boleh digunakan 

dalam bidang perubatan lain seperti kanser payudara dan diabetes. Model ini 

dijangka akan memberi sumbangan yang besar kepada pengetahuan tentang 

pendekatan pengelasan berasaskan kecerdasan buatan bersepadu bagi pengelasan 

ACS dengan ketepatan yang tinggi dan cekap.  
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CHAPTER 1 

1 INTRODUCTION 

1.1  General Introduction 

Diseases are one of the leading causes of death among human beings, have always-

threatened human health. Some diseases such as plague, cholera, malaria and 

tuberculosis were pandemic in different periods, and they inflict devastating 

casualties(Cliff et al., 2004). On the one hand, due to significant improvements in the 

public health systems and advances in therapeutic methods the mortality rates of 

some diseases have been decreased over times which in turn resulted in longer life 

expectancy(Armstrong et al., 1999). On the other hand, other lethal and chronic 

conditions, such as cardiovascular disease and cancer, which are mostly caused by 

modern life style, have been emerged as a new challenge. So that, such diseases have 

become the most serious community health problems (Lippi et al., 2006). 

  

During the last century, Coronary Heart Disease (CHD) has burgeoned from a 

relatively minor disease to one of the most life-threatening diseases and a leading 

cause of morbidity and mortality(Levenson et al., 2002; Guilbert, 2003). Studies 

indicate that at the beginning of the 20th century, CHD has been accounted for less 

than 10 percent of all deaths worldwide. At the beginning of the 21st century, CHD 

accounts for nearly half of the deaths in the developed countries and a quarter of 

those in the developing ones(Guilbert, 2003). 

 

CHD is currently the leading cause of morbidity and mortality in Iran(Hatmi et al., 

2007), Malaysia(Raihan and Azmawati, 2013), the United States (U.S.)(Roger et al., 

2012), and the United Kingdom (UK)(Bhattarai et al., 2012), as in the all over the 

world(Mendis et al., 2011). The prevalence of CHD in the US in 2008 was 7 percent 

or 16.3 million adults (20 years and older)(Roger et al., 2012). Furthermore, it has 

been projected to almost double during the 21st century(Guthrie, 2003). 

 

World Health Organization (WHO) estimates that 7.3 million people (i.e. 12.66% out 

of 58.66 million) died globally due to CHD in 2008(Mendis et al., 2011). CHD is the 

cause of more than 40 percent of all deaths (i.e. approximately 138,000 deaths) in 

Iran each year(Naghavi and Jafari, 2007). In addition, CHD is the cause of over 

405,300 deaths(Roger et al., 2012), (i.e. about one in six deaths) in the US and over 

88,000 deaths(Bhattarai et al., 2012),(i.e. one in five male and one in seven female 

deaths) in the UK in 2008. CHD is responsible for 22.2 percent of total deaths in 

Malaysia in 2011(WHO, 2011). 

 

Acute Coronary Syndrome (ACS) is a term, which encompasses the clinical 

manifestations of CHD. The spectrum of clinical presentations of ACS ranges from 

unstable angina (UA) and non-ST-segment elevation myocardial infarction 

(NSTEMI) to ST-segment elevation myocardial infarction (STEMI). Of the eight 

million patients who visit emergency departments suffering from chest pain each 

year, five millions are diagnosed with ACS(Rosamond et al., 2008). According to a 
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conservative estimate, the number of hospital discharges with ACS as the primary 

diagnosis was 671,000 in the U.S in 2007. Whereas secondary diagnoses for ACS 

were included, the number of hospital discharges was 1,172,000(Sangkachand et al., 

2012). 

 

In spite of the fact that the vast majority of cardiologists and primary care physicians 

have a low threshold for diagnosing ACS, about 5% of patients are misdiagnosed and 

discharged inappropriately (with potentially fatal consequences) (Pope et al., 2000; 

Harrison and Kennedy, 2005). Although this figure may appear to be relatively low, 

misdiagnosis and inappropriate early discharge of patients will inevitably result in 

significantly increased mortality rate. So that, it was demonstrably shown that in 

hospitalized patients the mortality rate is approximately 1.7 to 1.9 times less than in 

such patients(Ho and Reddy, 2010). Innovative approaches are therefore needed to 

facilitate the predictive decision making process of early diagnosing and 

classification of ACS patients more accurately, rapidly and efficiently. 

  

On the other hand, medical knowledge is complex and dynamic. It is increasingly 

growing and expanding exponentially to such an extent that even those who are 

expert in medicine have difficulties in following the latest advances and new 

challenges. In addition, in this high-tech world, computers surpass humans in the 

capability to remember. This important property can be very valuable in the practice 

of medicine and, in fact, computer-aided systems can lead to important 

improvements in the diagnosis, classification and treatments of diseases. 

Consequently, researching in system development for classification purposes is a 

very popular area in Artificial Intelligence (AI). 

 

AI is one of the most powerful approaches for classification purposes, especially in 

various medical fields (Fayyad et al., 1996). In the last decade, the impact of AI-

based classification models on decision making processes in various scientific 

domains, including medicine, have attracted a lot of attention. Among the numerous 

AI approaches, K-Nearest Neighbor (K-NN) algorithms, genetic algorithms (GAs), 

and Artificial Neural Networks (ANNs) are considered as the most common and 

effective methods. 

 

However, these methods have often been used separately in classification approaches 

in numerous studies. While it seems that the focus of research carried out on 

traditional “single AI- based” technologies has mostly been productive, it could be 

considered to be sub-optimal in practice due to the limitation of the technologies. 

This is mainly caused by ignoring the advantage of the synergies among the 

technologies. In other words, concerns have arisen from the fact that each of AI 

methods has its specific advantages and disadvantages. In effect, due to the 

individual strengths and weaknesses associated with the various AI approaches , their 

potential can merely be realized by taking advantage of the synergy among 

them.Thus, incorporating these AI-based technologies can capitalize extraordinarily 

on their strengths and compensating for their deficiencies. 

 

 In this context, hybrid models is an innovative approach, which could be considered 

as one of the best possible strategies in addressing the above-mentioned challenge. 

During the last few years, researchers increasingly noticed the hybrid models. The 

main idea behind these models is to benefit from the synergy, which will be emerged 
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from the combined technologies. These are relatively new approaches, which include 

innovative, creative, and appropriate combination of several models in achieving a 

final common goal with a performance far better than traditional models based on 

single technology. This characteristic provides the opportunity to take advantage of 

the exclusive strengths of each technology and can be used as a means for 

compensating the deficiencies, and overcoming the limitations of each 

technology(Shapiro, 2002; Hur and Kim, 2008). 

 

1.2 Problem Statement 

The existing gap of knowledge in “timely and accurate” diagnosis and classification 

of the patients with suspected ACS is an extremely challenging issue for the 

practicing emergency physicians(Theroux, 2010). In practice, the vast majority of 

cardiologists and primary care physicians have a low threshold for diagnosing ACS 

and about 5% of patients with potentially fatal consequences are misdiagnosed and 

discharged inappropriately(Pope et al., 2000; Harrison and Kennedy, 2005). On the 

other hand, in numerous studies the traditional AI methods have been used separately 

in classification of ACS. That is, although the focus of research on traditional “single 

AI- based” technologies on the basis of “its own individual strengths” has mostly 

been productive, in practice it could be considered to be sub-optimal due largely to 

the limitation of each technology. Thus, the studies are constrained and opportunities 

are lost to take advantage of the synergies between current technologies.  

 

Providing an appropriate strategy to improve the model's classification accuracy as a 

challenging issue plays an important role to facilitate the predictive decision making 

process. Recently, in order to achieve higher classification accuracy, the “hybrid AI-

based” approaches have gained more attention than conventional “single AI-based” 

approaches(Gorunescu and Belciug, 2014). This is because, on the basis of the 

advantages and disadvantages of each of the AI methods, incorporating the “single 

AI-based” technologies in a “hybrid AI-based” model can capitalize extraordinarily 

on their strengths and compensating for their deficiencies. It could be considered as 

one of the best possible strategies and innovation in addressing these multistage gaps. 

  

Accordingly, application of an innovative approach appears to be required in 

facilitating such a predictive clinical decision making process. In spite of the above-

mentioned facts about various aspects of this multi-disciplinary challenge, there are 

few comprehensive studies in the literature concerned with ACS classification, which 

are based on only “single AI-based” approaches rather than the “hybrid AI-based” 

approaches. To the best of our knowledge, no measure has been taken for proposing 

a hybrid model in this context. So, it is imperative to use “hybrid AI-based” 

classification models that are considered to be innovative, creative, and multi-

disciplinary strategy. In other word, there is a need for developing a more accurate, 

efficient and broadly applicable “hybrid AI-based” model for ACS classification to 

fill the multi-stages gaps.  

  

1.3 Objectives 

The overall aim of the present project was to develop the hybrid AI-based models in 

order to more accurately and efficiently classify ACS. 
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Specific objectives of the study were: 

1. To classify ACS types using the conventional “single AI-based” methods. 

2. To develop classification models, with introducing novel “hybrid AI-based” 

models, in order to achieve more accurate, efficient, and broadly applicable 

classification models. 

3. To compare the performance of the novel “hybrid AI-based” model with 

conventional classification methods. 

1.4 Development of Study 

 

The first part of the study will evaluate the pros and cons of the “single AI-based” 

methods toward providing a strategy in development of the best classification models 

(chapter 3) for prediction of heart failure on Perth data set. In fact, this will reveal 

limitation of the “single AI-based” methods and the need to look into “hybrid AI-

based” models. To this end, the second part of the study is to develop novel hybrid 

AI-based methods using the six data sets taken from the University of California 

Irvine (UCI) machine-learning repository along with other data set derived from a 

registry entitled “Acute Coronary Syndrome Event — in Kermanshah, Iran 

(ACSEKI)” (Chapter 4, 5 and 6).  
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