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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

BORNOLOGICAL STRUCTURES ON SOME ALGEBRAIC
SYSTEMS

By

ANWAR NOORULDEEN IMRAN

January 2018

Chairman : I.S. Rakhimov, PhD
Faculty : Science

This work concerns the notion of determining the boundedness of some
algebraic structures such as groups and rings.

Firstly, a new structure bornological semigroup is considered to determine the
boundedness of algebraic structure semigroups. Then, some properties are
investigated. Some of these properties are shared with bornological groups, but
some properties are not. Further properties of bornological groups are studied
to give sufficient condition of bornology to bornologize every group. In
particular, we show that a left (right) translation in bornological groups is a
bornological isomorphism and therefore the bornological groups structures are
homogeneous.

Next, bornological group actions (BGA) are constructed to prove some basic
results which hold true just for bornological actions. In particular, we show
that a bornological group action can be deduced from its boundedness at the
identity and a bornological group acts on a bornological set by a bornological
isomorphism. The effect of bornological action is to partition bornological sets
into orbital bornological sets. Furthermore, the morphisms between
G-bornological sets to be bounded maps are introduced. This motivated us to
construct the category of G-bornological sets.

For this purpose, we construct chorology theory for bornological groups based
on bounded cochains and study some of its basic properties. We show that the
cohomology theory of bounded cochains and the cohomology theory of
homogenous cochains are isomorphic.
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Furthermore, the equivalent classes of bornological group in terms of a
semi-bounded sets and s-bounded maps are presented to restrict the condition
of boundedness for bornological group.

Lastly, the concept of bornological semi rings is introduced to determine the
boundedness of rings and semi rings, and the fundamental constructions in the
class of bornological semi rings are discussed. The general results in this
chapter concerning projective limits and inductive limits as well as an
isomorphism theorem are established.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

STRUKTUR BORNOLOGI TERHADAP BEBERAPA SISTEM
ALJABRAS

Oleh

ANWAR NOORULDEEN IMRAN

Januari 2018

Pengerusi : I.S. Rakhimov, PhD
Fakulti : Sains

Kerja ini adalah berhubung dengan tanggapan untuk menentukan keterbatasan
beberapa struktur aljabras (kumpulan, gelang).

Pertama sekali, suatu struktur semikumpulan bornologi yang baru
dipertimbangkan untuk menentukan keterbatasan semikumpulan struktur
algebra. Kemudian, beberapa sifat disiasat. Sesetengah sifat ini dikongsi
dengan kumpulan-kumpulan bornologi, tetapi sesetengah sifat tidak. Sifat-sifat
tambahan kumpulan-kumpulan bornologi dikaji untuk memberi keadaan
bornologi yang mencukupi untuk membornologikan setiap kumpulan.
Khususnya, kami menunjukkan bahawa suatu terjemahan kiri (kanan) dalam
kumpulan-kumpulan bornologi adalah isomorfisme dan justeru itu
struktur-struktur kumpulan-kumpulan bornologi tersebut adalah homogen.

Seterusnya, tindakan kumpulan bornologi (BGA) dibina untuk membuktikan
beberapa hasil asas yang bersifat benar hanya untuk tindakan bornologi.
Khususnya, kami menunjukkan bahawa tindakan sesuatu kumpulan bornologi
boleh disimpulkan daripada keterbatasannya di identiti dan kumpulan
bornologi bertindak ke atas sesuatu set bornologi melalui isomorfisme
bornologi. Kesan tindakan bornologi adalah untuk memetakkan set-set
bornologi menjadi set-set bornologi orbitan. Tambahan lagi, morfisme-morfisme
antara set-set bornologi-G untuk menjadi peta-peta terbatas diperkenalkan. Ini
memberi motivasi kepada kami untuk membina kategori set G-set bornologi.

Untuk tujuan ini, kami membina teori korologi untuk kumpulan-kumpulan
bornologi berdasarkan pada korantai terbatas dan mengkaji beberapa sifat-sifat
asasnya. Kami menunjukkan bahawa teori kohomologi korantai terbatas dan
teori kohomologi korantai homogen adalah isomorfisme.
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Tambahan pula, kelas-kelas kumpulan bornologi setara dari segi set-set
semi-terbatas dan peta-peta terbatas-s dibentangkan bagi menghadkan keadaan
keterbatasan untuk kumpulan-kumpulan bornologi.

Akhir sekali, konsep separuh gelang bornologi diperkenalkan untuk menentukan
keterbatasan (gelang, separuh gelang), dan pembinaan asas dalam kelas
separuh gelang bornologi dibincangkan. Hasil umum dalam bab ini yang
berkenaan dengan had-had unjuran dan had-had induktif serta teorem
isomorfisme ditubuhkan.
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CHAPTER 1

INTRODUCTION

1.1 Basic Concepts

In this section some definitions related to group actions and cohomology groups
are presented.

Definition 1.1 An action of a group G on a set X is a map σ : G×X −→ X
with

i. σ(e, x) = x, where e is the identity element of G and x ∈ X

ii. σ(g, σ(h, x)) = σ(gh, x), for any g, h ∈ G and x ∈ X.

We shortly write gx for σ(g, x), and call X a G-set.

Let G be a group and X be a set. Suppose that H is a subgroup of G and A is a
nonempty subset of X, respectively. We put, σ(H,A) = HA = {ha : h ∈ H, a ∈
A}. We say that A is H-invariant if HA ⊂ A. For more detail in group action we
refer the readers to Malik et al. (1997), Dummit and Foote (2004) and Atiyah
(1994).

Now, let G be a group and (A,+) be any abelian group, such that G acts on A,
then A is called a G-module. It is the same group action with extra condition.

σ(g, (a1 + a2)) = σ(g, a1) + σ(g, a2), for any g ∈ G and a1, a2 ∈ A.

Let us define the set
Cn(G,A) = {f : Gn −→ A}.

To prove group structure on this set we need to choose binary operation which
is defined as follows

(f1 ⊕ f2)(g1, ..., gn) = f1(g1, ..., gn) + f2(g1, ..., gn)

for every (g1, ..., gn) ∈ Gn and f1, f2 ∈ Cn(G,A). Thus, (Cn(G,A),⊕) is a group.
Indeed, first of all we have to prove this set is closed under ⊕ operation, i.e., for
every (g1, ..., gn) ∈ Gn and f1, f2 ∈ Cn(G,A), such that

f1(g1, ..., gn) ∈ A

1
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and
f2(g1, ..., gn) ∈ A,

then
(f1 ⊕ f2)(g1, ..., gn) = f1(g1, ..., gn) + f2(g1, ..., gn) ∈ A.

We can relate these groups to each other by specific homomorphism which
depends on n degree argument, such that

dn : Cn−1(G,A) −→ Cn(G,A),

Definition 1.2 Let C be a sequence of abelian group homomorphisms:

0 −→ C0(G,A)
d1−→ C1(G,A)

d2−→ ...Cn−1(G,A)
dn−→ Cn(G,A) −→ ...

i. The sequence C is called a cochain complex if the composition of any two
successive maps is zero: dn+1 ◦ dn = 0 for all n.

ii. If C is a cochain complex, its nth cohomology group is the quotient group
kerdn+1/imagedn and is denoted by Hn(C)

Bounded cohomology of groups was first defined by Johnson (1972) in the context
of Banach algebras. As an independent and very active research field, however,
bounded cohomology started to develop in 1982, by Gromov (1982), where the
definition of bounded cohomology was extended to deal also with topological
spaces. There are many different equivalent definitions of group cohomology.
The question that has been pondered is, what is the right generalization of group
cohomology to a cohomology theory for bornological groups Hbd(G,M)?

Certainly, we would want a cohomology theory for bornological groups to
satisfy cohomology groups properties, but one can hope for more, since there is
bornological data on G and M.

1.2 Literature Review

Historically, the idea of a bounded subset of a topological vector space was
introduced by von Neumann (1935), it played an important role in functional
analysis that motivated the concept of more general and abstract classes of
bounded sets, the so called bornology, see (Mackey, 1943). That means, it is
applied to solve the questions of boundedness for any space or set X in general
way not just by usual definition of bounded set, but we take a collection β of
subset of X such that satisfy three conditions, β covers X, and β stable under
hereditary also finite union. Basically, a bornological space is a type of space

2
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which possesses the minimum amount of structure needed to address questions
of boundedness of sets and functions. In addition, since bornology have shown
to be a very useful tool in various aspects of functional analysis, they have been
considered by several researchers in different contexts see (Akkar (1970),
Hogbe-Nlend (1977), Waelbroeck (2006)). Specifically, while Lechicki et al.
(2004) examined bornology in relation to topology and Bernardes Jr (1994)
examined bornology in relation to topological algebra and Voigt (2008) in cyclic
homology.

There has been a good deal of researches done on this subject in recent years as
a glance at the bibliography will show (see, Beer and Levi (2009), Meyer (1999),
Mathai and Stevenson (2007), Lechicki et al. (2004), Vroegrijk (2009), Rump
(2011), Meyer (2004), Valdivia (1971), Waelbroeck (1986)).

Interestingly, researchers have begun determining and solving the quotient of
boundedness for group of objectives rather than sets of elements and introduce
the concept of bornological groups. Accordingly, the crux of this study is the
observation that most of the known bornological structures were considered to
satisfy the common property of being compatible with abelian group structure.
The theory of bornological groups has been studied from different perspectives
by (Garrett (1997), Bambozzi (2015), Abramenko and Brown (2008), Funakosi
(1976), Van Daele and Wang (2010)).

Pombo Jr (2012) study fundamental construction of bornological groups.
Bambozzi (2014) discussed that bornological abelian groups form a
quasi-abelian category which it is additive categories with kernels and
cokernels. In Pombo Jr (2014) certain abelian bornological groups of continuous
mappings from topological spaces into abelian topological groups are shown to
be isomorphic to bornological projective limits of abelian bornological groups of
continuous mappings.

Up to now, we have to keep in mind that in the setting of modules over a
commutative ring a rich line of investigation was introduced by Pombo, in the
last two decades. He extensively considered the notion of a linear bornology on
module and its relation to the notion of a linear topology on a module, see
(Pombo Jr, 1993a), (Pombo Jr, 1996b). After that, he consider the notion of a
module bornology (a bornology on a module compatible with its module
structure), see (Pombo Jr, 1996a), bornological modules over bornological rings
in (Pombo Jr, 1998) and topologies and bornologies on module in (Pombo Jr,
1993b), such that compatible topologies and bornologies in the context of
modules.

However, Barros and Bernardes (2014) completed the works by presenting a study
of tenser products of bornological modules by means of an elementary approach,
over bornological commutative rings such that this work in the setting of modules
over a commutative ring.

3
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If we compare the literature on bornological groups with the literature on
topological groups, we find that there are still much work to be done on
bornological groups. Therefore, we study some further properties of
bornological group in Chapter 3.

In the present study, we determine the boundedness for algebraic structures
(groups, semigroups, rings, semi rings). Consequently, we develop the
cohomology theory for bornological groups, the case when a bornological group
acts on abelian bornological group. Accordingly, in order to achieve this goal,
we will use the efficient language of bornological group. Moreover, there is no
strong literature on bornological groups on which the results of the present
study is based, we need to start from search with theory of bornological groups
and we develop it as far we need for our scope. Consequently, the bornological
group actions will be explored and eventually tilted to suit the context of the
present study. In this way we can construct cohomology theory for bornological
group. Hence, a theory of cohomology bornological group is thus used to study
the complex of homogeneous cochains. When, we define the complex of
homogeneous cochains by setting Cnhbd(G,M) to be the set of G-equivariant
maps.

1.3 Problem Statement

This study addresses the following problems regarding bornological structure,
which are summarized as follows:

on Bornological groups: The idea of a bornological group is to determine the
boundedness for groups which is a set with two structure group and bornology
such that the product and inverse maps are bounded. Thus, the main problem
is to bornologize groups. Thus, it is natural to ask these questions.

1. What are the ways to bornologize the group?

Of course, this informal question can be given different formal
interpretations; for example, we could look for bornologies which would
make G into a bornological group. To exclude this trivial solution, we
should look for non discrete bornologizations of G. Since not every group
is bornological group. Therefore, the following question can be asked.

2. What conditions should added on bornology to bornologize every group?

An effective way to deal with this problem is to study further properties of
bornological group with the following questions in focus.

4
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3. Is it every left (right) translation in bornological groups are bornological
isomorphism?

4. Is it possible to determine the boundedness for anther algebraic structure,
for example (semigroups)?

5. How can introduce the fundamental construction of bornological
semigroups. In particular, projective limits and inductive limits?

Since bornological abelian groups form a quasi-abelian category which it
is additive categories with kernels and cokernels were totally discussed by
Bambozzi (2014). For bornological semigroup we have the following
question

6. What are the similar and different between the category of bornological
group and the category of bornological semigroups?

As we mention earlier the case of bornological groups is that the product
and inverse maps are bounded. So, the following question is raised.

7. How can we restrict the condition of boundedness for bornological groups?

Our main goal is to require less restrictive condition on the group operations
neither of the operation is required to be bounded.

on Bornological group actions:

It is known that every left (right) translation is an example of group action
and in the present study, it is proven that every left (right) translation
is bounded in bornological groups. So, there are group actions which are
bounded. Hence, the following questions are proposed

8. Is it possible to construct bornological actions and prove some basic facts
which hold true only for actions of bornological groups on bornological set?

9. Can we construct the category of G-bornological set?

10. Is it possible to develop the cohomology of bornological group.

11. Is it possible to define a homogenous cochain in such away to be isomorphic

5
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for bounded cochain? Accordingly, the study is employed in this work for
constructing: the bornological semi ring structure.
On bornological rings: The notion of bornological ring is a set R with
two structure ring and bornology.

12. Is it possible to study new structure bornological semi ring and construct
the category for this new structure?

13. Is the product of two bornological semi rings again bornological semi ring?

1.4 Objectives

The objectives of this research are to solve the problem of boundedness for
algebraic structure (group, semigroup, ring, semi ring) by introducing new
structures bornological semigroups, bornological semi rings and investigate
further properties of bornological group. Moreover, define and study new
classes of bornological groups in order to restrict the condition of bornological
group and find solutions to the problems in Section 1− 3. More specifically,

1. To determine the boundednees for another algebraic structures
(semigroups, semi rings), by study the concepts of a bornological
semigroups and a bornological semi rings.

2. To furnishes sufficient conditions for a bornology to determine the
boundedness for every group by investigating further properties of
bornological groups.

3. To construct bornological group actions and the category of G-bornological
sets.

4. To introduce cohomology theory for bornological group and prove the
isomorphic between homogenous cochains and bounded cochains

5. To restrict the condition of bornological group and study new classes of
bornological groups.

1.5 Outlines of Study

In Chapter 2, we provide a brief review on bornological structures, which are
used for our work. We recall the notion of bornology on a set: a bornology on
a set X is a collection of subsets β ⊂ P(X) which is an ideal of the boolean
algebra P(X). We study algebraic bornological structures: bornological groups,

6
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bornological rings which we define as algebraic structures over bornological sets.

In Chapter 3, we solve the question of boundedness for algebraic structure group
when we investigate further properties of bornological groups. As well as, we
construct the category of bornological semigroups and discuss the concept of the
product, coproduct and fiber product. More specifically, we study fundamental
construction of bornological semi groups.

In Chapter 4, we define and study bornological group actions (BGA). We extend
all terminology concerning on G-sets to G-bornological sets. Then, we prove
some basic facts which hold true for bornological group actions. In particular,
we show that a bornological group action can be deduced from its boundedness
at the identity. The orbital bornological set is also investigated and the quotient
X/G succeed to the quotient bornology, which is called the quotient bornological
set of the action. Furthermore, we introduce morphisms between G-bornological
sets to be bounded maps compatible with action of G. This motivated us to
construct the category of G-bornological sets.

In Chapter 5, we construct cohomology theory for bornological groups based
on bounded cochain and study some of its basic properties. We show that for
bornological groups and abelian bornological group the cohomology groups of
bounded group cochains and of group cochain that are equivariant are isomorphic.

In Chapter 6, we study the possibility to introduce semi-bounded set with
respect to bornological sets and we call the new bounded maps such as
s-bounded map, s∗-bounded and s∗∗-bounded map. We prove that every
bounded map is s-bounded map, s∗-bounded and s∗∗-bounded map, but the
converse is not true, we provide the counterexamples for every case.
Additionally, we introduce semi-bounded set with respect to a bornological
ideals. Finally, new classes of bornological groups are discussed to restrict the
condition of bornological groups with respect to these new bounded maps.

In Chapter 7, we generalize the theory of algebraic semi rings from the algebraic
setting to the framework of bornological sets. More specifically, the concept of a
new structure bornological semi ring (BSR) is introduced and some constructions
in the class of bornological semi rings are discussed. In particular, the existence
of arbitrary projective limits and arbitrary inductive limits of bornological semi
rings is ensured. Additionally, the description of the category of bornological
semi rings is presented. We also discuss the concept of product, coproduct and
fibre product in the category of bornological semi rings. In the context under
consideration, general results concerning projective limits and inductive limits as
well as an isomorphism theorem are established.

7
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