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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Doctor of Philosophy

FUZZY CLUSTERING METHOD AND EVALUATION BASED ON 
MULTI CRITERIA DECISION MAKING TECHNIQUE 

By

FADHAA OTHMAN SAMEER

January 2018

Chairman : Associate Professor Mohd. Rizam Abu Bakar, PhD
Faculty : Science

In the financial sector, credit scoring is one of the most successful operational research
techniques. Credit scoring is an evaluation of the risk connected with lending to
clients (consumers) or an organization. In actual credit scoring-related problems,
generally inaccurate parameters or input data are used due to incomplete or inaccessible
information being provided. Thus, designing a successful credit scoring model is then
becoming more complex. Furthermore, the fuzzy approach is more efficient than the
others to handle imprecisions and uncertainties. Hence, fuzzy clustering analysis such
as the Gustafson-Kessel (GK) algorithm is seen to be a very important tool in the field
of credit scoring. In a credit scoring problem with cluster analysis, finding a subset of
features from large data sets is a very important issue. In addition, two other important
problems are the requiring predefined number of clusters and selecting initial centres
of clusters. Thus in this study we intend to overcome these problems by determining
a feature subset and the number of the cluster problems after developing an algorithm
which simultaneously solved these issues. This proposed algorithm is developed based
on heuristic method named modified binary particle swarm optimization (MBPSO)
with kernel fuzzy clustering method as a fitness function. The proposed algorithm is
used as a pre-processing method for data followed by Gustafson-Kessel (GK) algorithm
to classify credit scoring data. For the third problem a modified of Kohonen Network
(MKN) algorithm was proposed to select the initial centres of clusters. A similar
degree between points was utilized to get similarity density, and then by means of
maximum density points selecting them as weights of the Kohonen algorithm. After
the optimization of the weights by modified version of the Kohonen Network method
these weights will be set as the initial centres of the Gustafson-Kessel (GK) algorithm.
Hence, we proposed a complete method by combining MBPSO, MKN and GK
(MBPSO+MKN+GK). The new proposed method (MBPSO+MKN+GK) Gustafson-
Kessel algorithm (GK)integrated with modified of Kohonen Network algorithm (MKN)
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and modified binary particle swarm optimization (MBPSO) was used to classify the
credit scoring data. Multi-criteria decision making was used for measuring the overall
preference values of these methods and considered all the criteria at the same time.
The technique for order preference by similarity to ideal solution (TOPSIS) was used
for ranking the fuzzy clustering processes having multiple criteria. Furthermore, the
weights of the criteria were determined by using the modified fuzzy analytic hierarchy
process (MFAHP) with ranking function. Simulation experiments were carried out to
investigate the performance of methods with different number of samples and different
number of features. Also these methods were applied on two credit scoring datasets
of German and Australian. For a real problem application, we consider the data
from Gulf Commercial Bank in Iraq. This study revealed that the GK along with
the MBPSO algorithm showed a better performance as compared to the GK algorithm
alone. Also, the GK and MKN algorithms together were better than GK alone. But the
best performance of all will be the MBPSO+MKN+GK.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH PENGELOMPOKAN KABUR DAN PENILAIAN BERASASKAN 
TEKNIK MEMBUAT-KEPUTUSAN PELBAGAI-KRITERIA 

Oleh

FADHAA OTHMAN SAMEER

Januari 2018

Pengerusi : Associate Professor Mohd. Rizam Abu Bakar, PhD
Fakulti : Science

Dalam sektor kewangan, pemarkahan kredit adalah salah satu daripada teknik-teknik
penyelidikan operasi yang paling berjaya. Pemarkahan kredit ialah penilaian risiko
berhubung pemberian pinjaman kepada klien (pengguna) atau suatu organisasi. Dalam
permasalahan sebenar berkaitan pemarkahan kredit, secara umumnya parameter atau
data input yang tidak tepat digunakan oleh kerana maklumat tidak lengkap atau
tidak tercapai yang diberikan. Maka mereka bentuk model pemarkahan kredit yang
berjaya menjadi bertambah kompleks. Tambahan pula, pendekatan kabur lebih cekap
daripada yang lain dalam menangani ketidaktepatan dan ketakpastian. Oleh itu
analisis berkelompok kabur seperti algoritma Gustafson-Kessel (GK) dilihat sebagai
satu kaedah yang penting dalam bidang pemarkahan kredit. Dalam permasalahan
pemarkahan kredit dengan analisis berkelompok, mencari subset ciri daripada set
data yang besar adalah isu sangat penting. Tambahan, dua permasalahan penting
yang lain adalah keperluan pratertakrif bilangan kelompok dan mencari pusat
kelompok permulaan. Maka dalam kajian ini kami mencadangkan satu kaedah
untuk mengatasi masalah ini dengan penentuan subset ciri dan masalah bilangan
kelompok selepas membangunkan satu algoritma yang mampu menyelesaikan masalah
ini secara serentak. Algoritma yang dicadang ini dibangun berdasarkan kepada
kaedah heuristik yang dipanggil pengoptimuman kerumunan zarah biner terubahsuai
(MBPSO) dengan kaedah pengelompokan intipati kabur sebagai fungsi kebugaran.
Algoritma yang dicadang digunakan dalam kaedah praprosesan untuk data dan
diikuti dengan algoritma Gustafson-Kessel (GK) untuk mengelaskan data pemarkahan
kredit. Untuk masalah ketiga algoritma rangkaian Kohonen (MKN) dicadang
untuk memilih pusat permulaan kelompok. Darjah setara antara titik digunakan
untuk mendapatkan kepadatan keserupaan dan seterusnya menggunakan min
kepadatan titik pemilihan maksimum sebagai pemberat algoritma Kohonen. Selepas
pengoptimuman pemberat menggunakan kaedah rangkaian Kohonen terubahsuai,
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pemberat ini jadikan sebagai pusat algoritma Gustafson-Kessel (GK). Seterusnya
kami mencadangkan kaedah lengkap dengan mengabungkan MBPSO, MKN dan
GK (MBPSO+MKN+GK). Pembuatan keputusan multi-kriteria digunakan untuk
mengukur keutamaan menyeluruh kaedah ini dan mengambil kira kesemua kriteria
secara serentak. Kaedah keutamaan susunan melalui kesamaan dengan penyelesaian
ideal (TOPSIS) digunakan dalam proses pemeringkatan pengklasteran kabur untuk
kriteria berbilang. Tambahan lagi, pemberat kriteria ditentukan menggunakan proses
hierarki analisis kabur terubahsuai (MFAHP) bersama fungsi keutamaan. Kajian
simulasi dilakukan untuk menilai prestasi setiap kaedah menggunakan saiz sampel
berlainan dan bilangan ciri berlainan. Juga, kaedah-kaedah ini digunakan ke atas dua
set data pemarkahan Jerman dan Australia. Untuk aplikasi permasalahan sebenar,
kami menggunakan data Gulf Commercial Bank di Iraq. Kajian ini menunjukkan
algoritma GK dan MBPSO menunjukkan prestasi yang lebih baik berbanding jika
algoritma GK bersendiri. Juga algoritma GK dan MKN bersama lebih baik dari
algoritma GK bersendiri. Tetapi prestasi terbaik dikalangan kesemua kaedah adalah
MBPSO+MKN+GK.
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CHAPTER 1

INTRODUCTION

1.1 Scope of analysis

In recent years, finance officers and bankers, all over the world, have faced many
challenges. These challenges primarily relate to the complexity of financial markets, as
a result of growing demand for financing. This complication in financial environments
forces the financiers to find appropriate tools for measuring losses which may arise in
the banking sector (Choudhary et al., 2009). This can be done through measuring
the major risks named market risk, operational risk and credit risk. As the major
operation of banks and financial institutions include lending activities, credit risk is
therefore a major risk observed in the banking and financial system. To safeguard
against losses which may arise when faced with non-performing loans, measuring the
risk and making adequate provisions, based on those calculations, is a must for every
financial institution. In this regard, during the recent decades, risk management and
especially credit risk management has attracted many academics as well as researchers
from the financial sector (Shojai et al., 2010).

1.2 General Review

The credit risk can be described as the risk of the principal loss or the loss if the
financial returns which occur due to the borrower’s failure to either fulfil the agreed
upon obligations or repay the loan. Credit risk arises and can be expected when a
borrower does not meet their obligation in relation to future cash flows. Therefore,
there is uncertainty over the borrower’s financial performance in the future. As a result,
in recent years, financiers have sought tools and means to enable them to calculate the
borrower’s credit worthiness. Credit scoring is a type of risk evaluation process which
is seen to be a very important decision made by the financial institutions for preventing
any wrong decisions which could potentially lead to huge losses. The various
classification models belong to the data mining approach used by the decision makers
to decrease the credit risk of the customers. As accuracy is an essential criterion for
selecting the appropriate credit scoring model, many studies have been carried out for
improving the efficiency of the credit scoring models (Khashei et al., 2013). A majority
of the studies have used data mining techniques for investigating problems related to
credit scoring. Many data mining models were proposed and applied. Also, in the
early 1930-40s, the mail-order companies used the numerical scorecards for credit
scoring (Thomas et al., 2005). It is an established fact that the data mining techniques
could prove to be helpful to the decision makers and the financial managers to find out
the hidden knowledge from the input data regarding their clients and their different
requests. Also, this knowledge helps the financial institutions decrease the risk of
clients (Khashei et al., 2013). Since the beginning, credit is always has always been
for enhancing consumption. Many forms of credit like borrowing, lending, instalments
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and payments before or after the delivery of service or goods, consumption credit
etc. already exist and help in enabling smoother transactions and increase economic
growth. Even today, these consumer credit alternatives facilitate consumption and
improve the economy. Many recent credit scoring models have been proposed
based on the operational research, statistical techniques, and artificial intelligence
(AI) (Thomas et al., 2005). However,the statistical techniques can be applied when
determining a linear relationship between the dependent and the independent variables.
Also artificial intelligence techniques have a major limitation which lies in their poor
understandability because of the black box nature. It is very complicated for artificial
intelligence techniques to make knowledge representation and these techniques require
a vast number of training samples and long learning time (Thomas et al., 2005).

Moreover; the drawbacks of the application of mathematical programming techniques
for risk assessment of the credit are mathematical programming techniques need a
computation of effort that is rarely known by the business and financial analysts
(Marques et al., 2013). Though intelligent and statistical techniques are classification
modelsthey are crispy models that use the classic logic in their procedures of
modelling. However; these two techniques can not be able to get effective models
for the uncertainties that exist in the relationships and data (Khashei et al., 2009).
Therefore; to overcome these drawbacks, a soft models or fuzzy models have been
proposed to the financial sector which is a second category of credit scoring models.
The probable future performance of the customers is changing over time which is
humanity behaviour. In the case of credit applications it is difficult to gather relevant
information about individuals for determining their credit worthiness score. Also the
final decision of the experts based on the applicant characteristics like credit history,
age, income, loan required etc. However, in actual credit scoring problems, the input
parameters and data are often incorrect as the information could be unattainable or
incomplete (Lin, 2010). Therefore, there are many complex difficulties which appear
while tackling the uncertainties during the designing of an appropriate credit scoring
model. Furthermore, the fuzzy approach is more efficient than the others to handle
imprecisions and uncertainties (Safaei et al., 2008).

The data collected provides a further basis for analysing, reasoning, making decisions
and finally, for understanding different phenomena and objects. One important data
analysis activity involves classifying or grouping the data into sets of clusters or
categories. Objects placed in one group showed similar properties depending on a
particular criterion (Zakrzewska, 2007). Cluster analysis or clustering is defined as the
identification of the subsets of similar objects. This subset generally and intuitively is
seen to correspond to points which are similar to one another as compared to points
from other clusters. These points in the same cluster display a similar label. Clustering
can be conducted in an unsupervised manner by determining the similar subset of
points, without using a predefined idea of a cluster (Lim and Sohn, 2007).
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Thus, the determination of the clusters having labels is based on data instead of using
a specific model or a perspective of this data. There is a huge need for developing
reliable models which can help in predicting the defaults (Bezdek et al., 1984).

One of the statistical method that be non-parametric which can be used for credit
scoring is clustering analysis. The essential advantages of this type of analysis is that
a specification of distribution does not assume for data, so it is a suitable method
where sufficient priorly hypotheses does not exist. It is therefore exploratory and
identifies the most likely solution which makes it suitable for use in credit risk analysis
(Huang and Dun, 2008). The clustering is seen to be a substantial unsupervised
learning problem; and like other similar problems, it also deals with classifying and
categorising the collection of the unlabelled data (Kaufman and Rousseeuw, 2009).
Furthermore, a fuzzy clustering is more flexibly than hard clustering where each object
has memberships in all clusters instead of in a single cluster. The membership matrix
provides more information to help the users to decide the core and boundary objects of
clusters (Bai et al., 2013).

Many of the recently published studies have stated that combining many classifiers
(or classifier ensembles) is better than using a single classifier (Tsai and Wu, 2008).
Hence, hybrid models which have combined the advantages of many models are a very
hot topic of research. The simple hybrid model consists of a process of developing
a credit evolution model which is further classified into three steps: feature subset
selection (FSS), determining the parameters of model and classification. This approach
helps in selecting different methods for the above-mentioned three steps. The feature
selection step is very important as it restricted the input feature number to improve the
prediction accuracy and further decrease the computational complexity.

Furthermore, credit scoring databases in particular are often large and contain a lot of
redundant and irrelevant features, so it is more demanding in terms of computation cost
to classify such data. However, this difficulty can be overcome by using a feature
selection method. Thus the selection of features is one of the important and most
challenging issues in credit scoring.

1.3 Statement of the problem

Loan credit approval or evaluation is defined as the process which is carried out for
any individual or business application for credit, which determines the eligibility of
the customer for the loan (Louzada et al., 2012). The evaluation systems of credit
risk is an important role in the financial decision-making. These systems diminish
possible risks to enable faster decisions of credit and to reduce the cost of credit
analysis. The need to control and effectively to manage credit risk has led financial
institutions to strive to improve the designed techniques for credit. As a result the
development of various quantitative models was promulgated by financial institutions
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and consulting companies. Thus, the numbers of academic studies about credit scoring
were developed to show a diversity of classification methods applied to distinguish
good and bad customers (Louzada et al., 2016). A majority of the studies which
developed computation-based credit scoring models had the objective of obtaining
better classification accuracy than other models. One of the statistical methods that
is non-parametric which can be used for credit scoring is clustering analysis. The
essential advantages of this type of analysis is that a specification of distribution is not
assumed for data, so it is a suitable method where sufficient prior hypotheses does not
exist (Lim and Sohn, 2007).

The researchers seek to solve the uncertainty and imprecisions in data and the future
performance of the customers based on fuzzy clustering methods. Credit scoring
databases in particular are often large and contain a lot of redundant and irrelevant
features, so it is more demanding in terms of computation cost to classify such data.
However, this difficulty can be overcome by using a feature selection method. Thus
the selection of features is one of the important issue and most challenging in credit
scoring. The models of the following researchers (Hoffmann et al. (2007), Lahsasna
et al. (2010), Zhou (2012) and Gholamian et al. (2013)) adopted fuzzy clustering
methods for handling uncertainty to evaluate credit risk problem without using feature
subset selection techniques.

As result, many researchers have used fuzzy clustering with features subset selection in
the credit scoring problem (Mehdizadeh (2009), Sadatrasoul et al. (2015) and Zhou
and Li (2016)). In addition, there are two main problems in clustering analysis
which include the number of clusters and the initial centres of clusters. In clustering
analysis, one of the most challenging hard problems to solve is the number of
clusters. Usually this number is fixed before clustering data by researchers. However,
having a predetermined number of clusters is not realistic for a lot of data analysis
in the real world. Also, the above researches used only features selection without
integrating the two problems of feature selection and the number of clusters as pre-
processing before clustering the data. After having gained the most relevant features
and the optimal number of clusters, the initial centres of clusters were selected by the
optimization method. Therefore, this study proposes a general and comprehensive
algorithm to classify the credit scoring problem based on clustering analysis given
fuzzy environment features selection and the two problems of clustering algorithms.

1.4 Motivation

The systems of credit risk evaluation have a main role in decision-making of the
financial sector. These systems diminish possible risks to enable faster decisions of
credit and to reduce the cost of credit analysis. The need to control and effectively
to manage credit risk has led financial institutions to strive to improve the designed
techniques for credit (Louzada et al., 2016). The discovery or extracting knowledge
from datasets is one among the most desirable tasks in credit scoring. The data
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mining can deal with this problem in the form of data clustering which is one of
the most common data mining tasks which can be used for credit scoring (Lim and
Sohn, 2007). The difficulties of handling uncertainties while designing a successful
credit scoring model is becoming more complex. Furthermore, the fuzzy approach is
more efficient than the others to handle imprecisions and uncertainties (Safaei et al.,
2008). The credit scoring databases in particular are often large and contain a lot of
redundant and irrelevant features so it is more demanding in terms of computation cost
to classify such data. However, this difficulty can be overcome by using a features
selection method. Moreover, the particle swarm optimization algorithm (PSO) is a
type of global optimisation algorithm that is used for solving the problems wherein the
optimal solution lies as a point in the parameters of multi-dimensional space. The PSO
shows a better-structured neighbourhood which helps it display a better recombination
method as compared to the GA. Also, it contains a velocity term which helps it attain
a faster convergence to a good solution. The binary and the continuous PSOs are
used for the filter and the wrapper methods and for the single and multiple objective
feature selection (Poli et al., 2007). One main problem in traditional BPSO is that the
new position of a particle is solely decided by its velocity while the particles current
position hardly has any in influence in updating its next position (Zhang and Liu,
2008). So a modification of the updating function of the (BPSO) is needed by using
velocity and position to update the next position for every particle in the swarm in
contrast to the original binary particle swarm optimization which used only velocity. In
addition, there are two main problems in clustering analysis which include the number
of clusters and the initial centres of clusters. This thesis intends to develop a new
BPSO to solve the feature subset selection and the number of clusters simultaneously.

Also the currently used techniques for initialising the cluster centres are classified into
random sampling techniques density estimation techniques and distance optimisation
processes. Out of these, the random sampling is very popular owing to its simplicity.
The artificial neural network (ANN) has been widely utilized for as long as three
decades for clustering and data classification. Also, the competitive or the winner
takes all types of artificial neural network (ANN) are used for clustering the input data.
In the competitive learning, the similar data patterns are often grouped by a network
and can be represented by one unit neuron. In the comparative information designs
are frequently gathered by a system and can be spoken to by one unit neuron. This
type of collection is carried out consequently utilizing information relationship. Some
well known illustrations where the (ANN) technique was used for clustering is the
Kohonen algorithm self organising maps (SOM) (Khan et al., 2001). Since the Kohonen
algorithm (KA) used random selecting technique to gain initial weights we seek to
modify this method by using density selecting technique. After this the optimisation
weights were selected as initial centres of the clustering model to overcome the
drawbacks of the existing method. This new method has higher performance than
the existing method in accuracy of classification of the credit scoring problem. The
multi-criteria decision-making (MCDM) models were utilized to assess a finite set of
alternatives (fuzzy clustering methods) with respect to multiple criteria (external and
internal) at the same time.
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1.5 Preliminaries

Many fuzzy methods, like the Fuzzy Clustering methods, were developed to help in
making decisions, based on the fuzzy set theory (Zadeh, 1965). Clustering plays an
important role in decision making and also helps in data mining, pattern recognition,
and data modelling. The clustering technique classifies the data set based on the
measure of similarity of the objects present in the data. The clustering of the data
into many partitions helps in exploring the characteristic relationships between the
objects in the data which already contains many samples of any decision procedure.
The principle objective of the clustering process is classifying the data into more
similarity-based symmetric clusters.

Unsupervised learning refers to extracting knowledge from any data set using the
clustering technique if this technique used the similarity measure instead of the
corrective acts that are supervised by known relations. The similarity between the
objects in the data set is vital for clustering. One type of similarity measure involved
in fuzzy clustering includes the distance measurement and many types of distance
measures are used in the existing fuzzy clustering algorithms. The clustering algorithms
classify the data objects (including entities, patterns, observances, instances, units)
into a particular cluster (categories, groups or subsets). The cluster is defined as an
aggregate of many points within a test space and the distance between any two points
within the cluster is seen to be lesser than the distance present between a point inside
and that present outside the cluster (Kaufman and Rousseeuw, 2009). Also a cluster is
defined as a continuous region of space (D-dimensional feature space) which contains a
higher density of points. Two such high-density regions are separated from each other
by a space which contains lower density points. In the above definitions, the cluster
has been defined based on the internal homogeneity and an external separation i.e., the
objects within one cluster are similar to one another, while the objects in the different
clusters are dissimilar from each other.

1.6 The objectives of research

This research aims to propose a model under the fuzzy clustering method for credit
scoring with the following objectives:

(1) To modify the binary particle swarm optimization algorithm to identify the
number of clusters and to choose the most relevant features subset.

(2) To modify the Kohonen algorithm to select the initial centres of clusters for the
Gustafson-Kessel algorithm.

(3) To develop a mathematical model based on fuzzy clustering analysis (Gustafson-
Kessel method) for credit risk assessment.

(4) To develop the fuzzy analytic hierarchy process (MFAHP) with ranking function
to compute the weights for criteria (external and internal).
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(5) To extend the multi criteria decision-making (MCDM) model (TOPSIS method)
by hybridizing with the modified fuzzy analytic hierarchy process (MFAHP) to
evaluate a finite set of fuzzy clustering methods.

(6) To validate and verify the improvement of Gustafson -Kessel method on
simulation data, standard real data and data from Gulf Commercial Bank in Iraq.

1.7 Scope of the present work

The scope of this study involves a proposed modified binary particle swarm
optimization (MBPSO) which is a hybrid model between the fuzzy clustering method
(kernel fuzzy c-means method) and the binary particle swarm optimization method to
predefine the number of clusters and to choose the most relevant features subset. Also
proposed a modified Kohonen network algorithm (MK)for the selection of the initial
centres for the Gustafson-Kessel algorithm (GK). After that the two modification
methods (MBPSO) and (MK) with (GK) used as a new classification method. Multi-
criteria decision making (MCDM) models were used to evaluate a finite set of
alternatives (fuzzy clustering methods) with respect to multiple criteria (external and
internal). Simulation study was conducted in this study. In addition, the credit scoring
problem was studied. Here two datasets Australian and German were investigated to
test the methods comprehensively. A set of real data from Gulf Commercial Bank in
Iraq was also used for analysis purposes.

In this thesis, we are mainly concerned with determining a numerical solution for
classifying the credit score data with the help of fuzzy clustering analysis. This thesis
has been organised as per the general structure of the dissertations and thesis submitted
to the Universiti Putra, Malaysia. This thesis consists of 5 chapters.

Chapter 1: provides a general introduction about credit scoring, problem statement,
objectives and contributions of this thesis.

Chapter 2: provides a literature review and it investigates the studies that are related
to the research topic. These studies include some which have been
published earlier and some which are still in progress with regards to
the credit scoring processes including the various clustering methods.

Chapter 3: this chapter contains the proposed methods, including the modified
binary particle swarm optimisation for predefining the cluster number
and selecting the most relevant feature subset simultaneously. And
the modified Kohonen network algorithm which helps in selecting the
initial centres of the Gustafson-Kessel algorithm. Also, the modified
form of TOPSIS method was proposed for ranking the fuzzy clustering
techniques using multiple criteria.

Chapter 4: describes the results and the discussion when the real and the predicted
data was studied using various inference methods. All the results
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obtained were evaluated, tabulated and discussed in further detail. In
this chapter, the major findings have been highlighted and these findings
were then compared to the objectives performance metrics that were
used in this study for method evaluation.

Chapter 5: presents the conclusions of this study. Also future work and
recommendations for some further research have been described in
the chapter. This chapter also includes some remarks regarding the
fulfilment of the objectives of this study. Also some suggestions are
given for improving this work in future.
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