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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

STATISTICAL DATA PREPROCESSING METHODS IN DISTANCE
FUNCTIONS TO ENHANCE K-MEANS CLUSTERING ALGORITHM

By

PAUL INUWA DALATU

January 2018

Chairman : Professor Habshah Midi, PhD
Faculty : Science

Clustering is an unsupervised classification method with major aim of partitioning,
where objects in the same cluster are similar, and objects belong to different clusters
vary significantly, with respect to their attributes. The K-Means algorithm is the
commonest and fast technique in partitional cluster algorithms, although with unnor-
malized datasets it can achieve local optimal.

We introduced two new approaches to normalization techniques to enhance the
K-Means algorithms. This is to remedy the problem of using the existing Min-Max
(MM) and Decimal Scaling (DS) techniques, which have overflow weakness. The
suggested approaches are called new approach to min-max (NAMM) and decimal
scaling (NADS).

The Hybrid mean algorithms which are based on spherical clusters is also proposed to
remedy the most significant limitation of the K-Means and K-Midranges algorithms. It
is attained successfully by combining the mean in K-Means algorithm, minimum and
maximum in K-Midranges algorithm and compute their average as mean cluster of
Hybrid mean.

The problem of using range function in Heterogeneous Euclidean-Overlap Metric
(HEOM) is addressed by replacing the range with interquartile range function called
Interquartile Range-Heterogeneous Metric (IQR-HEOM). Dividing the HEOM with
range allows outliers to have big effect on the contribution of attributes. Hence,
We proposed interquartile range which is more resistance against outliers in data
pre-processing. It shows that the IQR-HEOM method is more efficient to rectify the
problem caused by using range in HEOM.
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The Standardized Euclidean distance which uses standard deviation to down weight
maximum points of the ith features on the distance clusters are being criticized in the
literature by many researchers that the method is prone to outliers and has 0% break-
down points. Therefore, to remedy the problem, we introduced two statistical estima-
tors called Qn and Sn estimator, both have 50% breakdown points, with their efficiency
as 58% and 82% for Sn and Qn, respectively. The empirical evidences show that the
two suggested methods are more efficient compared to the existing methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH DATA BERSTATISTIK PRAPEMPROSESAN DALAM FUNGSI
JARAK UNTUK MENINGKATKAN ALGORITMA K-MEANS KLUSTER

Oleh

PAUL INUWA DALATU

January 2018

Pengerusi : Professor Habshah Midi, PhD
Fakulti : Sains

Pengelompokan adalah kaedah pengelasan tanpa pengawasan dengan tujuan utama
pembahagian, dengan objek dalam kluster yang sama adalah serupa, dan objek kepun-
yaan kluster berbeza, perbezaannya adalah ketara, dengan sifat mereka masing-masing.
Algoritma K-Means adalah teknik yang paling biasa dan cepat dalam algoritma kluster
terpetak, walaupun dengan set data yang tidak dipiawaikan ia boleh mencapai optimum
setempat.

Kami memperkenalkan dua pendekatan baru untuk teknik normalisasi untuk
meningkatkan algoritma K-Means. Ini adalah untuk memperbaiki masalah penggu-
naan teknik sedia ada ia-itu Min-Max (MM) dan penskalaan perpuluhan (DS), yang
mempunyai banyak kelemahan. Pendekatan yang dicadangkan dipanggil pendekatan
baru untuk min-max (NAMM) dan pendekatan baru untuk penskalaan perpuluhan
(NADS).

Algoritma Hibrid min yang berdasarkan kluster sfera juga di cadangkan untuk
menyelesaikan batasan paling signifikan bagi algoritma K-Means dan K-Midranges. Ia
berjaya dicapai dengan menggabungkan min dalam algoritma K-Means, minimum dan
maksimum dalam algoritma K-Midranges dan mengira purata nya sebagai min kluster
purata hibrid.

Masalah menggunakan fungsi renj dalam Heterogen Euclidean-Overlap Metric
(HEOM) di tangani dengan menggantikan renj dengan fungsi renj interkuantil yang
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dinamakan Interquartile Range-Heterogen Metric (IQR-HEOM). Membahagikan
HEOM dengan renj membenarkan titik terpencil mempunyai kesan besar terhadap
sumbangan atribut. Oleh yang demikian kami mencadangkan renj interkuantil yang
lebih teguh terhadap titik terpencil bagi data prapemprosesan. Hasil kajian menun-
jukkan bahawa kaedah IQR-HEOM lebih efisien untuk memperbetulkan masalah yang
disebabkan oleh penggunaan renj dalam HEOM.

Jarak Euclidan Terpiawai yang menggunakan sisihan piawai untuk menurinkan pem-
berat titik maximum ciri-ciri i pada kluster jarak telah dikritik oleh banyak penyelidik
dalam literatur di mana kaedah ini terdedah kepada titik terpencil dan mempunyai 0%
titik musnah. Oleh itu, untuk menyelesaikan masalah ini, kami telah memperkenalkan
dua penganggar statistik yang dinamakan penganggar Qn dan Sn, kedua-duanya mem-
punyai 50% titik musnah, dengan kecekapan mereka sebanyak 58% dan 82$ masing-
masing bagi Sn dan Qn. Bukti empirik menunjukkan bahawa kaedah yang dicadangkan
adalah lebih efisien dibandingkan dengan kaedah yang sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Data clustering is a general method for statistical data analysis, which is most
commonly used in numerous areas such as image analysis, pattern recognition
and bioinformatics (Sundararajan and Karthikeyan, 2014). According to Sarma
et al. (2013), clustering can be considered as an essential instrument in numerous
applications like biology, marketing, information retrieval, remote sensing, pattern
recognition, image processing, and text mining. Clustering groups data instances into
subsets in such a way that similar instances are grouped together, while dissimilar
instances belong to different groups. The instances are ordered into an efficient
illustration that describes the population being sampled. Clustering of points or objects
started as early as the human requirement for labeling the significant features of men
and objects, classifying them with a type (Rokach and Maimon, 2014).

Unsupervised clustering processes are important tools in exploratory data analysis. As
clustering conditions are usually based on some distance measures between individual
data vectors, they are extremely sensitive to the scale, or dispersion of the variables
(Vesanto, 2001).

The aim of feature selection in clustering is to classify a subset of significant features
from the unique illustration space. The recognized important features are useful for
data clustering that targets to maximize the between-cluster scatter and minimize
within-cluster scatter (Chen, 2015). It is also important to note that the measurement
of distance is essential in the cluster analysis process as most clustering methods start
with the computation of a matrix of distances (Doherty et al., 2004).

Though clustering is a valuable and challenging problem with unlimited potential in
applications, its presentation must be carefully controlled. Else, the method can simply
be abused or misused. The number of clusters and distance measures are the two most
important rules of clustering analysis, which affect the general quality of the outcomes
(Mok et al., 2012). Therefore, pre-processing the datasets is crucial especially in terms
of normalization.

The most common clustering method is the K-Means algorithm (Reddy et al., 2012).
While it is very simple and strong in clustering large datasets, the technique suffers from
a few drawbacks. The user needs to ascertain the number of clusters which is difficult
to know in advance for many real world data sets. Nonetheless, the main problems it
suffers is that, it is very sensitive for the selection of initial cluster centers.
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Equally, it may result not always yielding global optimum outcomes.

Consequently, in order to overcome these aforementioned problems, many researchers
had proposed new algorithms and some new distance functions to overcome the
weakness in K-Means (Jain, 2010). The best appropriate measures to use in practice
stay unidentified. Certainly, there are many inspiring validation matters which have
not been completely addressed in the clustering works. For example, the position of
normalizing validation measures has not been entirely proven.

Similarly, the relationship between dissimilar validation measures is not clear (Wu
et al., 2009). Clustering validation, which calculates the goodness of clustering
outcomes, has long been known as one of the vital problems critical to the achievement
of clustering applications (Liu et al., 2010).

1.2 Significance of the Study

The major purpose of clustering approaches is to partition a set of objects into
dissimilar groups, called clusters. These groups may be consistent in terms of
similarity of its members. As the name implies, the representative-based clustering
approaches apply some procedures of representation for each cluster. Consequently,
each group has a member that signifies it. The word cluster analysis does not identify
a specific statistical method or model, as do discriminant analysis, factor analysis,
and regression. One does not have to make frequently any assumptions about the
fundamental distribution of the data. K-Means clustering is a kind of unsupervised
learning, which is used when one has unlabeled data.

The aim of this algorithm is to find groups in the data, with the number of groups
represented by variables k. The algorithm processes iteratively to allocate each data
points to one of k groups established on the features that are delivered. Data points
are clustered founded on feature similarity. Therefore, knowledge about the cluster
analysis that can occur in numerous data sets will assist researchers to choose on the
actual situations when considering such characteristics like no assumptions should be
made and the data sets are unlabeled. It will provide policy makers in different sectors
of life with a better comprehension of many approaches, while, giving more rooms to
researchers to decide about better data accuracy in meeting the present days challenges.

The K-Means clustering, to be specific while using heuristics such as Lloyd‘s algo-
rithm (1957 but only published in (Lloyd, 1982)), is reasonably easy to implement and
use even on large data sets. Clustering approaches have extensive use and are signif-
icance currently. This significance tends to increase as the volume of data grows and
the processing power of the computer increases. Clustering applications are used ex-

2



© C
OPYRIG

HT U
PM

tensively and successfully in several fields such as artificial intelligence, pattern recog-
nition, ecology, psychiatry and marketing.

1.3 The Problem Statement

The main aim of data preparation is to get total assurance that the quality of the
data before it is applied to any learning algorithms. The types of the data prepara-
tion according to Ogasawara et al. (2010), includes data cleaning, integration and
transformation, and reduction. Therefore, our study is limited on data transformation
methods, which are basically focused on min-max and decimal scaling respectively.
Normalization means scaling down the value of the magnitudes to some appreciable
low values, for instance, among the features, if there is frequently large difference
between the maximum and minimum values, for example 1000 and 1.

Consequently, the most popular normalization methods used in the literature for
data transformation are the min-max (where the data inputs are transformed into a
predefined range 0 or -1 to 1), the z-score (where the values of an attribute A are
normalized agreeing to its mean and standard deviation), and the decimal scaling
(where the decimal point of the data values of an attribute A are moved according to
its maximum absolute value). Furthermore, Liu et al. (2011) and Jain et al. (2005)
have identified one of the weaknesses of using both the min-max and decimal scaling
in data transformation. They stated that both of the techniques will have overflow
problem, this makes the two technique not robust. However, Jain et al. (2005) and
Zumel and Mount (2013) suggested that, in order to remedy this problem in decimal
scaling approach, we have to apply log10max(xi). While, in min-max approach
Milligan (1989) and Liu et al. (2011) suggested to down weighting the technique so
that irrelevant variables approach near zero. Therefore, we are motivated by lack of
robustness of the two methods to adopt the ideas suggested by (Zumel and Mount
(2013), Liu et al. (2011), Jain et al. (2005), and Milligan (1989)) to improve the
methods of min-max (Jayalakshmi and Santhakumaran, 2011), and decimal scaling
(Han et al., 2011). Therefore, our proposed methods are called new approach to
min-max (NAMM) and new approach to decimal scaling (NADS). Hence, to our best
knowledge, nothing have yet been done to improve the robustness and down weighting
of the normalization by min-max and decimal scaling.

However, for spherical clusters, the most common algorithm popularly known for is
K-Means, which minimizes the sum of squared Euclidean distances of the objects to
the mean of the cluster (MacQueen, 1967). Furthermore, de Amorim and Makarenkov
(2016) added that this problem of spherical shapes may lead to no assurance for
K-Means algorithms will reach global optimum. In Rousseeuw and Hubert (2011),
they also stated that , this particular method is not robust as it applies group means.
However, Shanmugavadivu and Rajeswari (2012) also stated that, the major important
limitation of K-Means clustering algorithms is its concept which is based on spherical
clusters that are distinguishable in a way that the mean value converges towards the
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cluster center. Brusco and Steinley (2014), suggested using closely related to the clas-
sic problem of minimum diameter partitioning (MDP), where the diameter of a cluster
is the largest distance between any pair of points within cluster. Therefore, we were
motivated by the ideas of Brusco and Steinley (2014) and the work of Shanmugavadivu
and Rajeswari (2012), where they combined the mean in K-Means and the maximum
in K-Midrange and divided it by two to form the modified mean to remedy the problem
of spherical shapes, whereby the approach depends on means as cluster centers. Hence,
on our part we combined the mean in K-Means with the minimum and maximum
in K-Midranges to form hybrid mean. This suggested algorithm will improve the
dependence on means from K-Means and added to the potential of K-Midrange in
cluster analysis. To our knowledge, nothing yet has been done to address the spherical
concept in K-Means algorithm by using hybrid mean as a center for each cluster centers.

However, it is important to mention that the Heterogeneous Euclidean-Overlap
Metric (HEOM) needs no normalization as it executes local normalization using
range function (ChitraDevi et al., 2012). However, according to Singh and Leav-
line (2016) the procedure applied in HEOM, by dividing it with range tolerates
outliers to have intense effect on the contribution of the attributes. Furthermore,
Rousseeuw and Hubert (2011) pointed out the breakdown points for range is 0%
(meaning that it can be contaminated by single point). Therefore, Singh and Leavline
(2016) recommended using interquartile range which is more robust to range against
outliers in data preprocessing. Hence, Rousseeuw and Croux (1993), pointed out
that the interquartile range has 25% breakdown point compared to range which
has 0%. This problem motivates us to propose IQR-HEOM, by replacing the
range function in the existing HEOM (ChitraDevi et al., 2012) with interquartile
range function. Therefore, to the best of our knowledge, no research has been done to
study the interquartile range as an alternative to range in HEOM for data preprocessing.

Furthermore, Xu and Tian (2015), used another Weighted Euclidean called Standard-
ized Euclidean (see Equation 6.1), they claimed that the larger si (denotes the standard
deviation of the dataset) the smaller is the effect of the ith feature on the distance.
Which they believed that the reason behind the method is the assumption that both
normal and anomalous may appear from different cluster in feature space. Hence, the
data may contain outliers which do not belong to a bigger cluster, yet the K-Means
clustering algorithm functions as long as the number of outliers is small. Recently,
Gerstenberger and Vogel (2015) criticized the method, that as far as using standard
deviation to down weight maximum points, its prone to outliers and lack robustness.

Therefore, this weakness motivated us to replace the standard deviation which has 0%
breakdown point (Rousseeuw and Hubert, 2011) and its lack of robustness. It is also
susceptible to outliers and its low efficiency at heavy-tailed distribution (Gerstenberger
and Vogel, 2015). We introduced two statistical estimators called Qn and Sn estimators,
both have 50% breakdown points and with their efficiency as; Sn is 58% and Qn is 82%
(Rousseeuw and Croux, 1993). The two proposed methods are called Qn-Weighted Eu-
clidean distance and Sn-Weighted Euclidean distance, which both will improve (Xu and
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Tian, 2015) of lack robustness, low breakdown points and also low efficiency. However,
to the best of our knowledge, we are the first researchers in distance-based clustering
analysis to apply some statistical estimators to improve the efficiency and accuracy of
K-Means clustering algorithm.

1.4 Research Objectives

The main goal of this study is to improve the performance of a K-Means clustering
algorithm via statistical approach. In order to achieve the goal, the following objectives
are required:

1. To propose new approaches to normalization techniques in cluster analysis.

2. To propose hybrid mean algorithms from K-Means and K-Midranges clustering
algorithms.

3. To introduce statistical interquartile range into heterogeneous distance function.

4. To introduce Qn estimator and Sn estimator into Standardized Euclidean distance
function.

1.5 Scope and Limitation of the Study

Cormack (1971) proposed that clusters should be internally cohesive and externally
isolated, entailing a certain degree of homogeneity within clusters and heterogeneity
between clusters. Generally, clustering does not provide any statistical assumptions
to data (Cao et al., 2009). In the past, many researchers tried to operationalize this
meaning by minimizing within-group variation (see (Cox, 1957), (Engelman and
Hartigan, 1969), (Fisher, 1958), and (Thorndike, 1953). Subsequently, these prompt
efforts at maximizing within-group homogeneity (Sebestyen, 1962). MacQueen
(1967) individually established the K-Means method as an approach that tries to find
optimal partitions. Therefore, this type of classification is known as unsupervised
learning (clustering), it is an exploratory or descriptive in nature, meaning that the
investigator does not have pre- specified models or hypotheses but wants to know
the general characteristic or arrangement of the high-dimensional data (Jain, 2010).
Clustering has been used in a widespread diversity of fields, such as; engineering
(machine learning, artificial intelligence, pattern recognition, mechanical engineering,
electrical engineering ), computer sciences (web mining, spatial database analysis,
textual document collection, image segmentation), life and medical sciences (genetics,
biology, microbiology, palcontology, psychiatry, clinic, pathology), earth sciences (ge-
ography, geology, remote sensing), social sciences (sociology, psychology, archeology,
education), and economics (marketing, business) (Xu and Wunsch, 2008).

The K-Means clustering algorithm is generally applied in data clustering. The most
essential unsupervised learning problem can be considered as data clustering. It deals
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with finding a structure or organization in a collection of unlabeled data (Su et al.,
2009).

In statistical clustering problems, there are different categories of measures for the
similarity or difference between objects. It is well-known that Euclidean distance
is the popular used as a measure of difference, and minimization within clusters
is equally to minimizing within group mean square error. Hence, the size of the
Euclidean distribution between two objects is dependent on the scales of measurement
of the characteristics of the objects. No definite or acceptable rule for weighting
characteristics has been suggested (Matthews, 1979), though some many statisticians
recommend normalizing each characteristics by some measure of its variability, to give
the characteristics equal weight. A potential benefit of a variable weighting algorithm
is the possibility that such a procedure would assign near zero weights to variables
which are irrelevant to the clustering that exists in the remaining data. A variable
weighting algorithm could reduce or eliminate this masking effect, which would be
a useful contribution to classification technology (Milligan, 1989). Therefore, the
measurement of similarity or distance is fundamental in the cluster analysis process
as most clustering techniques begin with the calculation of a matrix distances (or
dissimilarities) (Doherty et al., 2004).

In order to learn a new object or understand a new phenomenon, people always try to
seek the features that can describe it, and further compare it with other known objects
or phenomena, based on the similarity or dissimilarity, generalized as proximity,
according to some certain standards or rules (Xu and Wunsch, 2005). Normally, there
are three types of testing criteria: external indices, internal indices, and relative indices.
The three indices are defined on the three major categories of clustering organizations,
well-known as partitional clustering, hierarchical clustering , and individual clusters
(Cadez et al., 2000).

Therefore, our scope are limited to external and internal indices; although, the internal
indices had only one chapter in the current dispensations. However, external indices
are based on some pre specified arrangement, which is the likeness of prior information
on the data, and used as a rule to validate the clustering solutions. While, internal
indices are not dependent on external information (prior knowledge). Differently, they
test the clustering organization right from the original data.

However, Jain and Dubes (1988) referred to cluster validity as the formal processes
that evaluate the results of cluster analysis in quantitative and objective approach.
Although, Jain and Dubes (1988) stated that, clustering validation has long been
acknowledged as one of the vibrant problems important to the achievement of
clustering applications. However, Wu et al. (2009) pointed out that, in spite of the
enormous amount of professional struggle spent on this problem, there is no reliable
and definite solution to cluster validation. The best appropriate measures to apply in
practice remain unidentified. They added that, certainly , there are many challeng-
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ing validation problems which have not been fully addressed in the clustering literature.

For example, the significance of normalizing validation measures has not been fully
recognized. There is no universally defined rule for normalizing datasets and thus, the
choice of a particular normalization rule is largely left to the discretion of the user
(Singh et al., 2015). It is worthwhile to enhance clustering quality by normalizing the
dynamic range of input data objects into specific range (de Souto et al., 2008).
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1.6 Methodology

Figure 1.1: Flow Chart showing Flow of the Methodology

Note: Interquartile Range-Heterogeneous Euclidean-Overlap Metric (IQR-HEOM).
Figure 1.1, presents flow chart showing flow of the methodology. The methodology
comprises of four contributing chapters, starts from Chapter 3 which has two suggested
normalization techniques called New Approaches to Min-Max (NAMM)and Decimal
Scaling (NADS). Chapter 4 has proposed algorithm called Hybrid Means Algorithms.
This proposed algorithm was combined from K-Means and K-Midranges algorithms.
Chapter 5, interquartile range was introduced into Heterogeneous Euclidean-Overlap
Metric (HEOM) to replace range as local normalization and the proposed method
is called Interquartile Range-Heterogeneous Euclidean-Overlap Metric (IQR-HEOM).
Chapter 6, two statistical estimators Qn and Sn was introduced into Standardized Eu-
clidean distance to replace standard deviation as a local normalization, the suggested
methods are Qn and Sn-Weighted Euclidean distance.
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1.7 Organization of Thesis

The following is a brief description of the contents of each chapter. This chapter
serves as an essential introduction of this study by presenting background of the
study, statement of problem / motivation of study, significance of the study, research
objectives, definition of terms, scope and limitation of the study. In accordance with
the objectives and the scope of the study, the contents of this dissertation are organized
as follows.

Chapter 2: Literature Review. This comprises of some reviews on the development
of clustering analysis from published materials on clustering and its outcomes,types
of clustering analysis, and some applications of clustering analysis in different
fields of sectors. We also, provided K-Means clustering algorithm, general prox-
imity measures through distance functions, proximity measures for numerical data,
proximity measures for discrete data, and as well as proximity measures for mixed data.

Chapter 3: New Approaches to Normalization Techniques for External Validity
Measures in K-Means Clustering Algorithm. The main subject in this chapter is
that, we proposed new approaches to normalization techniques using the two most
prominent data preprocessing such as; min-max, and decimal scaling. Consequently,
we had comparison of the approaches through some outcomes from real datasets and
generated data set applying simulated annealing clustering analysis method.

Chapter 4: Introduction of Hybrid Mean Algorithms from K-Means and K-
Midranges Clustering Algorithms. We proposed a hybrid mean algorithms by
combining the effectiveness of K-Means algorithm and K-Midranges algorithm;
then averaging mean from K-Means and minimum, maximum from K-Midranges.
However, we evaluated the two conventional algorithms and the suggested algorithm
using nine distance functions testing on three benchmark data sets and simulated data
set.

Chapter 5: Statistical Approaches for Data Preprocessing in Enhancing Hetero-
geneous Distance Functions. In this chapter, we are able to use three UCI datasets;
supported by generated data set. The conventional method used in this section is
called ”Heterogeneous Euclidean-Overlap Metric (HEOM)” and from the ideas of this
HEOM we suggested IQR−HEOM method. We applied internal validity measures
such as silhouette coefficients and cohesion values to examine the capability and
accuracy of the conventional method against the proposed method through the results
obtained.

Chapter 6: K-Means Algorithms based on Weighted Euclidean Distance Here we
proposed two approaches such as Qn weighted Euclidean distance, and Sn weighted
Euclidean distance. We used the ideas from Standardized weighted Euclidean distance
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(sometimes called Normalized weighted Euclidean distance). We experimented
the two suggested methods on three real data sets from benchmark datasets and
generated data set. However, the two proposed methods introduced from weighted Eu-
clidean distance have shown better results compared to the existing traditional methods.

Chapter 7: Conclusions and Recommendations for Future Research. This serves
as the last chapter, which consists the conclusions from the outcomes of real data sets
and from simulated data set. Hence, we recommended and suggested some possibilities
for future research.
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