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With the continued industrialization and development of the world economy, the need 
for a clean source of renewable energy is becoming ever more urgent. Furthermore, 
despite the recent rise in global oil production due to fracking, on a time horizon of one 
or two hundred years, oil reserves will ultimately dwindle, along with supply. Sunlight 
is an abundant energy source that is more than capable of providing for the world’s 
energy needs. In order to generate and simultaneously store the photo-generated energy 
for substantial use even during the night, a supercapacitor is coupled with solar cell, 
which turned into an integrated photo-supercapacitor.  
 
 
In this work, a photo-supercapacitor with three electrodes configuration was fabricated 
by the integration of titania (TiO2)-based dye-densitized solar cell (DSSC) with a 
symmetrical supercapacitor utilizing polypyrrole/reduced graphene oxide (PPy/rGO) as 
an electrode active material. The photoanode of DSSC was composed of compact and 
mesoporous TiO2 layer. Compact TiO2 layer was formed via aerosol-assisted chemical 
vapor deposition (AACVD) method while the mesoporous TiO2 layer was deposited 
using doctor’s blade method. The PPy/rGO materials were formed through 
electrochemical deposition. Double-sided-electrodeposited PPy/rGO material served as 
an intermediate electrode which was bifunctional; acting as a counter electrode for the 
DSSC to permit electrolyte regeneration, and charge storage for the supercapacitor. 
 
 
Before the integration, the isolated DSSC and supercapacitor were characterized, and the 
power conversion efficiency (PCE) of DSSC was 2.4 %, while the specific capacitance 
of the supercapacitor was 308.1 F/g. The performance of the integrated photo-
supercapacitor was tested under a light illumination of 100 mW/cm2. The photo-
supercapacitor experienced a small voltage drop of 0.024 V with high charge/discharge 
durability and long lifetime. Remarkably, the photo-supercapacitor possessed a specific 
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capacitance of 124.7 F/g and a retention percentage of 70.9 % was obtained after 50 
consecutive cycles of charge/discharge.  
 
 
This cheap graphene-based and light-weight integrated device showed a promising 
performance in both effectiveness and stability, thus it opened the door for future self-
powered electrochemical energy storage system. To further improve this device, 
development on the intermediate electrode and device packaging should be taken into 
consideration.     
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Dengan perindustrian yang berterusan dan pembangunan ekonomi dunia, keperluan 
untuk sumber tenaga bersih yang boleh diperbaharui menjadi semakin mendesak. 
Tambahan pula, walaupun kenaikan dalam pengeluaran minyak dunia baru-baru ini 
disebabkan oleh “fracking” (process pengekstrakan minyak), dalam jangka masa satu 
atau dua ratus tahun, rizab minyak akhirnya akan berkurang, bersama-sama dengan 
bekalannya. Cahaya matahari adalah sumber tenaga yang banyak yang mampu 
menampung keperluan tenaga dunia. Dalam usaha untuk menjana dan pada masa yang 
sama menyimpan tenaga foto yang dihasilkan untuk kegunaan yang banyak walaupun 
pada waktu malam, superkapasitor yang digandingkan dengan sel solar, yang bertukar 
menjadi foto-superkapasitor bersepadu.  

 

Dalam karya ini, foto-superkapasitor dengan tiga konfigurasi elektrod telah direka 
dengan penyepaduan sel suria kepekaan pencelup (DSSC) berdasarkan titania (TiO2) 
dengan superkapasitor simetri yang menggunakan polipirol/grafin (PPy/ rGO) sebagai 
bahan aktif elektrod. Foto-anod DSSC terdiri daripada lapisan TiO2 padat dan berliang 
meso. Lapisan TiO2 padat dibentuk melalui kaedah pemendapan wap kimia yang dibantu 
oleh aerosol (AACVD) manakala lapisan TiO2 berliang meso dimendapkan 
menggunakan kaedah doctor’s blade. Bahan PPy/rGO dibentuk melalui pemendapan 
elektrokimia. Electro-mendapan bermuka dua bahan PPy/rGO berfungsi sebagai 
elektrod perantaraan yang bersifat dwifungsi; bertindak sebagai elektrod bertentangan 
untuk DSSC bagi membenarkan regenerasi elektrolit, dan caj penyimpanan untuk 
superkapasitor.  

 

Sebelum integrasi, DSSC dan superkapsitor terpencil telah dicirikan,dan kecekapan 
penukaran kuasa (PCE) untuk DSSC ialah 2.4 %, manakala kapasitans khusus bagi 
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superkapasitor adalah 308.1 F/g. Prestasi foto-superkapasitor bersepadu telah diuji di 
bawah pencahayaan cahaya 100 mW/cm2. Foto-superkapasitor mengalami penurunan 
voltan kecil sebanyak 0.024 V dengan daya ketahanan caj/nyahcaj yang tinggi dan 
jangka hayat yang panjang. Hebatnya, foto-superkapasitor mempunyai kapasitans 
khusus sebanyak 124.7 F/g dan peratusan pengekalan sebanyak 70.9% yang telah 
diperolehi selepas 50 kitaran berturut-turut bagi caj/nyahcaj.  

 

Peranti bersepadu berasaskan grafin yang murah dan ringan ini telah menunjukkan 
prestasi yang menjanjikan dalam kedua-dua keberkesanan dan kestabilan, dengan itu ia 
telah membuka pintu untuk sistem penyimpanan tenaga elektrokimia janaan sendiri. 
Untuk mempertingkatkan lagi peranti ini, pembangunan pada elektrod perantaraan dan 
pembungkusan peranti harus dipertimbangkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Renewable Energy Resources 
 
 

Energy is inevitable to human life and a continuous energy supply is crucial for the 
sustainability of modern societies and continued human development. With increasing 
human population and modernization, the global energy demand is rapidly increasing. 
To cope with the current energy requirements, fossil fuels such as oil, gas and coal plays 
an important role in the world energy market. According to the World Energy Outlook 
(WEO) 2007, fossil fuels energy is expected to provide more than 80% of the global 
energy demand in 2030 (Asif & Muneer, 2007; Shafiee & Topal, 2009). However, fossil 
fuels energy usage is facing several problems, which are the depletion of the unrenewable 
fossil fuels reserves, increasing fuel price and environmental issues such as global 
warming. For the latter, climate changes driven by the greenhouse gas emissions due to 
the use of fossil fuels are having enormous implications on our environment and 
ecosystem (Asif & Muneer, 2007). As shown in Figure 1.1, the total world CO2 gas 
emissions increased from 21.5 billion tons in 1990 to 23.9 billion tons in 2001 before 
climbing to above 27.0 billion tons in 2010. In 2025, the CO2 gas production is expected 
to reach 37.1 billion tons (Asif & Muneer, 2007).  

 

 

Figure 1.1: CO2 gas emissions in millions of tons.  
(Source: Renewable and Sustainable Energy Reviews (Asif & Muneer, 2007))  
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According to the World Health Organization (WHO), 160,000 people die every year 
because of the side-effects of climate change like malaria, malnutrition and diarrhea, 
resulting from higher atmospheric temperatures, droughts and floods. More importantly, 
the numbers are expected to be almost double by 2020 (Asif & Muneer, 2007; Petinrin 
& Shaaban, 2015). On the other hand, in spite of the increase in global oil production 
due to fracking, the oil reserves will eventually diminish (Asif & Muneer, 2007; 
Christians et al., 2013; He et al., 2014; Noel et al., 2014; Shafiee & Topal, 2009). Also, 
the locked up CO2 from these reserves will be released due to fracking and this causes 
adverse effects to humankind (Christians et al., 2013; Jeon et al., 2013; Noh et al., 2013; 
Snaith, 2013; Zhu et al., 2014). Obviously, presently employed fossil fuels energy 
systems will not be able to cope with the future energy necessities since they are 
significantly affecting human health, ecological balance and biological diversity.  

 

The aforementioned problems have prompted a worldwide research into clean sources 
of renewable energy to substitute fossil fuels, which guarantee the life of current and 
future generations (Zhang & Zhao, 2009). Integration of renewable energy in the power 
system has the potential to form a robust and viable power transmission and distribution 
system. Renewable energy sources that use natural resources such as the sun, wind, 
biomass and wave, are abundant and able to produce energy with almost nil emissions 
of both greenhouse gases and air pollutants, thus they are free from related global 
warming effects (Asif & Muneer, 2007; Petinrin & Shaaban, 2015). Moreover, with the 
current total global power requirements of 15TW, and that of 30TW by year 2050, 
renewable energy is believed to be the best candidate to meet those needs (Cheng et al., 
2009; Ramanujam et al., 2016). At present, 15-20 % of the world’s total energy demand 
is supported by renewable energy sources (Petinrin & Shaaban, 2015).  

 

Sunlight is an abundant and reliable energy source that is more than capable to provide 
such global energy needs (Christians et al., 2013; Docampo et al., 2013; Noel et al., 2014; 
Snaith, 2013). Approximately 70% of the energy radiated from the sun is absorbed by 
the ocean, land masses and clouds while the other is free back into the space. The 
absorbed energy is useful to keep our Earth surface at about 14ºC. Moreover, green plants 
carry out photosynthesis and convert solar energy into chemical energy, which produces 
food, wood and biomass. This is where fossil fuel is derived. Notably, all renewable 
energy derive their energy from the sun except tidal and geothermal energy (Petinrin & 
Shaaban, 2015). Surprisingly, the energy needs could be fulfilled if only 0.1% of the 
Earth surface is covered with solar panels with an average efficiency of 10%. This is 
because in every second, the sun produces a power of 3 ൈ 10ଶ W, which approximately 
equals 500,000 years of current energy needs (Ramanujam et al., 2016). In an hour, the 
energy produced by the sun exceeds the annual energy consumption of humans (Crabtree 
& Lewis, 2007; Lewis & Nocera, 2006). Figure 1.2 shows the availability of various 
non-renewable and renewable energy sources as compared to the world energy 
consumption per year (Asif & Muneer, 2007).  
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Figure 1.2: Comparison between annually available energy sources and global 
energy consumption.  
(Source: Renewable and Sustainable Energy Reviews (Asif & Muneer, 2007))  
 

In order to harvest energy from the sun, different methods have been utilized. For 
example, solar cells have been developed to absorb sunlight and convert photons to 
electrical energy, and solar thermal collectors have been used to absorb and convert solar 
energy into heat energy. Generally, the working mechanism of solar cells or photovoltaic 
devices are based on charge separation at an interlayer between two materials with 
different conduction mechanism. The solar energy conversion has three requirements, 
which are electrons (negative charges), holes (positive charges) and a potential which 
acts as a driving force to transport the charges to an external circuit (Grätzel, 2003; 
Hadipour et al., 2006). Photovoltaic devices have two main advantages of energy 
independence and environmental compatibility, where they require free fuels (sunlight), 
and their operations do not produce air, water and noise pollution (Ong et al., 2011).   

 

To date, the photovoltaic market is dominated by silicon solar cells, the semiconductor-
based solid-state junction devices due to their high power conversion efficiencies. 
Despite the good device performances, there are drawbacks since they involve rare earth 
elements and have a high manufacturing cost (Kozma & Catellani, 2013). In fact, they 
are now being challenged by the emergence of third generation solar cells, which are 
based on nanocrystalline structures and conducting polymers thin films. Third generation 
solar cells have the potential to be low cost in fabrication and deviate completely from 
the typical solid-state junction devices. The latter is by replacing the contacting phase to 
the semiconductor by an electrolyte in the form of liquid, solid or gel, resulting in a 
photo-electrochemical cell. The employment of nanocrystalline materials has thus 
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brought up new ways for the development of solar cells. In addition, further involvement 
of mesoscopic semiconductors showed comparable efficiencies to the conventional cells.  

 

Dye-sensitized solar cells (DSSC) are good representatives with mesoporous 
nanoparticles (Grätzel, 2003). The typical device architecture and operating mechanism 
of DSSC is shown in Figure 1.3. The photoactive layer, which is the mesoporous metal 
oxide layer, is made up of sintered semiconductor nanoparticles responsible for 
electronic conduction. The most preferably metal oxide is titanium dioxide (TiO2), other 
material choices are zinc oxide (ZnO) and niobium(V) oxide (Nb2O5). Ruthenium dye is 
well-distributed on the surface of the nano-sized mesoporous semiconductor layer. Upon 
photo excitation of the dye molecules, electrons are injected into the conduction band of 
the oxide materials. Subsequently, the loss of electrons of the dye molecules is 
compensated by electron donation from the redox electrolyte, with the most common 
redox couple used being a triiodide/iodide (Iଷ

ି/Iିሻ couple. Dye regeneration then occurs 
by the reduction of triiodide at the counter electrode.  Thus, the circuit is completed by 
the transportation of electrons via the external load (Grätzel, 2003).   

 

 

Figure 1.3: Schematic diagram of a DSSC with blue arrows representing the 
movement of electrons after electron excitation.  

 

 

1.2  Energy Demand and Renewable Energy in Malaysia 
 
 

Since Malaysia’s independence in 1957, the development in economy and infrastructure 
showed tremendous growth which was characterized by advanced technology like the 
SMART tunnel and Petronas Twin Towers. Such development was supported by the 
affordable and reliable electricity sector of the country. From 2005 to 2008, the growth 
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rate of final energy consumption was 5.6%. In the future by 2030, the final energy 
consumption is expected to triple the 2002 level (Mekhilef et al., 2014). The energy 
supply is mostly consumed by industrial sector followed by transportation sector (Ong 
et al., 2011). Every year, electricity demand in Malaysia increases 5-8% with a projection 
of 10 GW is needed by 2020 (Petinrin & Shaaban, 2015). Currently, the main energy 
supply in Malaysia are coal, crude oil and natural gas. Somehow, the depletion of fossil 
fuels and global warming issue call for the use of renewable energy sources as alternative 
energy supply, especially for rural areas far from utility grids (Petinrin & Shaaban, 2015). 
Decrease in domestic gas supply and shortage of coal supply have urged the government 
to promote renewable energy and thus come up with some policies, programmes and 
incentives, to reduce the over-dependence on fossil fuels. Besides, the importance of 
renewable energy is further reinforced in the Tenth Malaysia Plan (2011-2015), which 
focus on energy generation and utilization efficiency with firm agreement of 
environmental objectives. According to the plan, the percentage of renewable energy of 
total electricity generation has to increase from < 1% in 2009 to 5.5% by 2010, with 
amounts of 41.5 MW and 985 MW, respectively (Mekhilef et al., 2014). Biomass, hydro 
and solar energy are three major renewable energy resources in Malaysia. The abundance 
of sunshine throughout the year favours the development of solar energy, with an average 
monthly solar radiation of 400-600 MJ/m2 (Mekhilef et al., 2012).  

 

As an equatorial country, Malaysia has uniform temperature throughout the year with 
average solar radiation of 4.7-6.5 kWh/m2 per day. The lowest solar radiation is in 
December while that of the highest is in August and November with estimated values of 
0.61 kWh/m2 and 6.8 kWh/m2, respectively.  Table 1.1 shows the yearly average solar 
radiation in different towns in Malaysia. Kota Kinabalu has the highest yearly irradiance 
while the lowest radiation is experienced by Kuching. Despite the adequate sunlight 
throughout the year which is a primary advantage, the efficiency of solar devices needs 
to be improved in order to convince the government to invest and rely on solar energy, 
which could meet the energy needs in rural areas (Petinrin & Shaaban, 2015). Even 
though solar devices have great potential as a future sustainable energy source especially 
for rural areas, it involves high cost for mass power generation. This is because our 
country has no local photovoltaic device manufacturer due to high initial system cost, 
and thus all solar modules and inverters have to be imported from overseas (Ong et al., 
2011).   
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Table 1.1: Yearly average solar radiation in different towns in Malaysia.  
(Source: Renewable and Sustainable Energy Reviews (Petinrin & Shaaban, 2015)) 

Town Yearly irradiance (kWh/m2) 
Bandar Baru Bangi 1487 
Bayan Lepas 1809 
George Town 1785 
Ipoh 1739 
Johor Bahru 1625 
Kota Baru 1705 
Kota Kinabalu 1900 
Kuala Lumpur 1571 
Kuala Terengganu 1714 
Kuantan 1601 
Kuching 1470 
Petaling Jaya 1571 
Seremban 1572 
Senai 1629 
Taiping 1768 

 

 

1.3  Electrical Energy Storage Systems 

 

The development of renewable and sustainable energy resources is the main focus of 
today’s research interests due to the growing energy crisis, and to ensure uninterrupted 
human development. However, renewable energy resources such as solar and wind 
power are intermittent. The sun is not shining at night and the wind is not blowing 
whenever necessary. Nanogenerators that convert mechanical energy into electrical 
energy has the potential to operate easily and effectively. But, their outputs are 
significantly affected by the ambient environment changes, causing unstable output 
electric power. Therefore, efficient energy storage methods are essential to ensure the 
availability of energy by providing a durable output. The most commonly used energy 
storage systems are capacitors, supercapacitors, batteries and fuel cells (Jahromi et al., 
2015; J. Wang et al., 2015).  

 

Supercapaciors also called electrochemical capacitors or ultracapacitors, are a high-
energy type of conventional capacitors, where their energy per unit volume or mass are 
hundreds of times more than that of capacitors. Both the capacitance of supercapacitor 
and conventional capacitor are affected by three main factors which are effective area of 
the electrodes, the separation distance of the electrodes, and the dielectric constant of the 
separating medium. For conventional capacitor, it obtains its effective area from a flat 
and conductive plates while supercapacitor gets the area from a porous carbon-based 
material. The porous structure resulted in a very high effective surface area and minimal 
distance of electrodes, thus leading to a higher capacitance of supercapacitor compared 
to a conventional capacitor (Cultura II & Salameh, 2015). 
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Supercapacitors have the advantages of long cycle life (4100 000 cycles), high power 
and energy densities, simple working principle, fast charge-discharge processes and 
environmental benignancy (Jahromi et al., 2015; Lee et al., 2009; J. Wang et al., 2015; 
Zhang & Zhao, 2009). They have the potential to be a bridging function for the 
energy/power gap between conventional capacitors, which have high power output, and 
between batteries and fuel cells, which have high energy storage. 

 

Supercapacitors contain two porous electrodes in contact with electrolyte that store 
charge electrostatically. Their capacitance is significantly affected by the active area and 
separation distance of the electrodes, in addition to the dielectric constant of the 
separating medium. Remarkably, the capacitance per unit volume of supercapacitors is 
100 to 1000 times of that of capacitors (Cultura II & Salameh, 2015). Supercapacitors 
are useful for high power density applications like hybrid electrical vehicles, load cranes, 
forklifts and power back-up systems, in addition to low power devices such as camera-
flash equipment and pulsed-light generators (Li et al., 2009; Wang et al., 2009; Zang & 
Li, 2011). Recently, supercapacitors have been employed in emergency doors on the 
Airbus A380, signifying the reliable performance of supercapacitors. Moreover, their use 
and promising performance in hybrid electric vehicles and fuel cell vehicles, where they 
couple with batteries and fuel cells respectively, highlighting their equal importance to 
batteries in the near future (Zhang & Zhao, 2009). With the involvement of 
supercapacitors, energy can be stored so efficiently such that the vehicles can have 
enough energy to be used during acceleration or startup (Zhang et al., 2009).  

 

Basically, supercapacitors are made up of electrodes (anode and cathode), electrolytes, 
conducting charge paths and separators that electrically separates the two electrodes. 
Supercapacitors play an important role in the energy storage market as they provide high 
power capacility (60-120 s), excellent reversibility (90-95 %), and long cycle life (> 105). 
They usually possess a capacitance value which is 20-200 times higher than conventional 
capacitors (Zhang et al., 2009).  

 

In this work, DSSC was coupled with a supercapacitor to form a photo-supercapacitor 
as shown in Figure 1.4. It shows the configuration of a three-electrode photo-
supercapacitor, which includes sandwiched multi-layered electrodes made up of a dye-
sensitized TiO2 nanoparticle photoanode (positive electrode) and polypyrrole/reduced 
graphene oxide (PPy/rGO) in contact with iodolyte, and two PPy/rGO electrodes in 
contact with a hydrogel electrolyte. Two electrolytes work simultaneously on each side 
(Chen et al., 2010). The bottom-most PPy/rGO electrode acts as a negative electrode. 
The operating principle of a photo-supercapacitor is similar to that of a DSSC, where a 
photon excites an electron of a dye molecule, and the excited electron is injected into the 
conduction band of the TiO2 semiconductor and diffused through the mesoporous TiO2 
layer. After the charge separation, the injected electron travels through the external 
circuit. The oxidized dye will be regenerated by accepting an electron from the redox 
iodolyte. The oxidized Iଷ

ି ion will diffuse to the intermediate electrode and gains an 
electron for reduction back to Iି ion. This progress continues to drain electrons from the 
intermediate electrode, resulting in a positive charge of the active layer of intermediate 
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electrode near the supercapacitor, and formation of mostly anions in its adjacent hydrogel 
electrolyte. Simultaneously, photo-excited electron travels to the bottom-most negative 
electrode where they form electrostatic double layer of negative charges accumulate at 
the negative electrode and mostly cations in its adjacent hydrogel electrolyte (Bagheri et 
al., 2014; Peng, 2015; Cohn et al., 2015). The electrons flow of the integrated device is 
shown in Figure 1.5. During the discharge process, the stored charge can be used to 
supply electrical energy without solar energy conversion. An efficient photo-
supercapacitor can be fabricated with the utilization of simple preparation and integration 
methods. 

 

By focusing only the supercapacitor part, electric double-layer capacitor (EDLC) and 
pseudo-capacitor combination is used, with rGO working synergistically with PPy as the 
active electrode material to achieve a high capacitance value with good stability. The 
embedded PPy particles between the graphene layers can help to prevent aggregation of 
graphene sheets, therefore maximizing the surface area of graphene and simultaneously 
enhancing the device performance. Besides, this graphene-based hybrid electric double-
layer capacitor (hEDLC) also acts as an intermediate electrode in the three-electrode 
photo-supercapacitor to further enhance the life time and stability of the integrated device.  

 

 

 

Figure 1.4: Device configuration of the three-electrode photo-supercapacitor which 
consists of a DSSC and a symmetrical PPy/rGO-based supercapacitor, where both 
the DSSC and supercapacitor share a PPy/rGO electrode. A corresponding circuit 
diagram is shown in the inset. 
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Figure 1.5: Electrons flow of the three-electrode photo-supercapacitor indicated by 
the blue arrows. 

 

1.4   Problem Statement 

 

The integration of a solar cell and energy storage component into one self-powered 
electrochemical energy storage device is challenging due to the instability of the 
hybridized system. Therefore, to maximize the efficiency of solar cell, the photoactive 
layer must be mesoporous to achieve a better dye absorption for photon excitation. On 
the other hand, to store the generated energy effectively, the supercapacitor plays an 
important role. The challenge has always been the criteria of high energy and power 
density, and high stability upon continuous charging and discharging cycles. The 
aforementioned criteria are hard to achieve by the two types of supercapacitor, either the 
electric double layer capacitor or the pseudo-capacitor, since they have generally 
suffered from low energy density and low cycle stability respectively (Chee et al., 2015). 
Therefore, the two types of supercapacitor have to been coupled together to overcome 
this problem.  

 

In addition, the interface between solar cell and energy storage plays a vital role in the 
integrated devices but the current research have used expensive materials like platinum 
(Chen et al., 2010), gold (Lee et al., 2016), silver (Skunik-Nuckowska et al., 2013) or 
other conductive materials, which significantly increased the overall production cost. 
Besides, the information regarding stability of the currently reported self-powered 
electrochemical energy storage device is lacking. By using platinum interlayer, 80% 
retention was achieved after 10 cycles (Hsu et al., 2010), and that using PEDOT:Carbon 
interlayer could achieve 96.8% after 50 cycles (Xu et al., 2016). For the rest of the 
reported single solar cell-charging integrated device, no stability data was provided. This 
major problems of high cost solar cell/supercapacitor interface with limited stability data 
have urged the researchers for a cheaper and relatively more stable interface’s 
replacement. 
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1.5  Objectives 

 

The main objective of this study was to develop an effective and stable DSSC-based 
photo-supercapacitor in a three-electrode configuration, utilizing an appropriate solar 
cell/supercapacitor graphene-based interface. The objectives can be sub-divided into the 
following points: 

 

a. To fabricate and achieve a DSSC with minimum power conversion efficiency 
(PCE) of 2 % using a PPy/rGO counter electrode material that is the same as 
the supercapacitor’s active material. 

b. To fabricate a stable supercapacitor with specific capacitance retention 
percentage of at least 90 % after 500 cycles based on PPy/rGO active materials.  

c. To develop an integrated photo-supercapacitor and then to analyze its photo-
generated electrical energy and charge storage.  

 

 

1.6   Thesis Organisation 

 

This thesis is organized into five chapters and the contents of each chapter are described 
briefly as follows. 

 

Chapter 1 introduces about the worldwide necessity of renewable energy and the 
emerging of solar power as a promising substituent of fossil fuels. Also, it discusses 
about the energy demand and renewable energy, especially solar energy, in Malaysia. 
Then, the text proceeds with the introduction of supercapacitors, as storage systems for 
solar power. Next, this chapter explains about the device configuration of the integrated 
photo-supercapacitor in this work, which is the coupling between DSSC and a 
symmetrical PPy/rGO-based supercapacitor. In addition, it states about the problems 
encountered throughout this research, followed by the corresponding objectives. 

 

Chapter 2 reports about the dominance of crystalline silicon solar cells in the 
photovoltaic market with their drawback of high price. Besides, it reports the advantages 
and disadvantages of each type of solar cells. For better understanding of the background 
of photovoltaic devices, it reports about the historic evolution of solar cell technology. 
Next, it focuses on operating principle and leads of DSSCs and it tells about the efforts 
done on improving their performance, typically in the aspects of photoanodes, 
electrolytes, dye molecules and counter electrode materials. This chapter then proceeds 
to report about the supercapacitors, mainly on their advantages, types and categories, and 
improvements made to enhance their energy storage capabilities. Then, it focuses on the 
details of graphene-based materials as well-known supercapacitor electrode materials, 
and it compares the properties and performance of various carbon-based supercapacitors. 
In addition, it explains about the two working mechanisms of supercapacitors, the double 
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layer charge storage or by the Faradaic reaction. In the last part of this chapter, it reports 
about the photo-charging mechanism of integrated photo-supercapacitors, with their 
advantages and significance to ensure substantial and constant power supply.  

 

Chapter 3 lists down all the materials used in this work, which their product information 
that are enough to identify the chemicals accurately and precisely. Then, it covers all the 
preparing, fabricating, integrating and testing procedures related to this research. In brief, 
it tells about the simplified Hummer’s method for the preparation of graphene oxide 
(GO), the aerosol assisted chemical vapour deposition (AACVD) and Dr’s blade method 
for the fabrication of DSSC, and electrochemical deposition method for fabrication of 
PPy/rGO supercapacitor, followed by the integration between DSSC and PPy/rGO 
supercapacitor. Besides, it shows the samples preparation ways and types of machines 
used for each characterization techniques, which includes FESEM, Raman spectroscopy 
and electrochemical measurements.  

 

Chapter 4 shows the significant data and results obtained throughout this research. It 
shows the current response and thus PCE of DSSCs with different photoanodes to signify 
the importance of each components in the DSSCs. It compares the FESEM images of 
compact TiO2 layer and mesoporous TiO2 paste deposited onto compact TiO2 layer to 
signify the porosity of the latter. For the characterization of supercapacitor, it first shows 
the FESEM images of PPy/rGO materials, and then the Raman spectra of PPy, rGO and 
PPy/rGO materials to prove the coupling effect between them PPy and rGO. Next, it 
reports the results of various electrochemical measurements for the supercapacitors, 
which include cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), 
electrochemical impedence spectroscopy (EIS) and life cycle stability, to tell about the 
specific capacitance, equivalent series resistance (ESR), charge transfer resistance (Rct) 
and retention percentage of the device. On the other hand, this chapter continues to 
discuss on the results of the integrated photo-supercapacitor. It shows the photo-current 
response and the photocharge/galvanostatically discharge curve of the integrated device 
to prove that the charging source is certainly from the solar simulator. Then, it shows the 
life cycle stability of the device and it compares the obtained results against previously 
reported photo-supercapacitor.  

 

Chapter 5 concludes the results on the integrated photo-supercapacitor, and it highlights 
the advantages, overall device performance and novelty of the device. Then, it tells some 
recommendations to further improve the device, focusing on the intermediate electrode 
and device packaging.  
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