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Bismuth magnesium niobate (BMN) pyrochlores are one of the potential dielectrics 

owing to their excellent dielectric properties, e.g. high relative permittivity, ε‟ > 160, 

low dielectric loss, tan δ in the order of ~10
-4

 and compositional tunable temperature 

coefficient of capacitance, TCC. In this work, alkaline earth metals namely, Ca, Sr and 

Ba were successfully introduced into BMN pyrochlores through solid-state reaction. 

These substitutional solid solutions were prepared with the proposed chemical formula, 

(Bi3.36Mg0.64-xAx)(Mg1.28Nb2.72)O13.76, in which the formation mechanism requires a 

one-to-one replacement of Mg
2+

 by A
2+

 (A
2+

 = Ca, Sr and Ba) at the eight-coordinated 

A site. The solid solution limits of (Bi3.36Mg0.64-xAx)(Mg1.28Nb2.72)O13.76 are found to be 

0 ≤ x ≤ 0.7, 0 ≤ x ≤ 0.5 and 0 ≤ x ≤ 0.2 in the Ca-, Sr- and Ba-series, respectively. Ca-

doped BMN pyrochlores have a relatively extensive solid solution limit due to the 

closely similar ionic radii between Ca
2+

 and Bi
3+

 with their values of 1.12 Å and 1.13 

Å, respectively. These materials adopted a cubic symmetry, space group Fd3m (No. 

277), Z = 4, with their refined lattice parameters, a = b = c, decrease linearly from 

10.5968(16) Å to 10.5332(14) Å, 10.5671(17) Å and 10.5879(3) Å, respectively. On 

the other hand, all BMCN, BMSN and BMBN pyrochlores are found to be thermally 

stable as thermal event is absent within the studied temperature range ~30−1000 °C. 

Whilst, the irregular shaped grains of surface morphologies of these samples showing a 

broad distribution of mean grain size with increasing of dopant concentration. Six IR-

active phonon modes are observed in these chemically doped pyrochlores, which are 

due to the vibration and bending of metal-oxygen bond in the range 1000 cm
-1

−200 cm
-

1
. 

 

 

All the doped BMN pyrochlores appeared to be highly insulating with their 

conductivities in the order of ~10
-6

−10
-5

 Scm
-1 

at ~600 °C. These materials exhibited 

moderate high ε‟, low tan δ in the order of 10
-3

−10
-1

 at ~30 °C and negative TCC 

values, ~319−933 ppm/°C in the temperature range ~30−300 °C. The recorded ε‟ 

values of Ca-, Sr- and Ba-series are in the range 69−171, 90−186 and 147−183, 

respectively at ~30 °C and 1 MHz. The Arrhenius conductivity plots of these doped 

BMN pyrochlores showed linear and reversible characteristics in a heat-cool cycle. The 

activation energies of BMCN, BMSN and BMBN pyrochlores are found in the range 
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1.17−1.47 eV, 1.20−1.49 eV and 1.18−1.30 eV, respectively. The high activation 

energies, Ea > 1.0 eV are required for the electrical conduction, which is probably of a 

hopping electronic type. 

 

 

In attempts to investigate the electrical properties of pyrochlores in electrolyte, further 

studies have been performed by using pyrochlore thin films coated on indium tin oxide 

(ITO) glasses using cyclic voltametry (CV), galvanostatic charge-discharge (CD) and 

electrochemical impedance spectroscopy (EIS), respectively. Higher specific 

capacitance is recorded for 1-layer sample compared to 3- and 5-layer sample coated 

on ITO glasses in 1.0 M KCl electrolyte. The specific capacitance of 1-layer sample is 

found to decrease with increasing dopant concentration in respective Ca- Sr- and Ba-

series. On the other hand, the cyclic voltammogram curves of all the samples showed 

rectangular in shape without any pseudocapacitance effect, which is a common 

capacitive behaviour of electrochemical supercapacitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

iii 
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Bi3.36Mg1.92-xAxNb2.72O13.76 (A = Ca, Sr DAN Ba) 

Oleh 

NURUL AIDAYU BINTI MAT DASIN 

November 2017 

Pengerusi: Tan Kar Ban, PhD 

Fakulti: Sains 

Piroklor yang mengandungi bismut magnesium niobat (BMN) adalah salah satu 

daripada dielektrik yang berpotensi disebabkan oleh ciri-ciri dielektrik yang menarik. 

Di antara ciri-ciri tersebut adalah, pemalar dielektrik yang tinggi, ε' > 160, kehilangan 

dielektrik yang rendah, tan δ dalam lingkugan ~10
-4

 dan pekali suhu kapasitan yang 

boleh ubah mengikut komposisi, TCC. Dalam kajian ini, logam alkali bumi, iaitu, Ca, 

Sr dan Ba telah berjaya diganti ke dalam piroklor BMN dengan kaedah keadaan 

pepejal. Larutan pepejal penggantian ini disediakan dengan menggunakan formula 

kimia yang dicadangkan seperti berikut, (Bi3.36Mg0.64-xAx)(Mg1.28Nb2.72)O13.76, di mana 

mekanisma pembentukan sistem ini memerlukan penggantian setiap Mg
2+

 dengan A
2+

 

(A
2+

 = Ca, Sr dan Ba) di tapak A yang berkoordinasi lapan. Julat larutan pepejal dalam 

sistem (Bi3.36Mg0.64-xAx)(Mg1.28Nb2.72)O13.76 adalah 0 ≤ x ≤ 0.7, 0 ≤ x ≤ 0.5 dan 0 ≤ x ≤ 

0.2 untuk siri Ca, Sr dan Ba. Piroklor BMN yang didop dengan Ca mempunyai julat 

larutan pepejal yang lebih ekstensif jika dibandingkan dengan siri Sr
2+

 dan Ba
2+

. Ini 

disebabkan oleh persamaan saiz jejari ion antara Ca
2+

 dan Bi
3+

 yang hampir sama iaitu 

1.12 Å dan 1.13 Å. Bahan-bahan ini menghablur dengan simetri kubik, kumpulan 

ruang Fd3m (No. 277), Z = 4, dengan parameter kekisi terproses, a = b = c yang 

menunjukkan penurunan secara linear dalam semua siri. Nilai penurunan tersebut 

adalah daripada 10.5968(16) Å kepada 10.5332(14) Å (siri Ca), 10.5671(17) Å (siri Sr) 

dan 10.5879(3) Å (siri Ba). Selain daripada itu, semua piroklor BMCN, BMSN dan 

BMBN didapati stabil kerana tidak menunjukkan sebarang peristiwa terma dalam julat 

suhu yang dikaji iaitu di antara ~30−1000 °C. Manakala, morfologi permukaan untuk 

semua sampel-sampel dalam siri Ca, Sr dan Ba telah menunjukkan butiran yang tak 

sekata dan taburan purata saiz butiran yang luas serta saiz yang meningkat dengan 

kepekatan bahan pendop. Sebanyak enam mod fonon telah dikenalpasti sebagai IR 

yang aktif bagi semua siri piroklor BMN yang telah didopkan. Keseluruhan mod fonon 

disebabkan oleh ikatan antara logam dengan oksigen yang bergetar dan membengkok 

dalam julat suhu 1000 cm
-1

−200 cm
-1

. 

Semua siri piroklor BMN yang didopkan mempunyai kerintangan yang tinggi dengan 

kekonduksian di antara ~10
-6

−10
-5

 Scm
-1

 pada suhu ~600 °C. Bahan-bahan ini didapati 

mempunyai sifat pemalar dielektrik, ε' yang sederhana tinggi, tan δ yang rendah dalam 



© C
OPYRIG

HT U
PM

iv 

julat 10
-3

−10
-1

 pada suhu ~30 °C dan nilai TCC yang negatif iaitu ~319 hingga ~933 

ppm/°C dalam julat suhu ~30−300 °C. Nilai ε' yang direkodkan oleh siri Ca, Sr dan Ba 

adalah dalam linkungan 69−171, 90−186 dan 147−183 pada suhu ~30 °C dan 1 MHz. 

Lakaran kekonduksian Arrhenius bagi piroklor BMN yang didopkan telah 

menunjukkan ciri-ciri linear dan berbalik dalam kitaran pemanasan dan penyejukan. 

Tenaga pengaktifan untuk piroklor BMCN, BMSN dan BMBN adalah dalam julat 

1.17−1.47 eV, 1.20−1.49 eV dan 1.18−1.30 eV. Tenaga pengaktifan yang tinggi, Ea > 

1.0 eV biasanya diperlukan untuk pengaliran elektrik yang disebabkan oleh mekanisma 

elektron lompatan. 

Dalam usaha penyiasatan mengenai sifat elektrik piroklor dalam elektrolit, kajian 

lanjutan telah dilakukan dengan menggunakan filem nipis piroklor pada kaca oksida 

indium timah (ITO). Kesemua kajian ini telah dijalankan dengan menggunakan larutan 

elektrolit KCl yang mempunyai kepekatan 1.0 M secara kitaran voltametri (CV), cas 

dan nyahcas (CD) dan spektroskopi impedans elektrokimia (EIS). Kapasitan spesifik 

yang tinggi telah direkodkan oleh sampel yang disalutkan dengan satu lapisan pada 

kaca ITO jika dibandingkan dengan tiga atau lima lapisan yang menunjukkan nilai 

kapasitan spesifik yang lebih rendah. Nilai kapasitan spesifik yang disalutkan dengan 

satu lapisan sampel merosot dengan peningkatan kepekatan bahan pendop untuk 

kesemua siri Ca, Sr dan Ba. Selain daripada itu, semua sampel menunjukkan kitaran 

lengkung voltammogram yang sama iaitu berbentuk segiempat tepat tanpa sebarang 

kesan pseudokapasitan dan ini menunjukkan sifat kapasitif yang biasa dalam 

superkapasitor elektrokimia. 
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CHAPTER 1  

 

 

        INTRODUCTION 

 

 

1.1 The Fundamental of Ceramic 

 

Ceramic, is also recognised as keromos (Greek) in ancient times originating from clay 

of potter which is able to be fired in the temperature range of 900−1200 °C. Clay is 

mouldable when it is still wet and able to retain its shape after drying and firing. After 

experiencing a few evolutions, clay can be converted into ceramics with outstanding 

mechanical and electrical properties once it is fired at appropriate high temperature. In 

other perspective of solid description, ceramic is a polycrystalline, inorganic and non-

metallic material that gains mechanical strength through firing or sintering process 

regardless of it is an amorphous or single crystal (Moulson and Herbert, 2003). 

 

 

1.1.1 Electroceramics 

 

The research in electroceramics has been critically driven by the great demand in 

technology and device applications that widely used in energy conversion and storage, 

health care, electronics and communication devices and automobile transportation. 

 

 

A great interest and effort has been focused on the field of electroceramic over last few 

decades, several subclasses of electroceramics arise in parallel with the growth of 

technology advancement. For example, high dielectric capacitance and consistent 

memories of ferroelectric materials, outstanding energy storage and conversion of solid 

electrolyte materials, as well as environment monitoring of semiconducting oxides are 

prominent for a wide range of applications. The different types of electroceramics 

including: (i) ceramic conductors, (ii) ionic conductor, (iii) ceramic insulators, (iv) 

magnetic ceramics and (v) optical ceramics. 

 

 

The relative mobility of electrons within a material is known as electric conductivity. 

Materials with the high electron mobility are called conductors. Conductive ceramics 

are one of the conductors and are capable to sustain their mechanical integrity at high 

temperature above 1500 °C. Ceramic conductors are excellent of electricity and most of 

these conductors are advanced ceramics materials whose properties are modified 

through precise control over their fabrication from powders into products. Table 1.1 

shows a list of some ceramic conductor materials used in different applications 

(Moulson and Herbert, 2003). 
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Table 1.1: List of some ceramic conductor materials used in different applications 

(Moulson and Herbert, 2003). 

Application Materials 

Resistors and Electrodes PbO, RuO2, BiRu2O7, SnO2 

Thermistor BaTiO4 

Heating element SiC, MoSi2, ZrO2 

Chemical Sensors ZrO2, Al2O3, β-Al2O3, SnO2, Nasicon, 

TiO2, SrTiO4, etc. 

Fuel cells Y2O3-ZrO2 

Batteries β-Al2O3, Nasicon, Lasicon 

Ceramic Capacitors BaTiO3, PZT [Pb(Zr, Ti)O2] 

 

 

In ionic conductors, the current are transported by ions moving through the crystal 

lattice. The electrical current transports through ions in conducting liquid are called as 

electrolytes whereas ion conducting solids are known as solid electrolytes. The 

conductivity values in ionic conductors for liquid electrolyte materials and solid 

electrolyte materials are in the range of 10
-1

−10
3
 Sm

-1
 and 10

-1
−10

3 
Sm

-1
, respectively. 

Whilst, the factors that influencing the conductivity values, α are (i) carrier 

concentration, n, (ii) carrier mobility, μ and (iii) charge of carriers, Z as formulated in 

equation below: 

 

α = nZeμ        (1.1) 

 

 

Table 1.2: List of few conductive ceramic materials used as solid electrolytes in 

sensor to sense different elements and compounds (Moulson and Herbert, 2003). 

Solid Electrolyte Elements/Compounds 

Stabilised ZrO2 Oxygen 

Sulfur CaS, CaF2, β-Alumina, Nasicon 

Stabilised ZrO2, K2SO4, Na2SO4, Li2SO4, 

β-Alumina and Nasicon 

SOx (x = 2.3) 

Stabilised ZrO2 NOx (x = 1.2) 

Stabilised ZrO2, K2SO4 and Na2SO4 COx (x = 1.2) 

 

 

In contrast to conductors, insulators are materials that impede the free flow of electrons 

from atom to atom, offering very large resistance to the flow of electric current. Some 

materials are particularly good insulators and can be characterised by their high 

resistivities, e.g. glass, mica and quartz (fused) having their resistivity value of 10
12

, 

9×10
13

 and 5×10
16

 ohm m, respectively. The materials generally used for insulating 

purpose are called as insulating materials which have some specific properties: (i) it 

must be mechanically strong enough to carry tension and weight of conductors, (ii) it 

must have very high dielectric strength to withstand the voltage stresses in high voltage 

system, (iii) it must possess high insulation resistance to prevent leakage current to the 

earth, (iv) the insulating material must be free from undesired impurities, (v) it should 

not be porous, (vi) there must not be any entrance on the surface of electrical insulator 

so that the moisture or gases can enter in it and (vii) the physical as well as electrical 

properties must be less affected by changing temperature. The materials with the 

insulating components based on natural minerals include porcelains (clay-based and 
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talc-based), alumina, beryllia, glass, polymer insulators, aluminium nitride and ceramic 

„packaging‟ technology (Moulson and Herbert, 2003). 

 

 

Over the past decade, ceramic magnets have been firmly established as electrical and 

electronic engineering materials; containing iron as a major constituent and are known 

collectively as „ferrites‟. Ampere, Biot, Savart and Oersted were among the first to 

demonstrate that conductors carrying currents produced magnetic fields and exerted 

„Lorentz‟ forces on each other (Barsoum, 2003). Magnetic ceramics possess excellent 

properties, e.g. strong magnetic coupling, low loss characteristics and high electrical 

resistivity and these features help to create new devices for applications in data storage, 

tunnel junctions, high frequency applications and spin valves. Magnetic materials can 

be identified based on magnetic susceptibility values. Materials with negative 

susceptibility (χm < 1) are diamagnetic which show very insignificant negative 

susceptibility value. Superconductor in superconducting state exhibiting χm = 1, which 

is very useful for magnetic levitation applications. However, materials with χm > 1 are 

either paramagnetic (small positive susceptibility value) or ferromagnetic (large 

positive susceptibility value) (Moulson and Herbert, 2003). Table 1.3 shows the 

different types of magnetism with the susceptibility value of some materials. 

 
 
Table 1.3: Different types of magnetism with the susceptibility value of some 

materials (Moulson and Herbert, 2003). 

Type of 

Magnetism 
Material χ (SI) unitless χ (cgs) unitless μ unitless 

Diamagnetic Cu -9.7×10
-6

 -0.77×10
-6

 0.99999 

Si -4.1×10
-6

 -0.32×10
-6

 0.99999 

Paramagnetic Al +20.7×10
-6

 +1.65×10
-6

 1.00002 

Pt +264.4×10
-6

 +21.04×10
-6

 1.000026 

Ferromagnetic Low carbon steel ≈5×10
3
 3.98×10

2
 5×10

3
 

Fe-3%Si (Grain 

Oriented) 
4×10

3
 3.18×10

3
 4×10

4
 

 

 

Diamagnetic materials are materials having electron motions in the way of those 

electrons produce net zero magnetic moment in the absence of any magnetic field 

(Goldman, 2006). 
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Figure 1.1: Description of a diamagnetic material in the absence of a magnetic 

field and when a field is applied (Goldman, 2006). 

 

 

In paramagnetic materials, atoms possess a permanent non-zero net magnetic moment 

owing to factor of orbital and spin magnetic moments. However, once magnetic field is 

applied, magnetic moment would align up in the direction of magnetic field 

overcoming thermal barrier and creating a positive magnetic moment with small 

susceptibilities, 10
-3

 to 10
-6

 (Riedel and Chen, 2014). 

 

 

 
 

Figure 1.2: Schematic diagram of spins in a paramagnetic solid (Riedel and Chen, 

2014). 

 

 

Ferromagnetic materials are quite similar to paramagnetic materials in term of having 

permanent magnetic moment, but ferromagnetic materials have its regions or domains 

in ordered and aligned that give rise to large finite magnetisation in the absence of 

magnetic field. When magnetic field is applied, ferromagnetic materials exhibit a 

ferroelectric-like hysteresis loop between magnetisation and magnetic field as below. 
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Figure 1.3: Schematic diagram of spins in a ferromagnetic material and 

ferromagnetic hysteresis loops (Riedel and Chen, 2014). 

 

 

Optical ceramics, also known as transparent ceramics is a great substitution of single 

crystal due to several reasons, e.g. cost effectiveness, large-scale production, feasibility 

of shape controlling and better mechanical properties. Unlike single crystal, transparent 

ceramics have various sites to scatter light, e.g. residual pores within grains and grain 

boundaries, grain boundaries, second phase at the grain boundaries and double 

refraction from birefringent materials. The most critical factor for transparency of the 

ceramics is porosity. The presence of a large number of pores makes the ceramic 

opaque (non-transparent). Transparent ceramics contain both grains and grain 

boundaries. If there is a deviation in properties such as composition between grains and 

grain boundaries, the interfaces between them would be the scattering sites of light. 

Thus, the difference in optical characteristic between grains and grain boundaries 

should be minimised in order to keep ceramic transparent (Kong et al., 2015). For 

example, the transparent ceramics, α-alumina (Al2O3) or addressed as corundum is the 

only thermodynamically stable crystallographic modification of alumina. Corundum 

has its O
2-

 ions arranged in hexagonal arrangement with Al
3+

 occupying two-thirds of 

the octahedral interstitial position in hexagonal crystal lattice. Corundum exhibits 

maleficent properties, e.g. high strength, high hardness, and excellent corrosive 

resistance, making corundum a promising and favourable candidate for applications in 

electromagnetic windows, transparent armor and envelops of high pressure metal 

halide lamps (Kong et al., 2015). 

 

 

In the near future, electroceramic materials will be a favourable choice to be 

intensively integrated in many ways of virtual design to fit into this evolution 

especially through miniaturisation of conventional semiconducting, superconducting 

and ironically conducting materials without losing or degrading the potential properties 

(Setter and Waser, 2000). 
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1.2 Dielectric Materials 

 

Dielectrics or electrically insulated materials are defined as a class of materials in 

which electrostatic fields could hold for a long time, offering a very high resistance to 

electric current flow. Thus, dielectrics materials are always a favourable choice of a 

wide spectrum of applications including devices of energy storage in capacitors, charge 

storage in photosensitive materials of printers and copying machines, transducers in 

condenser and piezoelectric microphone, liquid crystals for alphanumeric displays and 

other display usages (Murarka et al., 2003; Ho et al., 2002). 

 

 

Dielectric materials typically are not utilised to pass electrical energy via conduction, 

yet they could become a media transferring electrical energy through displacement of 

current. Distinction of dielectric properties depending on composition, structure and 

experimental condition of the dielectric materials has been established since these are 

the key factors to be altered in order to satisfy the needs of different applications and to 

enhance the performance and reliability of dielectric materials. Thus, various dielectric 

properties are carefully deliberated especially the ability of reservation and dissipation 

of electric and magnetic energies, and degree of polarisation, magnetisation and 

conduction (Jack and George, 1979). 

 

 

1.2.1 Dielectric Constant 

 

Dielectric constant, also addressed as relative permittivity, ε‟, is one of the chief factors 

to be regarded in designing the performance of dielectric material during practical 

applications. Dielectric constant defines the ability of material to concentrate 

electrostatic flux or to store electrical energy in the presence of an electric field 

(Bartnikas, 1987). 

 

 

There are a few categories of dielectric material depending on the magnitude of 

dielectric constant, which are low, medium and high permittivity classes. High 

permittivity dielectric materials, e.g. BaTiO3 could be a great substitution for mica in 

capacitors. Meanwhile, titanium oxide could be used to modify medium and low 

permittivity classes especially for the low-loss stable capacitors and microwave 

capacitors. The ceramic insulators include silicates and aluminas that used to be utilised 

as ceramic insulating purposes (Nanni et al., 1999). 

 

 

Dielectric constant can be described as a comparison between permittivity of a medium 

and permittivity of free space as formulated below: 

  

εr = ε/εo         (1.2) 

 

 

All materials, inclusive vacuum, do store energy when electric field applied. The 

permittivity of free space, εo is a constant with value εo = 8.854×10
-12

 Fm
-1

. Apparently, 

capacitor materials are not all originated from free space, thus ε is the absolute 

permittivity of a medium and εr is the relative permittivity which has a value always 
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greater than 1, representing all materials are able to store more electrical energy than 

free space in the presence of electric field (Nalwa, 1999). 

1.2.1.1 Polarisations 

When a potential difference, V is applied between two parallel electrodes that having 

an area of cross section, A m
2
 and distance, d m apart in a vacuum capacitor, the 

electric field, E between the electrodes perpendicular to the plates, regardless edge 

effect, (Raju, 2009). 

E = V / d  (1.3) 

Thus, the capacitance of vacuum capacitor is: 

Co = εoA / d (1.4) 

Moreover, charge captured in the vacuum capacitor is then becomes: 

Qo = εoAE (1.5) 

where εo is the permittivity of free space. 

Homogenous dielectric leads to potential constant, and charge stored is then formulated 

as: 

Q = εoεAE (1.6) 

where ε is the dielectric constant of the material (permittivity of the medium). 

Apparently, ε is always greater than unity and Q is greater than Qo, a raise in charge 

stored due to appearance of charges on the dielectric surface, is described as: 

Q - Qo = AEεo (ε - 1)       (1.7) 

If charges in the system are neutral, dipole moment is created as: 

µ = AEεo (ε - 1) d  (1.8) 

Since volume of dielectric is v = Ad, then dipole moment per unit volume is: 

µ/Ad = Eεₒ (ε - 1)  (1.9) 

Polarisation, P is defined as the dipole moment per unit volume and expressed as: 
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P = Eεₒ (ε - 1)        (1.10) 

 

P = χEεₒ         (1.11) 

 

where χ is (ε - 1) which is known as susceptibility of medium. 

 

 

In short, polarisation is defined as a vector quantity of the dielectric dipole moment per 

unit volume regarding magnitude and direction. Yet, polarisation is charge per unit area 

on the surface of dielectric material in the absence of electric field (Kim and Tadokoro, 

2007). 

 

 

 
 

Figure 1.4: Frequency dependence of polarisation processes and peak power losses 

(Kim and Tadokoro, 2007). 

 

 

1.2.1.1.1 Electronic Polarisation 

 

In the existence of external electric field, a slightly displacement occurs between 

positive charged nucleus and negative electron cloud in the way of positive charged 

nucleus stays in direction of electric field and negative electron cloud sits in opposite 

direction, Consequently, positive nucleus is no longer at centroid of electronic charge, 

thus resulting electronic polarisation. Electronic polarisation has a small magnitude of 
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polarisation because the external electric field applied is usually weak compared with 

intra-atomic field (Kim and Tadokoro, 2007). 

 

 

Electronic polarisation is proportional to the magnitude of field strength formulated as 

below: 

 

Pe = αeE         (1.12) 

 

where αe is the electronic polarisability constant in which αe increases when atom 

becomes larger, and αe is independent of temperature since electronic structure of an 

atom is insensitive towards temperature. In addition, αe is also independent of 

frequency due to electronic polarisation occurs within extremely short time (~10
-15

 to 

~10
-14

 seconds). 

 

 

 
 

Figure 1.5: The total negative charge -Ze is distributed homogenously throughout 

the sphere of R (a) while the nucleus and electron cloud are displaced in opposite 

direction (b) (Maheshwari, 2006). 

 

 

1.2.1.1.2 Ionic Polarisation 

 

Ionic polarisation happens owing to displacement of the atomic components of the 

molecule in electric field when atoms transform to molecules. During the 

transformation to molecules, electron clouds of atoms do not distribute their electron 

symmetrically or evenly since electron clouds tend to stay towards atoms with higher 

electronegativity. Thus, molecules formation requires atoms with charges of opposite 

polarity. With application of external electric field, net charges alter the equilibrium 

position of atoms themselves, resulting ionic polarisation which has a smaller 

polarisation magnitude, approximately one-tenth of electronic polarisation 

(Gnaneswara-Rao, 2008; Marikani, 2017).  

 

Pi = αiE         (1.13) 
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where αi is the ionic polarisation constant in which αi = 0.1αe due to greater mass of 

ions (~10
-13

), and αi is independent of temperature because molecular structure and 

electron distribution in molecule are insensitive of both temperature and frequency. 

 

 

 
 

Figure 1.6: Ionic polarisation measures shift of ions relative to each other and 

electronic polarisation measures shift of electron cloud relative to nucleus within 

the atom (Maheshwari, 2006). 

 

 

1.2.1.1.3 Orientational Polarisation 

 

Organic molecules, e.g. CH3Cl, H2O and HCl in general have significant difference in 

electronegativity between the positive and negative partial charge and this could create 

dipoles moment in the absence of electric field. Dipole moment shown is negligibly 

small since molecules dipoles are oriented randomly without existence of electric field. 

With the aid of electric field, orientation of dipoles is arranged in the direction of 

electric field resulting in vast dipole moments (Mitchell, 2004; Marikani, 2017). 

 

Po = αoE         (1.14) 
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where αo is the orientation polarisation constant in which αo is dependent on 

temperature and αo decreases with increase in temperature due to thermal energy of 

high temperature is able to disorient the dipoles. 

 

 

 
 

Figure 1.7: Orientation polarisation produced in the case of a polar molecule of an 

electric field (Maheshwari, 2006). 

 

 

1.2.1.1.4 Space Charge Polarisation 

 

Charge carriers commonly exist in heterogeneous systems where charge carriers can 

migrate through material under the effect of external electric field. However, when the 

charge carriers have its motion obstructed, charge carriers are confined at defect sites or 

at interface between medium that have dissimilar dielectric constant and conductivity, 

thus hindering the movement of charge carriers in discharging or replacing at the 

electrodes. Consequently, inhibition of charge carrier movement leads to space charge 

of macroscopic field distortion (Martin et al., 2009; Macdonald, 1953). 

 

 

 
 

Figure 1.8: Space charge polarisation (Maheshwari, 2006). 

 

 

1.2.2 Dielectric Loss 

 

Dielectric loss, or dissipation factor is meant to display deviation from ideal behavior 

of a dielectric material, or defined as quantitatively dissipation of the electrical energy 

due to various physical processes, e.g. electrical conduction, dielectric relaxation, 



© C
OPYRIG

HT U
PM

12 

 

dielectric resonance and losses besides a typical loss comes from a delay between 

electric field and electric displacement vector (Sawada et al., 1999). Dielectric loss can 

be branched into intrinsic and extrinsic loss. Intrinsic losses are the losses in a perfect 

crystal depending on the crystal structure, and significantly due to dielectric relaxation 

in ideal lattice at low frequency that leads to release of heat. Extrinsic losses are 

attributed by imperfections in a crystal structure due to the presence of impurities, 

microstructural defects, porosity, grain boundaries, dislocations and vacancies 

(Sebastian, 2008). 

 

tan δ = ε‟‟/ε‟        (1.15) 

 

 

The equation above illustrates ratio of the imaginary permittivities to the real storage 

relative permittivities or can also be explained as ratio of the energy dissipated to 

energy stored in material. The tangent of the loss angle is present when a dielectric is 

susceptible to a sinusoidally varying applied electric field. Ordinarily, dielectric loss is 

determined experimentally using same method as the procedure used to find dielectric 

constant concurrently. Dielectric loss is affected by temperature and frequency, until a 

maximum value of dielectric relaxation is overcame (Alger, 1997). 

 

 

1.2.3 Temperature Coefficient of Capacitance (TCC) 

 

Temperature coefficient of capacitance (TCC) is the maximum change in capacitance 

over a specific temperature range. The capacitance value stated by the manufacturer is 

established at a reference temperature range of ~30 °C to ~300 °C. TCC should always 

be considered for applications operating above or below this temperature. For class I 

capacitors, they are highly stable with temperature and are referred to as temperature 

compensating. It is always specified as the capacitance change in parts per million 

(ppm) per degrees centigrade, and the maximum capacitance change is calculated via 

formula below: 

 

TCC = (Cf - Ci) 1,000,000 / (Tf - Ti) Ci     (1.16) 

 

where Cf and Ci is the capacitance value at initial temperature, Ti (~30 °C) and final 

temperature Tf (~300 °C) respectively. 

 

 

Meanwhile, for class II capacitors, it is different from class I which is not the 

temperature stable but having the main advantage in volumetric efficiency, e.g. in the 

case involving more capacitance. This capacitors are best suited for applications where 

higher capacitance values are important while charge Q and stability over temperature 

are not of major concern. Temperature coefficient of capacitance for class II capacitor 

dielectrics are expressed as a percentage. TCC should always be operating at 

temperature above or below 25 °C (Fiore, 2000). 
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1.3 Applications of Dielectric Ceramics 

 

1.3.1 Low Temperature Co-fired Ceramics (LTCC) 

 

Material made up of low fraction of dielectric ceramic (3/1), is known as low 

temperature co-fired ceramics (LTCC) or can be called as multiplayer glass-ceramics 

(MGC). LTCC material can be sintered at much lower firing temperature (850 ºC to 

900 ºC) compared to high temperature co-fired ceramics (HTCC) that is sintered at 

high temperature around 1500 ºC. Since LTCC can be produced at much lower 

temperature, low resistivity precious metal conductors, e.g. gold and silver can be used 

as the cathode materials of LTCC material to suit many electrical applications. 

 

 

To satisfy the demand for new packaging technology that requires high frequency and 

high interconnect density material, new glass-ceramic materials with low dielectric 

constant are highly needed. Unlike alumina with high dielectric constant that is able to 

give a trouble in switching speed, silver and palladium in desired particle shape are 

preferred and needed as glass-ceramic substrate to fulfil the latest technology 

requirements: (i) new LTCC material with an insignificant propagation delay due to 

low dielectric constant material and (ii) low electrical resistivity and low cost of 

improved electrical design that helps to control characteristic impedance and crosstalk 

coupling noise (Christou, 2006). 

 

 

Table 1.4: Typical materials of low and high temperature co-fired ceramic 

systems (Christou, 2006). 

 Ceramics Conductor 

Material Firing 

temperature (°C) 

Material Melting 

point (°C) 

LTCC  Glass/Ceramic 

composite 

 Crystallised glass 

 Crystallised 

glass/Ceramic composite 

 Liquid-phase sintered 

ceramics 

900 to 1000 Cu 1083 

Au 1063 

Ag 960 

Ag-Pd 960-1555 

Ag-Pt 960-1186 

HTCC  Alumina ceramics 1600 to 1800 Mo 2610 

W 3410 

Mo-Mn 1246-1500 

 

 

1.3.2 Multilayer Ceramic Capacitors (MLCC) 

 

Recently, ceramic capacitor has achieved the highest number in production and sales 

among fine ceramics products in a rapidly growth market. Multilayer ceramic capacitor 

(MLCC) has its demand raises remarkably year by year and reaches global output 

demand as high as 9 trillion units. The advancement of technology does not halt by just 

here, stringent requirements that demand high specific capacitance, high layer number 

with ultra-thin layer and cost effectiveness in the production. MLCCs can be found 

widely in applications ranging from military, spaceflight, communication to national 
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defence (Yin et al., 2009). In the trend of miniaturisation of ceramic capacitors, MLCC 

layers are reduced from 10 µm to 3 µm and towards 1 µm. Thus, MLCC ceramic grain 

size has to be controlled within nanoscale of 100 nm suggesting that grain growth 

needs to be suppressed during sintering process. 

 

 

1.4 Problem Statements 

 

It is imperative to prepare novel pyrochlores with excellent electrical performance 

especially the complex family of pyrochlores has a wide range of compositions and 

electrical properties. By far, bismuth zinc niobate pyrochlores (BZN) and bismuth 

magnesium niobate pyrochlores (BMN) are well known to be used as dielectric 

materials that are applicable for technological devices and modules. Thus, the 

preparation of new BMN pyrochlore through chemical doping is expected to yield 

materials with high dielectric constant and low dielectric loss. The selection of these 

dopants is due to the reasons including: (i) larger ionic radius that suits the requirement 

of relatively larger A site, (ii) same oxidation state with Mg
2+

 and (iii) high 

polarisability of Ca
2+

, Sr
2+

 and Ba
2+

, which is expected to enhance the dielectric 

properties. The idea of depositing Ca, Sr and Ba doped BMN pyrochlores on thin film 

in solid electrolyte systems by using electrochemical impedance spectroscopy method 

(EIS) is due to their vast applications as energy storage devices for electronic 

components, electric vehicles and memory back-up systems in mobile phone and 

computers. Utilisation of this technique has attracted the attention of worldwide 

researchers due to their excellent specific capacitance, e.g. ~59 F/g and 123.8 F/g 

(Chang et al., 2012b; Chee et al., 2015) with a good electrochemical stability. By far, 

information and literature concerning the properties of pyrochlores in the doped BMN 

systems are rarely found. Therefore, control of composition, synthesis condition and 

chemical dopants is of utmost importance in order to synthesise new pyrochlores with 

improved electrical properties. 

 

 

1.5 Objectives 

 

The objectives of this research are: 

 

i. To prepare chemically doped pyrochlores in the Bi2O3-MgO-AO-Nb2O5 (A = 

Ca, Sr and Ba) ternary systems. 

 

ii. To study structural and thermal properties of the prepared pyrochlores. 

 

iii. To characterise the electrical behavior of the chemically doped BMN 

pyrochlores by AC impedance spectroscopy. 

 

iv. To investigate specific capacitance of pyrochlore thin films coated on indium tin 

oxide (ITO) glass using electrochemical impedance spectroscopy method (EIS). 
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