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Macrocycles have a great importance in macrocyclic and supramolecular chemistry. 
The term macrocycle is defined as a cyclic macromolecule with more than eight 
members. Macrocyclic Schiff bases and their transition metal complexes have various 
interesting biological properties such as cytotoxic, DNA binding, and antibacterial
activities. In this project, the first novelty was the synthesis of five series tetradentate 
nitrogen-sulphur macrocyclic Schiff base derived from terephthaloyl-bis-
dithiocarbazate (TDTC) using glyoxal (G), 2,5-hexanedione (H), acetyl acetone (A),
5,5-dimethyl-1,3-cyclohexanedione (D), and malondialdehyde (M). Their complexes 
were formed via reaction with various metal acetate or metal chloride salt [Ni(II), 
Cu(II), Zn(II), Cd(II), Nb(II), Ru(III), Mo(V), and Pd(II)]. A total of 40 metal 
complexes were synthesised and these complexes were expected to have a general 
formula of M2L or M3L. These compounds were characterised by various physico-
chemical and spectroscopic techniques. Based on the data obtained, the azomethine 
nitrogen atom and the thiolate sulphur atom from the Schiff base were coordinated to 
the metal ions. The geometry of Cu(II), Nb(II) and Pd(II) complexes was distorted
square planar, but the Ni(II), Zn(II), Cd(II) and Ru(III) complexes was distorted square 
pyramidal. The Mo(V) complexes showed a distorted pentagonal bipyramidal. The 
Schiff bases and their metal complexes were evaluated for their cytotoxic activities 
against the invasive human bladder carcinoma cell line (EJ-28) and the minimum-
invasive human bladder carcinoma cell line (RT-112). MTT assay was used in the 
determination of IC50 values. From the data obtained, the macrocyclic Schiff bases 
were inactive against to both the bladder cancer cell lines but the respective complexes 
had significantly increased cytotoxic activity. The complexes also showed higher 
activity against RT-112 than EJ-28. The IC50 for PdTGSB and RuTGSB complexes 
against RT-112 were strongly active with the values of 0.320 and 0.472 µM,
respectively. The second novelty in this study was the mechanism of death assays 
using macrocyclic compounds. The two active complexes were further studied for the 



© C
OPYRIG

HT U
PM

ii 
 

mechanism of death via Reactive Oxygen Species (ROS) and Annexin V assays. 
Migration assay was also carried out on the most inactive compound, which was 
CuTGSB.  The DNA binding interaction of the complexes with calf-thymus DNA (CT-
DNA) was investigated via electronic absorption spectroscopy, fluorescence
spectroscopy, and viscosity measurements. The binding constant, Kb for PdTGSB was 
3.79 x 104 M-1 and the binding mode was electrostatic binding. Antibacterial studies 
using three Gram-positive (B. cereus, S. aureus, Methicillin-resistant S. aureus) and 
four Gram-negative (E. coli, K. pneumonia, S. typhimurium, S. sonnei) bacteria were 
carried out. Standard disc diffusion method and determination of minimum inhibitory 
concentration (MIC) were used in the antibacterial studies. The macrocyclic complexes 
were generally more active against the Gram-positive bacteria as compared to the
Gram-negative bacteria. The MIC values obtained for CdTHSB and CdTASB against 
B. cereus was 2.0 mg/mL. Hence, these complexes were the candidates to be
antibacterial agents.
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Oleh

CHAH CHEE KEONG
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Pengerusi : Thahira Begum, PhD
Fakulti : Sains

Makrokolekik adalah sangat penting dalam makrokitaran dan kimia supramolekul. 
Istilah makrokolekik ditakrifkan sebagai makromolekul kitaran dengan lebih daripada 
lapan ahli. Makrokitaran bes Schiff dan kompleks logam peralihannya mempunyai 
pelbagai ciri biologi yang menarik seperti aktiviti sitotoksik, pengikatan DNA, dan 
antibakteria. Dalam projek ini, kebaharuan pertama ialah sintesis lima siri
makrokitaran bes Schiff tetradentat nitrogen-sulfur yang diterbitkan daripada 
terephtaloil-bis-ditiokarbazat (TDTC) dengan menggunakan glioxal (G), 2,5-
heksanadion (H), asetil aseton (A), 5,5-dimetil-1,3-sikloheksanadion (D), dan 
malondialdehid (M). Kompleksnya yang terbentuk adalah melalui tindak balas dengan 
pelbagai asetat logam atau klorida logam [Ni(II), Cu(II), Zn(II), Cd(II), Nb(II), Ru(III), 
Mo(V), dan Pd(II)]. Sejumlah 40 kompleks logam telah disintesis dan kompleks ini 
dijangka mempunyai formula umum iaitu M2L atau M3L. Sebatian-sebatian ini telah 
dicirikan melalui pelbagai teknik fiziko-kimia dan spektroskopi. Berdasarkan data 
yang diperolehi, atom nitrogen azometin dan atom sulfur thiolat dari bes Schiff
dikoordinat kepada ion logam. Geometri untuk kompleks Cu(II), Nb(II) dan Pd(II) 
adalah segiempat sama terherot, tetapi kompleks Ni(II), Zn(II), Cd(II) dan Ru(III)
adalah piramid segiempat terherot. Kompleks Mo(V) menunjukan bipiramid segilima 
terherot. Bes Schiff dan kompleks logamnya telah dinilai untuk aktiviti sitotoksiknya 
terhadap sel karsinoma kanser pundi kencing manusia invasif (EJ-28) dan sel 
karsinoma kanser pundi kencing manusia yang minimum invasif (RT-112). Ujian MTT 
digunakan dalam penentuan nilai IC50. Daripada data yang diperolehi, makrokitaran 
bes Schiff tidak aktif terhadap kedua-dua sel kanser pundi kencing tetapi kompleks 
masing-masing telah meningkatkan aktiviti sitotoksik dengan ketara. Kompleks juga 
menunjukkan aktiviti yang lebih tinggi terhadap RT-112 daripada EJ-28. IC50 untuk 
kompleks PdTGSB dan RuTGSB terhadap RT-112 adalah sangat aktif dengan nilai 
masing-masing 0.320 dan 0.472 μM. Kebaharuan kedua dalam kajian ini adalah ujian 
mekanisme kematian menggunakan sebatian makrokitaran. Dua kompleks yang aktif
akan diteruskan bagi kajian lanjutan untuk mekanisme kematian melalui ujian Spesies 
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Oksigen Reaktif (ROS) dan Annexin V. Ujian penghijrahan juga dilakukan untuk 
sebatian paling tidak aktif iaitu CuTGSB. Interaksi pengikatan DNA untuk kompleks 
dengan DNA timus anak lembu (CT-DNA) diselidik melalui spektroskopi penyerapan 
elektronik, spektroskopi pendarfluor, dan pengukuran kelikatan. Pemalar ikatan, Kb

bagi PdTGSB adalah 3.79 x 104 M-1 dan mod ikatan adalah ikatan elektrostatik. Kajian 
antibakteria menggunakan tiga Gram-positif (B. cereus, S. aureus, Methicillin-resistant 
S. aureus) dan empat Gram-negatif (E. coli, K. pneumonia, S. typhimurium, S. sonnei)
bakteria juga telah dilakukan. Kaedah penyebaran cakera standard dan penentuan 
kepekatan penghalang minimum (MIC) digunakan dalam kajian antibakteria.
Kompleks makrokitaran umumnya lebih aktif terhadap bakteria Gram-positif 
berbanding dengan bakteria Gram-negatif. Nilai MIC yang diperolehi untuk CdTHSB 
dan CdTASB terhadap B. cereus adalah 2.0 mg/mL. Oleh itu, kompleks tersebut 
adalah calon untuk menjadi agen antibakteria.
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CHAPTER 1

INTRODUCTION

1.1   Dithiocarbazate

Dithiocarbazate, NH2NHCS2
- (1) and its substituted derivatives, especially ligands with 

nitrogen and sulphur as donor atoms have been of great interest to researchers over the 
past few decades. There have also been studies on Schiff bases prepared through 
condensation of dithiocarbazate with various aldehydes and ketones that yielded 
bidentate, tridentate or multidentate chelating agents (Tarafder et al., 2000).

HS

S

H
N

NH2

(1)

Dithiocarbazates are very promising compounds from the view point of coordination 
chemistry because of their ability for complexation (Singh et al., 2009). The general 
examples of dithiocarbazates used are hydrazine or ethyldiamine, 
NH(H)NHCS(S)CH(H)R (R = methyl/benzyl/2,3 or 4-methylbenzyl groups), and 
NH(H)(CH2)nNH(H) (n = 2 or 3) that act as primary amines.

S-methyldithiocarbazate, SMDTC (2) and S-benzyldithiocarbazate, SBDTC (3) are 
examples of substituted derivatives of dithiocarbazate. SBDTC has four potential 
donor atoms of which two are sterically available for coordination with metal ions (Ali 
et al., 2006). Thus, in principle, both nitrogen-sulphur and sulphur-sulphur chelated 
structures are possible.

S

S

H
N

NH2

(2)
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S

S

H
N

NH2

(3)

Dithiocarbazate and its derivatives are known to undergo thione-thiol tautomerism 
when in solution (Figure 1). They are predominantly in the thione form (NH-C=S) 
when in the solid state. In solution, dithiocarbazate will convert to the thiol form 
(N=C-SH) and when in the presence of metal ions, this allows bonding via the 
deprotonation process from the –SH group (Ali et al., 2005).

S

S

H
N

NH2

S

SH

N
NH2

                             

Figure 1: An example of thione-thiol tautomerism

Dithiocarbazate and its derivatives have obtained considerable attention and have been 
important over the past few decades because of their biological activity (Tarafder et al.,
2002). They have unique structural features and potential pharmacological applications. 
In addition, these compounds have a wide variety of bonding and stereochemistry. 
Hence, many types of complexes with different geometries and properties can be 
formed via a relatively easy preparative method involving fewer steps and chemicals, 
hence with lower costs. 

1.2   Macrocyclic Schiff Bases

Dithiocarbazates react with carbonyl compounds (either aldehydes or ketones) to 
synthesise Schiff bases via a condensation reaction. Schiff bases are compounds that 
contain a carbon-nitrogen double bond and are a diverse class of ligands that contain 
oxygen, nitrogen as well as sulphur as their main donor atoms for chelation on 
complexation. They are important in the pharmaceutical and medicinal field (Tiwari et
al., 2011) and have applications as antibacterial (Azarkish and Sedaghat, 2012), 
antifungal (Abou-Hussein and Linert, 2012), and antitumor agents (Labisbal et al.,
2000), with good reactivity against microbes and cancer cells. Schiff bases have also 
been reported to find use as flourometric analytical reagents in spectroscopy, in 
chromatography, as specific metal-ion membrane sensors (Kedy et al., 2015), and in 
catalysis (Mieczynska et al., 2015).
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Many Schiff bases have been designed to mimic the function of natural carriers in 
transporting specific metal ions and molecules, and in understanding the catalytic 
activity of metalloenzymes and proteins (Sengottuvelan et al., 2007). The successful 
application of ligands and their complexes in enzyme mimicking studies, redox 
catalysts and as potent antibacterial agents, as well as in other uses as 
radiopharmaceuticals, MRI reagents and fluorescent probes have attracted the attention 
of many researchers (Sreedaran et al., 2008).

Macrocyclic Schiff bases are synthesised by reacting dithiocarbazates with dicarbonyl 
compounds. The term macrocycle is defined as a cyclic macromolecule or a cyclic 
compound with nine or more members (Constable, 1999). In coordination chemistry, 
the functionally substituted Schiff bases bearing additional donor groups represent the 
most important class of heteropolydentate ligands capable of forming mono-, bi-, and 
polynuclear complexes with transition and non-transition metals.

Macrocycles have been of great importance in macrocyclic and supramolecular 
chemistry (Borisova et al., 2007). Interest in exploring the synthesis of metal ion 
complexes with macrocyclic ligands has been continuously increasing owing to the 
recognition of the role played by these structures in metalloproteins. The macrocycle 
ring enables a molecule to achieve a degree of structural pre-organization, such that 
key functional groups can interact across extended binding sites in proteins without a
major entropic loss on binding (Driggers et al., 2008).

For macrocycles, the hole size represents an additional parameter which may influence 
greatly the ability to discriminate among the different charged or neutral species to be 
recognized while for the macroacyclic systems, interesting properties may arise from 
their higher flexibility (Vigato and Tamburini, 2004). Hence, different donor atoms, 
the number and size of the chelating rings formed, and the geometries determine the 
selective binding of the charged metal ions. The progressive enlargement of the 
coordinating moiety due to the presence of two or more metal ions allowed further 
understanding of the physico-chemical and biological properties in similar 
coordinating moieties. 

There is increasing interest in the potential applications of macrocylic Schiff bases and 
their metal complexes. This is because of their mixed soft-hard donor character (Abou-
Hussein and Linert, 2012) where, in this work, the nitrogen is the hard donor while 
sulphur is the soft donor. According to Ali and Livingstone (1974), the permanent 
dipole moment and coordinating ability toward metal ions normally decreases in the 
order of H2O > ROH > R2O. But, this order is reverse for sulphur donors (H2S < RSH 
< R2S). 

Besides, the strength of bonding to a metal ion is RO- > RS- and R2O > R2S. If Π 
bonding occurs, the order is reversed to RO- < RS- and R2O < R2S. Furthermore, 
sulphur donor atoms bind more strongly to (b) class metals (4d transition metals) 
compared with oxygen donor atoms. The low-spin d8 ions such as palladium ions and
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d9 ions copper ions have high stability constants when sulphur donor atoms are 
involved in complexation. Hence, they form strong α-bonds with soft ligands (sulphur 
as donor atoms) and also dΠ - dΠ bonds by donating a pair of electrons to the ligand. 
The properties of sulphur ligands also apply to sulphur-nitrogen chelating ligands (Ali 
and Livingstone, 1974).

1.3   Transition Metal Complexes

A metal complex is a single central atom or ion that is connected to surrounding atoms 
or molecules through bonding. A ligand is an atom, ion, or molecule that has at least 
one pair of lone pair electrons to donate to a central metal to form a complex. So, 
ligands are capable of functioning as the electron pair donor in a coordinate covalent 
bond (bonding between ligands and central metal) formed with the metal atom or ion. 
In this study, the macrocyclic Schiff bases act as the ligands.

Normally, complexes require overall neutrality. If the directly-bonded ligands, ie the 
inner-sphere ligands, do not balance the overall charge on the central atom, it requires 
ionic interactions with outer-sphere ligands or another set of ions. The inner-sphere 
ligands arrange themselves in certain geometry to produce geometric structures for the 
complexes. A polydentate ligand can be attached to the metal atom by bonds from two 
or more donor atoms (Jolly, 1996). Examples of donor atoms in the ligand are oxygen, 
nitrogen as well as sulphur. So, when two atoms possessing lone pair electrons are 
present in a molecule, it may bond via both of these atoms, and is termed as a bidentate 
ligand. 

Currently, there are many research reports on the preparation of metal complexes with 
different geometries and properties. Dithioligands are very promising compounds from 
the view point of coordination chemistry due to their ability to complex with metal 
ions easily and also that small changes in the backbone of the structure of these ligands 
can lead to wide variations in biological activity (Tarafder et al., 2000). The ability to 
chelate to metal ions, steric effects of the structure, electronic effects and lipophilicity 
are the four major properties for the effectiveness of the synthesised drug. In addition, 
the shape, structure or the geometry of a certain molecule are also important factors in 
drug activity (Gringauz, 1997).

Metal complexes have been found to be more active against several bacterial species 
than the parent Schiff base especially macrocyclic metal complexes (Mohamed et al.,
2009). This was due to the more stable structure of the metal complexes as compared 
to the unstable parent Schiff base. Normally, metal complexes will have a higher 
melting point as compared to the Schiff base. Some Schiff bases decompose when heat 
is applied (Kalia et al., 2011). In this project, three 3d metals were used which were 
nickel, copper and zinc and five 4d metals were chosen which were niobium, 
molybdenum, ruthenium, palladium and cadmium.
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1.4   Cytotoxicity of Some Sulphur –Nitrogen Ligands and Their Metal Complexes

The biological activity of a chemical species can be explained by experimental and 
computational methods. There are a lot of theoretical studies about the determination 
of chemical activity (Sayin and Karakas, 2013). Generally, quantum chemical 
descriptors are used to determine the ranking of biological activities. The examples of 
these parameters include the highest occupied molecular orbital energies (HOMO), the 
lowest unoccupied molecular orbital energies (LUMO), the energy gap between 
LUMO and HOMO, hardness or softness of the molecules or atoms and the global 
electronegativity.

The biological activities closely depend on the separation of the LUMO and HOMO in 
a molecule. The binding ability of an inhibitor to the appropriate molecule will 
increase with the increase of the HOMO and decrease of the LUMO of complex ions. 
This is due to the ability of electrons to transfer to the acceptor molecule and the strong 
electron accepting ability of the molecules (Alexander and Moccari, 1993). The 
smaller the energy gap between HOMO and LUMO, the more active the molecule is in 
the term of biological properties (Zhang et al., 2012). This is because the electrons are 
easily excited from the lower energy orbital to higher energy orbital. Besides that, soft 
complexes (complexes in which sulphur atoms act as donor atoms) have a small energy 
gap between the molecular orbital and can interact easily with biological molecules. 
Hence, the biological activity is increased with the increase of softness of the 
complexes. 

Cytotoxicity of some sulphur –nitrogen ligands and their metal complexes is based on 
four main criteria. Firstly, the complex should be reasonably labile. Zinc and cadmium 
complexes are the most labile with d10 configurations (Shriver and Atkins, 1999). 
Secondly, the metal chelate should have reasonably high thermodynamic stability. The 
metals used on complexation should be (b) class metals (4d metals), in particular 
palladium and platinum due to its similarity to cisplatin, a common anticancer drug 
used in cancer treatment. Complexes or ligands with sulphur acting as donor atoms are 
the most likely to be effective drugs. This is because they allow for lipid solubility of 
the stable metal complexes (Ali and Livingstone, 1974).

1.5   Mechanism of Death Studies on Synthetic Complexes

Obstruction of the clinical bladder cancer management is due to the high rates of 
recurrence and various series of muscle invasive. The bladder cancer is range from low 
risk non-invasive to muscle-invasive tumors. More than 70% of the bladder cancer’s 
patients will recurrence within five years after the treatments. Currently, various 
clinically reliable drugs for the treatment of bladder cancer are discover to overcome 
the resistance mechanisms involved in the treatments such as chemotherapy. 
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The chemotherapy drugs used to treat bladder cancer are cisplatin, gemcitabine, 
methotrexate, vinblastine, doxorubicin, and mitomycin C. Survival rate can be 
increased with combination chemotherapy. Currectly, the combination of gemcitabine 
and cisplatin with lower toxicity has been used in the treatment of bladder cancer. 
Mitomycin C also been used in the treatment. Treatment using mitomycin C resulted in 
decreased recurrence rates (Maase et al., 2000; Tolley et al., 1996).

Apoptosis is usually the expected mechanism of death of the synthesised anti-cancer 
compounds or drugs. Apoptosis is a mechanism or process of programmed cell death 
without damaging normal cells that occurs in multicellular organisms (Green et al.,
2011). When apoptosis occurs, it will cause a change in cell morphology that leads to 
the blebbing process, cell shrinkage, nuclear fragmentation, chromosomal DNA 
fragmentation, and chromatin condensation (Cohen et al., 1992; Martin and Green, 
1995). The apoptosis process in cancer cells is triggered by body signals. The cell 
begins to shrink and the proteins in the body are activated to break down cellular 
components. Subsequently, enzymes will start to fragment down the nucleus and the 
cell starts blebbing which causes the cell to break into several smaller pieces. The 
macrophages recognise the cell parts and then will remove them from the body. Many 
different signals and pathways lead to apoptosis, but there is only one mechanism that 
actually causes the death of a cell. It undergoes organised degradation of cellular 
organelles by activated proteolytic caspases after a cell receives stimulus. In addition to 
the destruction of cellular organelles, mRNA is rapidly and globally degraded by a 
mechanism that is not yet fully characterised (Thomas et al., 2015). mRNA decay is 
triggered very early in apoptosis. There are various biochemical techniques for the 
analysis of cell death caused by apoptosis such as phosphatidylserine exposure, 
reactive oxygen species generation, caspase activation, and DNA fragmentation. 

Annexin V binding assay is one of the techniques used to study apoptosis in terms of
phosphatidylserine (PS) exposure. PS exposure during apoptosis reviews biodirectional 
trafficking between plasma membrane and cytoplasm in organisms (Fadok et al., 1992). 
In addition, PS exposure on the external leaflet of the plasma membrane is widely 
observed during the apoptosis process and forms the basis for the Annexin V binding 
assay to detect apoptotic cell death (Lee et al., 2013). The activation of a calcium-
mediated and phospholipid scramblase trafficking of lysosomes to the cell surface are 
currently two main potential mechanisms to explain PS exposure. A two-step model 
has been proposed, in which the first step is the internalisation of the plasma membrane 
to form cytoplasmic vesicles occurs as cells shrink during apoptosis. This is followed 
by Ca2+ dependent trafficking of some of these vesicles back to the cell surface, 
leading to PS externalisation (Mirnikjoo et al., 2009). 

In the reactive oxygen species (ROS) generation, the significance of ROS as 
aggravating or primary factors in numerous pathologies is widely recognized. The 
mitochondrion is considered the major intracellular source of ROS (Orrenius et al.,
2007). Generally, there are several harmful effects of reactive oxygen species on the 
cell such as deletions and mutations (Murphy, 2009), mitochondrial dysfunction, 
damage of DNA, and lipid peroxidation. Hydrogen peroxide, H2O2 being a chief 
messenger molecule is involved in physiological signaling cascades regulating various 
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cellular and organ functions (Stone and Yang, 2006). The origin of ROS species 
produced in mitochondria is thought to be superoxide (Andreyev et al., 2005). 
Superoxide, O2

•− does not easily permeate cell and mitochondrial membranes because 
of the presence of the negative charge. The rate of ROS production is measured by 
identifying major sites of ROS production and comparing the rates of ROS production 
in mitochondria isolated from normal and diseased tissue (cancerous tissue). The most 
recent and reliable method to measure low levels of H2O2 in vitro is horseradish 
peroxidase which can trap emittion of H2O2 with high selectivity and affinity. Amplex 
Red Ultra (a derivative of 10-acetyl-3,7- dihydroxyphenoxazine) acts as a sensitive 
fluorescent probe for H2O2 (Zhou et al., 1997). The rate of O2

•− production is lower and 
the production sites are uncertain when mitochondria actively generates adenosine 
triphosphate, ATP. This suggests that in vivo conditions leading to RET or an 
accumulation of NADH will favour O2

•− production.

This chapter presents an overview of basic explanations for the key terms in this thesis. 
Five different macrocyclic Schiff bases and 40 different macrocyclic metal complexes 
were synthesised and their biological activities including the anticancer, DNA binding 
interaction, and antibacterial properties were studied. Macrocyclic complexes that are 
biologically relevant and may have potential to be used as anticancer or antibacterial 
agents due to the various properties observed were fully synthesised and characterised. 
To further study the behavior of a compound against the cancerous cells, mechanism of 
death studies were conducted to study the apoptosis process. The overall structure, 
coordination, geometry, lipophilicity and planarity were the important aspects resulting 
in their selection for a more detailed study of the biological activities.

1.6 Problem Statements

Synthetic drugs such as macrocyclic Schiff bases and their metal complexes are 
important due to their interesting biological properties such as anticancer and 
antibacterial. Hence, macrocyclic Schiff bases derived from dithiocarbazate were 
synthesised via a [2+2] type condensation reaction. There are many types of cancers 
based on the cell in which the cancer originates. From the literature, insufficient study 
was found on macrocyclic compounds tested against various cancer cell lines 
especially bladder cancer. Bladder cancer is considered to be the fourth most common 
type of cancer in men. Cisplatin-based drugs are still used as the frontline 
chemotherapy drug in the treatment of bladder cancer. Hovewer, the side effects of 
cisplatin can be very severe. Therefore, the cytotoxic activity of macrocyclic 
compounds was determined against bladder cancer. Besides, no mechanism of death 
studies were performed to investige the apoptosis process for the macrocyclic 
compounds especially nitrogen-sulphur macrocyclic complexes. Hence, these studies 
were conducted to predict the macrocyclic complexes as potential pharmaceutical 
drugs.
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1.7 Objectives

This study was conducted in the synthesis and characterisation of novel dithiocarbazate, 
macrocyclic Schiff bases and macrocyclic complexes. Besides, this study hypothesised 
that the macrocyclic compounds were able to have various biological activities. 
Therefore, this study was focused at the determination of cytotoxic and antibacterial 
studies. The specific objectives of this study include:

� To synthesise novel macrocyclic Schiff bases derived from dithiocarbazate 
and their transition metal complexes [M = Ni(II), Cu(II), Zn(II), Cd(II), Nb(II), 
Mo(V), Ru(III) and Pd(II)].

� To characterise the macrocyclic Schiff bases and transition metal complexes 
via various physico-chemical techniques (elemental analysis, magnetic 
susceptibility, and molar conductivity) and spectroscopic techniques.

� To determine the cytotoxic, antibacterial, and DNA binding properties of the 
Schiff bases and their complexes.

� To investigate the mechanism of death of the active compounds via Annexin 
V binding and ROS assays.
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