UNIVERSITI PUTRA MALAYSIA

PREVELANCE AND PATHOGENICITY OF ROOT LESION NEMATODE, Pratylenchus spp. ON BANANA (Musa paradisiaca L.) IN PENINSULAR MALAYSIA

ADAMU SAIDU PAIKO

FP 2016 25
PREVELANCE AND PATHOGENICITY OF ROOT LESION NEMATODE,
Pratylenchus spp. ON BANANA (Musa paradisiaca L.) IN PENINSULAR MALAYSIA

By

ADAMU SAIDU PAIKO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This work is dedicated to my beloved parents; late mother Mallama Jummai Ibrahim, my father Alhaji Adamu Saidu Jazu and my bestowed kids; Abdullah, AbdurRahman, Isah and young Mus’ab.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

PREVELANCE AND PATHOGENICITY OF ROOT LESION NEMATODE, Pratylenchus spp. ON BANANA (Musa paradisiaca L.) IN PENINSULAR MALAYSIA

By

ADAMU SAIDU PAIKO

May 2016

Chairman : Associate Professor Kamaruzaman Bin Sijam, PhD
Faculty : Agriculture

Root lesion nematode (Pratylenchus spp.) cause considerable damage to banana plant (Musa spp.) globally. Even though, it has been reported in Malaysia, it disease prevalence and severity of infection has not been attended to. The objective of the research therefore, was aimed at determining the disease prevalence of Pratylenchus spp. and the status of their damage on Musa spp. in Peninsular Malaysia. To study the prevalence and pathogenicity of root lesion nematode, Pratylenchus spp. on banana (Musa paradisiaca) in Peninsular Malaysia, samples of soil and root were collected from banana fields nationwide in 2014. Of the 13 sampled banana fields, lesion nematodes were found in 10 fields (76% of the areas surveyed). Rating of root cortex occupied by reddish brown lesion was significant among all the states, with Johor having the highest disease severity of 36.3% followed by Selangor 20.7%, Perak 20.2% and Pahang 20.4 % respectively. The study found that all the sampled areas have exceeded threshold limit, which is 5%. Mean population density of fields having Pratylenchus spp. from 20 g roots and 200 g soil were significantly different, where population mean of Selangor, (root= 838 and soil= 897), (root= 18,050 and soil= 13,056) in Johor, (root= 2341 and soil= 461) Perak and (root= 11,315 and soil= 7,199) Pahang were recorded. Other plant-parasitic nematodes identified were Rotylenchulus spp., Meloidogyne spp., Helicotylenchus spp., Hoplolaimus spp. and Radophulus similis. Pathological reaction of P. coffeae against banana cultivar berangan (Musa paradisica) multiplications was observed after 12 weeks of growth. There were significant differences in vegetative growth within the various pathogens inoculation levels evaluated. Multiplication factors ranged between 1.6-4 in P. coffeae. Reduction in root length (-23.68 to -84.95), shoot length (-13.11 to -45.80), root weights (-21.30 to -99.85) and shoot weight (-9.30 to -61.62) lengths were recorded at (P< 0.05) level of probability. Banana cultivar berangan showed high level of susceptibility through the activity of polyphenol oxidase and peroxidase-induced resistance at all days after inoculation with P. coffeae compared to the control, except at week 12 where it declined or non-significant with the control. Our observations from this study, revealed that P. coffeae is among the most damaging plant-parasitic nematode species associated with banana in Peninsular Malaysia replacing R. similis, which is seldom reported or
localized to a particular area and in low densities, followed by *Meloidogyne* spp. That it is common on banana cultivar berangan in this country, and that its geographical distribution is not restricted. Although the morphological study of the female populations of *P. coffeae* from Peninsular Malaysia gave some little variation in morphology from the reference sources, we resolved that these variations are within the range of the previously described morphological variations in *P. coffeae* populations from other parts of the world, thus, confirming that the isolates were *P. coffeae*. In general, the glass house pathogenicity trial of *P. coffeae*, suppresses vegetative growth of the banana cultivar berangan significantly. Root lesion indexes showed higher disease severity at all inoculum levels evaluated. It can be concluded that *P. coffeae* is widely distributed and caused significant damage to banana crop in Peninsular Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KEJADIAN DAN PATOGENISITI NEMATODA LESI AKAR, *Pratylenchus* spp. PADA PISANG (*Musa paradisiaca* L.) DI SEMENANJUNG MALAYSIA

Oleh

ADAMU SAIDU PAIKO

Mei 2016

Pengerusi : Profesor Madya Kamaruzaman Bin Sijam, PhD
Fakulti : Pertanian

ACKNOWLEDGEMENTS

All praise and thanks be to Allah S.W.T, the compassionate, most exalted with humility. My profound sincere thanks goes to my academic and research supervisory committee; Associate Prof. Dr. Kamaruzaman Sijam (Chairman) and Dr. Khairulmazmi B Ahmad, who by way of appreciation of ideas, encouragement, useful suggestions and constructive criticisms guided me throughout the period of the research.

My special appreciation goes to the staff of the Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, especially able and capable Science Officers particularly, Mr. Shamsudin Bojang, Mrs. Junaina, Mr. Rozali, Mr. Johari and Mr. Nazri among others. Special gratitude is also extended to my parents, beloved and dear wives Habiba Muhammad and Habiba Abdul-Azeez, my kids for their patience and endurance while away for this programme. Niger State Government, Management and staff of Niger State College of Agriculture, Mokwa, Nigeria for allowing me to pursue M.Sc. program as well as my brothers, sisters and relatives for their unending moral support and understanding. Among friends and colleagues, I consider it necessary to acknowledge and appreciate the efforts of my friend and brother Magaji Usman, Dr. Yakubu Mambe, Ayoub Ahmed Ibrahim, Abdulazeez B kutawa, Osama B Zaid, Tijani Ahmad, Habu Musa and Jamilu Garba. Oladosu Adeniyi Yusuff ,Mr Ibrahim Abdulwasiu (chairman NAIJACOM) are not left out of this gratification, among others.
I certify that a Thesis Examination Committee has met on 03 May 2016 to conduct the final examination of Adamu Saidu Paiko on his thesis entitled "Prevalence and Pathogenicity of Root Lesion Nematode, Pratylenchus spp. on Banana (Musa paradisiaca L.) in Peninsular Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Hafidzi b Mohd Noor, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya bin Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Nik Ahmad Irwan Izzauddin Nik Him, PhD
Associate Professor
School of Biological Sciences
Universiti Sains Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 July 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Kamaruzaman Bin Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Khairulmazmi Bin Ahmad, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirmed that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Adamu Saidu Paiko, GS 40046
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Associate Professor Dr. Kamaruzaman Bin Sijam

Signature:
Name of Member of Supervisory Committee: Dr. Khairulmazmi Bin Ahmad
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Justification Of Study 2
1.3 General Objective 2
1.3.1 Objectives 2

2 LITERATURE REVIEW

2.1 Banana 4
2.2 Plant Parasitic Nematodes 5
2.2.1 Introducing Plant Parasitic Nematodes (Ppn) 5
2.2.2 Incidence Of Root Lesion Nematodes Infestation On Banana 6
2.2.3 Life Cycle Of Root Lesion Nematode 7
2.2.4 Epidemiology Of Root Lesion Nematode 10
2.2.5 Effect Of Ecological Factors On Root Lesion Nematode Occurrence 12
2.2.4.1 Soil Moisture 12
2.2.4.2 Soil Ph 12
2.2.4.3 Soil Temperature 12
2.2.4.4 Soil Texture 13
2.3 Pathogenicity Of Root Lesion Nematode 13
2.4 Damage Threshold Of Root Lesion Nematode 14
2.5 Diseases Development 15
2.6 Integrated Pest Management (Ipm) Program 15

3 DISEASES PREVALENCE AND SEVERITY ASSESSMENT OF ROOT-LESION NEMATODE PRATYLENCHUS SPP. ON BANANA (MUSA SPP.)

3.0 Introduction 18
3.1 Materials And Methods 19
3.1.1 Sampling Collection 19
3.1.2 Isolation Of Nematodes 21
3.1.3 Morphological Identification Of Nematodes 22
3.1.4 Molecular Identification Of Pratylenchus 22
3.1.5 Root Damage Assessment On Bananas 23
Soil Analysis

3.1.6

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.6.1 Organic Carbon Content</td>
<td>24</td>
</tr>
<tr>
<td>3.1.6.2 Organic Matter Content</td>
<td>24</td>
</tr>
<tr>
<td>3.1.6.3 Measuring Soil Particle Size</td>
<td>24</td>
</tr>
<tr>
<td>3.1.6.4 Moisture And Ph</td>
<td>25</td>
</tr>
<tr>
<td>3.1.6.5 Electric Conductivity</td>
<td>26</td>
</tr>
</tbody>
</table>

Statistical Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>26</td>
</tr>
</tbody>
</table>

Results And Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Disease Prevalence And Severity</td>
<td>26</td>
</tr>
<tr>
<td>3.3.2 Morphological Identification Of Pratylenchus</td>
<td>30</td>
</tr>
<tr>
<td>3.3.3 Molecular Identification Of Pratylenchus</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4 Prevalence Of Pratylenchus Infection On Different Banana Cultivars</td>
<td>37</td>
</tr>
<tr>
<td>3.3.5 Damage Of Pratylenchus Coffeae. On Pisang Berangan</td>
<td>37</td>
</tr>
<tr>
<td>3.3.6 Relationship Between Soil Properties And Nematode Abundance In Banana Fields In Malaysia</td>
<td>40</td>
</tr>
</tbody>
</table>

Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>44</td>
</tr>
</tbody>
</table>

Conclusions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>48</td>
</tr>
</tbody>
</table>

PATHOLOGICAL REACTION AND DAMAGING POPULATION LEVELS OF *PRATYLENCHUS COFFEA* ON BANANA CULTIVAR BERANGAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td>4.2 Materials And Methods</td>
<td>50</td>
</tr>
<tr>
<td>4.2.1 Pure Culture Preparation</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Glasshouse Experimental Layout</td>
<td>50</td>
</tr>
<tr>
<td>4.4 Assessment Of Plant Vigour</td>
<td>50</td>
</tr>
<tr>
<td>4.5 Assessment Of Disease Severity</td>
<td>51</td>
</tr>
<tr>
<td>4.6 Preparation Of Crude Extract For Po And Ppo Enzymes Assay</td>
<td>51</td>
</tr>
<tr>
<td>4.6.1 Nematodes Enumeration</td>
<td>52</td>
</tr>
<tr>
<td>4.7 Results And Discussions</td>
<td>52</td>
</tr>
<tr>
<td>4.7.1 Plant Vigour</td>
<td>52</td>
</tr>
<tr>
<td>4.8 Assessment Of Nematode Population And Root Necrosis</td>
<td>57</td>
</tr>
<tr>
<td>4.9 Peroxidase (Po) And Polyphenol Oxidase (Ppo) Activity In Pisang Berangan Against P. Coffeae</td>
<td>59</td>
</tr>
<tr>
<td>4.10 Discussion</td>
<td>60</td>
</tr>
<tr>
<td>4.11 Conclusion</td>
<td>62</td>
</tr>
</tbody>
</table>

SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>63</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>64</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>76</td>
</tr>
<tr>
<td>PUBLICATION</td>
<td>85</td>
</tr>
</tbody>
</table>

© COPYRIGHT UPM
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pratylenchus spp. and their susceptible hosts</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Pratylenchus spp., host crops and their alternative weed hosts</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Suitable host crops and threshold limits of Pratylenchus Spp.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Integrated management strategies for nematode management.</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Areas surveyed for root-lesion nematode Pratylenchus spp. in Peninsular Malaysia</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean population of nematodes genera with prevalence of occurrence and percentages from both roots and soils in Peninsular Malaysia</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Incidence and mean populations of root lesion nematodes on banana cultivar berangan in Peninsular Malaysia</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Morphometrics of the females of the Pratylenchus coffeae populations collected in Peninsular Malaysia</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Three representative isolates of P. coffeae (PRA-A, B and C) with their corresponding matches from the Genbank</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Occurrence of Pratylenchus on different Banana cultivars in Peninsular Malaysia</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Effects of soil texture towards nematodes population and genus</td>
<td>41</td>
</tr>
<tr>
<td>3.8</td>
<td>Correlations of soil physio-chemical properties on nematodes population</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of different inoculation levels of Pratylenchus coffeae on plant heights (cm2) of Pisang berangan cultivar 12 weeks after inoculation</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of different inoculation levels of Pratylenchus coffeae on leaf size (cm2) of Pisang berangan cultivar, in Peninsular Malaysia 12 weeks after</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different inoculation levels of Pratylenchus coffeae on pseudostem girth (cm2) of Pisang berangan, 12 weeks after inoculation</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of different inoculation levels of Pratylenchus coffeae on fresh root and shoot lengths (cm2) and weights (kg) of Pisang berangan, 12 weeks after inoculation</td>
<td>55</td>
</tr>
</tbody>
</table>
4.5 Reproduction and percentage root necrosis caused by different inoculation levels of Pratylenchus coffeae on Pisang berangan cultivar from Peninsular Malaysia
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Volumes and values of banana produced and exported in 2011</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of life cycle of PPN, A) Migratory-endoparasitic B) Ecto-parasitic C) Semi-enparasitic</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Areas surveyed for root-lesion nematode Pratylenchus spp. in Peninsular Malaysia</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Neighbour-Joining tree of three representative isolates of P. coffeae (PRA-A, B and C) populations from Malaysia with their corresponding similar isolates obtained from the Genbank.</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Average percentage root necrotic lesion on Pisang berangan root cortex from four states of Peninsular Malaysia</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of organic matter content on nematodes population</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of moisture content on nematodes population</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of soil pH on nematodes population</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of electrical conductivity on nematodes population</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Activity of PPO (Polyphenol oxidase) of Pisang Berangan roots at 1, 2, 3, 4 and 12 weeks after inoculation with 5000 P. coffeae and Un-inoculated (control).</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Activity of PO (Peroxidase) of Pisang berangan roots at 1, 2, 3, 4 and 12 weeks after inoculation with 5000 P. coffeae and Un-inoculated (control).</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Nematode extraction using whitehead tray method</td>
</tr>
<tr>
<td>3.2</td>
<td>Sieves arrangement for soil particle size analysis</td>
</tr>
<tr>
<td>3.3</td>
<td>Nematodes found alongside Pratylenchus spp (A) Pratylenchus spp (B) Meloidogyne spp (C) Helicotylenchus spp</td>
</tr>
<tr>
<td>3.4</td>
<td>Plate 3.4: nematodes found alongside Pratylenchus spp D) Rhylenchulus spp (E) Hoplolaimus spp (F) Radophulus similli</td>
</tr>
<tr>
<td>3.5</td>
<td>Morphological features of Pratylenchus coffeae. (A) Tail, (B) a-lip region, b-stylet and c-median bulb.</td>
</tr>
<tr>
<td>3.6</td>
<td>Nucleotides comparison of local P. coffeae isolate (LOCAL) with reference isolate from Genebank, LC030392 (SBJCT) isolated from Japan.</td>
</tr>
<tr>
<td>3.7</td>
<td>Above ground symptoms of Root lesion Nematodes on Banana (A). Stunted and toppled plant (B) smaller fruits</td>
</tr>
<tr>
<td>3.8</td>
<td>Lesion scores of Pratylenchus spp on Banana from four states of Peninsular Malaysia</td>
</tr>
<tr>
<td>4.1</td>
<td>Above ground symptoms of stunted growth caused by P. coffeae (B) and control (A) 12 weeks after inoculation</td>
</tr>
<tr>
<td>4.2</td>
<td>Below ground symptoms of reddish brown lesion caused by P. coffeae (B) and control (A) 12 weeks after inoculation</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Banana is the world’s most prominent fruit and also among the major staple foods, alongside, wheat, maize and rice. About a hundred and seven million metric tons of bananas were produced in 2011, across more than 130 countries covering an area of about 0.1 per cent of the agricultural area utilized in the world (Agritrade 2013). Food and Agriculture Organization of United Nations (FAO) (2013) estimated the exchange value to be around US$9 billion and a trade value of about US$25 billion. Over 1,000 cultivars of the bananas have been identified worldwide (Heslop-Harrison and Schwarzacher 2007). In the Malaysian scenario, it has been recognized as the second most commonly grown fruit crop after durian, with a cultivated area of about 29,000 ha and production of 530,000 metric tonnes, which amount to $24 million (Tengku et al, 2011). Johor, Sabah and Sarawak served as major states producing banana covering 27,543 hectares in 2009. Pisang berangan and the Cavendish cultivars cover almost 50% of the banana growing land, while the remaining land are cultivated with other prominent cultivars like; Pisang Mas, Pisang Abu, Pisang Nangka, Pisang Rastali, Pisang Awak, Pisang Tanduk and Pisang Raja (Tengku et al, 2011). about 12% of the bananas produced in Malaysia, are mainly exported to Middle East, Brunei, Hong Kong, and Singapore, while remaining which are mostly cultivated by smallholders are consumed locally.

Banana suffers from many diseases caused by fungi, bacteria, viruses and nematodes (Jones, 2000). The pathogens that cause these diseases vary in the amount of damage they cause with some having very minor effects while others are extremely serious and can kill the plant. Amongst the various pathogens infecting the banana plants, the nematodes infestation is of the prime importance, causing an annual yield loss of approximately 20% (De Waele and Elsen, 2007). The parasitizing of banana by Burrowing nematode is a worldwide phenomenon. In addition, diseases like Fusarium wilt, sigatoka and blood disease have threatened banana production in Malaysia, leading to decreased in output. Another factor seen as a threat is high costs of labour and marketing problems (Abdul Rahman et al., 2014).

Nematodes with an estimated population of about a million species are diverse metazoans (Lambshead, 2004). They form part of almost all ecosystems as consumers of dissolved and particulate organic matter, parasite of plants and animals, bacterivores and herbivores. They are believed to be the most abundant in soil and aquatic sediments. McCarter (2009) put an estimated global loss of $118 billion for 2001, resulting from their impact on crop of which almost half was linked to only two crops; maize and rice. This showed paucity study of their kind, pointing to only 26,000 (estimated < 3%) species studied to date (Hugot et al., 2001; Hallan, 2007). The crops damage from plant parasitic nematodes are agro-climatic conditions dependent, host susceptibility, pathogenicity and other climatic factors (Queneherve, 2009). The impacts of nematode infestation on banana plants are often asymptomatic, owing to the possession of thick root epidermis or recognized at very
advance stage of disease, and the farmers has no option rather than the gross removal of the plant (Abdul Rahman et al., 2014). (PPN) infection on bananas make water up take and nutrients by the host plant less, causing maturation to be delayed, stunting and reduction in bunch size. Level of the damage may differ from vegetative period slightly extended to the emergence of symptom of attack by lesion nematode, which causes the plant to topple. Geographical locations determine the effect of a community of PPN damages on crop (Quénéhervé, 2009). Damage caused by PPNs is like the damage caused by any other pests or parasites, and is influenced by the conditions of environment, host susceptibility, and nematode pathogenicity. There are only few reports on the prevalence of nematodes in Malaysia and also there is inconsistency and knowledge gap regarding the occurrence and prevalence of nematodes. In the past few decades few research work or survey have been done and a very little information is available about the infestation of nematodes and their damage on fruit crops (Sidam and Bilal Mat, 1983; Abdul Rahman et al., 2014).

The most important agriculturally group of nematodes, following cyst nematodes (Heterodera and Globodera) and root knot nematodes (Meloidogyne spp.) are the genus Pratylenchus, the root lesion nematodes (Davis and MacGuidwin 2000). Root lesion nematode (Pratylenchus spp.) cause considerable damage to banana plant (Musa spp.) globally. In Malaysia, it has been reported as one of the damaging species in a study conducted by Abdul Rahman et al., (2014) on distribution of plant parasitic nematodes in Peninsular Malaysia, however, their damaging status has not been defined.

1.2 Justification of study

There are only few reports available or work done in the past on the persistence of nematodes in general, lesion nematodes in particular on the banana cultivated areas. Therefore, it is highly desirable to conduct a research on the population distribution of root lesion nematode, Pratylenchus spp. and level of their infestation for management of their diseases in banana cultivated areas in Malaysia. Since condition favorable for root lesion nematode survival is found in Malaysia, and the idea of the species involved will be important to future breeding efforts, this project was undertaken.

1.3 General objective

The main objective of the present research work was to investigate the prevalence of Pratylenchus spp. infestation in banana (Musa spp.) and assessment of their disease severity in the Peninsular Malaysia.

1.3.1 Objectives

Considering the above points, the studies were conducted with the following objectives:

(1) To investigate disease prevalence and identification of root lesion nematodes among banana acreage in Peninsular Malaysia
(2) To determine the pathological reaction and damaging population level of *Pratylenchus spp.* on banana cultivar berangan.
REFERENCES

International Network for the Improvement of Banana and Plantain (INIBAP), Montpellier, France, 4.

68

Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils.

Speijer P. R. and D. De Waele. (1997). Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP Technical Guidelines 1.INIBAP, Montpellier, France, 42.

