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BULKING AGENT IN WOOD 
 

By 
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April 2016 
 

 

Chairman :  Zaidon Ashaari, PhD 

Faculty :  Forestry 

Bulking treatment through the impregnation of low molecular weight phenol 

formaldehyde (LmwPF) resin is a promising method to enhance the dimensional 

stability of wood. The development of bulking agent that made of modified alkali 

lignin, the glyoxalated alkali lignin is crucial to mitigate the concentrations of 

petrochemical derived phenol and carcinogenic formaldehyde. The objective of this 

study was to enhance the structural homogeneity and chemical reactivity of alkali 

lignin through sequential organic solvents fractionation and glyoxalation, and to 

enhance the dimensional stability of jelutong (Dyera costulata) wood using glyoxalated 

alkali lignin incorporated with low molecular weight phenol formaldehyde resin as 

bulking agent.  

 

Low molecular weight lignin feedstock was obtained through base catalysed 

depolymerisation (BCD) treatments from an alkali lignin (OL) with a weight-average 

molecular weight (Mw) of 11646 g/mol at different combined severity factors. The 

homogeneity of the OL and BCD treated lignins was altered through sequential 

fractionation using organic solvents with different Hildebrand solubility parameters i.e. 

propan-1-ol, ethanol and methanol. The yield of OL and BCD treated lignins dissolved 

in propan-1-ol (F1), ethanol (F2), and methanol (F3) and their molecular weight 

distributions and chemical structures were determined and characterized by Gel 

Permeation Chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy 

and 
13

C-nuclear magnetic resonance (NMR) spectroscopy. The reactivity of the 

obtained low molecular weight lignin feedstock was then enhanced through 

glyoxalation using non-volatile and non-toxic dialdehyde, namely glyoxal, instead of 

formaldehyde. The proportion ratio of glyoxal to sodium hydroxide (NaOH) used in the 

glyoxalation process was optimised using response surface methodology (RSM) and 

central composite design (CCD). The glyoxalated alkali lignin (GL) synthesised using 

the optimum proportion ratio of glyoxal to NaOH was then incorporated with LmwPF 

resin to prepare bulking agent for wood bulking treatment. Oven dried jelutong (Dyera 

costulata) wood was evacuated under vacuum and then followed by soaking in 15, 20 

and 25% concentrations of GL-LmwPF (67% solid of GL:33% solid of LmwPF based 

on the total solute content) and LmwPF resins, respectively at ambient temperature for 

24 h. The impregnated wood was then curing at 180 °C for 30 min. The resin weight 

percent gain (WPG) and dimensional stability in terms of antiswelling efficiency (ASE), 

moisture excluding efficiency (MEE) and water absorption (WA) as well as 
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leachability of bulking agents for GL-LmwPF treated wood were determined and 

compared with untreated wood and wood treated solely with LmwPF resin. The 

formaldehyde release for both GL-LmwPF and LmwPF treated wood were also 

determined.  

 

BCD treatments did not increase the yield of an OL dissolved in propan-1-ol or ethanol 

but did increase the yield of OL dissolved in methanol. Repolymerization of OL 

occurred during the BCD treatment. Lower molecular weight, more homogeneous OL 

tended to dissolve in propan-1-ol and ethanol, but their overall soluble lignin yields 

were low. The OL dissolved in methanol had higher molecular weight, was less 

homogeneous, and had a bulkier structure than OL dissolved in propan-1-ol or ethanol. 
13

Carbon-NMR and FT-IR spectroscopy analyses confirmed that F3 in OL exhibits 

optimum yield and appropriate chemical structures as well as molecular weight 

distributions for resin synthesis. For glyoxalation of alkali lignin, FT-IR spectroscopy 

revealed that lower molecular weight of lignin polymers was formed due to the 

crosslinking of lignin molecules via methylene (CH2) bridges through the condensation 

reaction. RSM and CCD showed that the reactivity of GL reached highest when 

optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353 mole, respectively, were 

used in the glyoxalation process. The WPG of GL-LmwPF treated wood was lower 

than LmwPF treated wood. GL-LmwPF treated wood exhibited positive ASE but the 

values were lower compared to LmwPF treated wood. The MEE and WA of GL-

LmwPF treated wood were also inferior than LmwPF treated wood and untreated wood. 

GL-LmwPF resin was leached from treated wood whereas no leaching was found for 

LmwPF resin after 3 leaching cycles in distilled water. The formaldehyde release of 

GL-LmwPF resin treated wood was 25.76% lesser than wood treated with LmwPF 

resin. Wood treated with 25% GL-LmwPF resin yielded highest ASE value compared 

to 15 and 20% GL-LmwPF treated wood. Hence, wood treated with 25% GL-LmwPF 

resin together with external coatings could be used in several end applications such as 

parquet flooring, paneling and furniture component.  
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Rawatan pukal melalui pengisitepuan fenol formaldehid resin (LmwPF) berberat 

molekul rendah adalah satu kaedah yang berkesan untuk meningkatkan kestabilan 

dimensi kayu. Pembangunan ejen pukal yang diperbuat daripada lignin alkali yang 

diubahsuai iaitu lignin alkali glyoxalated adalah penting untuk mengurangkan 

kepekatan fenol yang diperolehi daripada petrokimia dan formaldehid yang 

berkasinogenik. Objektif kajian ini adalah untuk meningkatkan keseragaman struktur 

dan kereaktifan kimia lignin alkali melalui pemeringkatan berurutan dengan 

menggunakan pelarut organik dan glyoxalasi, dan untuk meningkatkan kestabilan 

dimensi kayu jelutong (Dyera costulata) menggunakan lignin alkali glyoxalated yang 

digabungkan dengan resin fenol formaldehid berberat molekul rendah sebagai ejen 

pukal.  

 

Bahan mentah lignin berberat molekul rendah diperoleh melalui rawatan base catalyzed 

depolymerisation (BCD) daripada lignin alkali (OL) berberat molekul (mw) 11646 

g/mol pada gabungan faktor tahap kekuatan yang berbeza. Kehomogenan struktur OL 

dan lignin-lignin yang dirawat dengan BCD dikawal melauli pemeringkatan berurutan 

dengan menggunakan pelarut organic yang mempunyai parameter keterlarutan 

Hildebrand yang berbeza iaitu propan-1-ol, etanol dan methanol. Hasil OL dan lignin-

lignin yang dirawat dengan BCD yang terlarut dalam propan-1-ol (F1), etanol (F2), dan 

metanol (F3) dan taburan berat molekul serta struktur kimia mereka ditentukan dengan 

Gel Permeation Chromatography (GPC), spektroskopi Fourier transform infrared (FT-

IR) dan spektroskopi 
13

C-nuklear resonans magnetik (NMR). Kereaktifan bahan 

mentah lignin berberat molekul rendah yang diperolehi kemudiannya dipertingkatkan 

melalui proses glyoxalation dengan menggunakan dialdehyde yang tidak meruap dan 

tidak toksik, iaitu glyoxal, daripada formaldehid. Nisbah bahagian glyoxal kepada 

natrium hidroksida (NaOH) yang digunakan dalam proses glyoxalation dioptimumkan 

dengan menggunakan kaedah response surface methodology (RSM) dan central 

composite design (CCD). Lignin alkali glyoxalated (GL) yang disintesis dengan nisbah 

kadar glyoxal kepada NaOH yang optimum kemudiannya digabungkan dengan resin 

LmwPF untuk penyediaan ejen pukal bagi rawatan pukal kayu. Kayu-kayu jelutong 

yang telah dikeringkan di dalam oven didedahkan di bawah vakum dan kemudiannya 

masing-masing direndamkan dalam resin GL-LmwPF (67% pepejal GL: 33% pepejal 

LmwPF berdasarkan jumlah kandungan bahan larut) dan LmwPF berkepekatan 15, 20 

dan 25% pada suhu ambien selama 24 jam. Kayu-kayu yang telah diisitepuan 
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kemudian dimatangkan pada suhu 180 °C selama 30 minit. Kenaikan peratus berat 

resin (WPG) dan kestabilan dimensi dari segi antiswelling efficiency (ASE), moisture 

excluding efficiency (MEE) dan water absorption (WA) serta larut lesap bagi resin-

resin LmwPF dan GL-LmwPF ditentukan dan dibandingkan dengan kayu yang tidak 

dirawat dan kayu dirawat dengan resin LmwPF. Perlepasan formaldehid dari kayu yang 

dirawat dengan kedua-dua resin GL-LmwPF dan LmwPF juga telah ditentukan.  

 

Rawatan BCD tidak meningkatkan hasil OL yang terlarut dalam propan-1-ol atau 

etanol tetapi meningkatkan hasil OL yang terlarut dalam methanol. Repolimersasi OL 

berlaku semasa rawatan BCD dijalankan. OL dengan berat molekul yang lebih rendah, 

struktur yang lebih seragam cenderung untuk melarut dalam propan-1-ol dan etanol, 

tetapi secara keseluruhannya hasil lignin yang terlarut dalam larutan-larutan tersebut 

adalah rendah. OL yang terlarut dalam metanol mempunyai berat molekul yang lebih 

tinggi, strukturnya adalah kurang seragam dan lebih mampat daripada OL yang terlarut 

dalam propan-1-ol atau etanol. Analisis spektroskopi 
13

Carbon-NMR dan FT-IR 

mengesahkan bahawa F3 dalam OL mempamerkan hasil yang optima dan struktur 

kimia serta taburan berat molekul yang sesuai untuk sintesis resin. Untuk proses 

glyoxalation lignin alkali, spektroskopi FT-IR menunjukan bahawa pembentukan 

polimer lignin dengan berat molekul yang lebih rendah adalah disebabkan oleh 

penyilangan antara molekul-molekul lignin melalui pembentukan lingkaran metilena 

(CH2) secara tintak balas condensasi. RSM dan CCD menunjukkan bahawa kereaktifan 

GL mencapai tertinggi apabila jumlah glyoxal dan NaOH yang optimum, iaitu, 0.222 

dan 0.353 mol, masing-masing digunakan dalam proses glyoxalasi. WPG untuk kayu 

yang dirawat dengan GL-LmwPF adalah lebih rendah daripada kayu yang dirawat 

dengan LmwPF. Kayu yang dirawat dengan GL-LmwPF mempamerkan ASE positif 

tetapi nilai-nilainya adalah lebih rendah berbanding dengan kayu yang dirawat dengan 

LmwPF. MEE dan WA untuk  kayu yang dirawat dengan GL-LmwPF adalah lebih 

lemah daripada kayu yang dirawat dengan LmwPF dan juga kayu yang tidak dirawat. 

Larut lesap resin GL-LmwPF dari kayu yang dirawat berlaku sedangkan larut lesap 

resin LmwPF tidak berlaku selepas 3 kitaran larut lesap dalam air suling. Perlepasan 

formaldehid dari kayu yang dirawat dengan resin GL-LmwPF adalah 25.76% lebih 

rendah daripada kayu dirawat dengan resin LmwPF. Kayu yang dirawat dengan 25% 

kepekatan resin GL-LmwPF menghasilkan nilai ASE yang tertinggi berbanding dengan 

kayu yang dirawat dengan kepekatan 15 dan 20% resin GL-LmwPF. Oleh itu, kayu 

dirawat dengan 25% kepekatan resin GL-LmwPF diliputi dengan penyalut luar boleh 

digunakan dalam beberapa aplikasi akhir seperti lantai parket, panel dan komponen 

perabot.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 General Background           

 

Wood chronically is a good material to be used for many applications because of its 

many excellent material properties. The natural beauty and high strength at low density 

of wood make it is the first choice of material to use in many applications such as roof 

truss, column, beam, wall cladding, flooring and so on compared to other materials. 

Although wood possess the excellent properties as mentioned above, but the drawbacks 

of wood such as the dimensional instability when it is exposed to various atmospheric 

conditions, susceptibility to biological attack and changes in appearance when exposed 

to weathering condition limits the potential end-uses of wood.  

 

In fact, the drawbacks of wood can be enhanced through wood modification treatments. 

Wood modification treatment is a means of altering the material to overcome or 

ameliorate one of more of its advantages. Wood modification treatments involve the 

action of a chemical, biological or physical agent upon the material, resulting in a 

desired property enhancement during the service life of the modified wood (Hill 2006a). 

Wood modifications either by bulking, internal coating or croslinking have shown 

promising results to upgrade low quality timbers for potential applications (Ashaari et 

al. 1990a and 1990b; Nicholas and Williams 1987; Rowell and Youngs 1981). Some of 

the modified wood such as phenol formaldehyde resin-treated wood (Impreg and 

Compreg) and heat treated-compressed wood (Lignostone and Lignofol) have been 

introduced and commercialized since many years ago (Rowell and Konkol 1987).  

 

One of the examples of wood modification using bulking principle is impregnation 

modifications. Impregnation or diffusion of wood with a single chemical or 

combination chemicals into wood cell walls followed by polymerization of the 

chemicals is the most adequate method to enhance the properties of wood with this 

implication. Impregnation of low molecular weight phenol formaldehyde (LmwPF) 

compound in the wood followed by full curing under heat may enhance the 

dimensional stability and strength properties of the treated material (Ang 2010; Furuno 

et al. 2004; Sham et al. 2004; Ryu et al. 1991; Rowell and Konkol 1987).  

 

However, the utilization of LmwPF resin as bulking agent also brought some 

disadvantages such as phenol is derived from non-renewable petrochemicals while 

formaldehyde is a known carcinogen. By using so called ‗green‘ materials, the strong 

exploitation of fossil resources can be mitigated, reduce the amount of carbon dioxide 

that enters the atmosphere and take upon the responsibility of using earth‘s resources in 

a sustainable manner, thus improving resource management, indoor air quality (IAQ), 

and generally the overall performance and efficiency of human kind on earth. In 

Malaysia, the launching of green building rating tool, Green Building Index (GBI) in 

2009 by the Pertubuhan Akitek Malaysia (PAM) was an approach to promote 

sustainability in the built environment and raise awareness among developers, 

architects, engineers, planners, designers, contractors and the public about 

environmental issues and our responsibility to the future generations. This was a 

message to show that the awareness to protecting the environment through energy 
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savings, water savings and a healthier indoor environment is getting more important in 

Malaysia.  

 

 

1.2 Problem Statement and Justification 
 

Wood is an anisotropic material, which means it swells and shrinks to a different extent 

in the three anatomical directions–longitudinal (vertical direction), tangential (parallel 

to annual growth rings), and radial (perpendicular to the annual growth rings). Swelling 

of wood in contact with moisture exerts very large forces. When wood in use swells, 

the forces developed can cause serious damage. As mentioned earlier, the dimensional 

instability of wood can be enhanced through bulking treatment i.e. impregnation of low 

molecular weight phenol formaldehyde (LmwPF) compound (bulking agent) in the 

wood followed by full curing under heat which yielded treated products with cell walls 

bulked with insoluble resin polymer.  

 

Although the impregnation modification with LmwPF resin has been studied 

extensively in past few decades ago (Paridah et al. 2006; Furuno et al. 2004; Wan 

Ariffin et al. 1992; Kajita and Imamura 1991), but the study of using lignin based-

phenolic resin as bulking agent to enhance the properties of wood is rather poor. Phenol 

is derived from petrochemical benzene and formaldehyde from methanol that is 

prepared from natural gas. The availability of petrochemicals is finite as it is non-

renewable resource and the prices of raw materials for LmwPF resin would increase 

because the fuel consumption increases as the world‘s population grows (Sellers, 1985). 

Formaldehyde has been classified as a known carcinogen by the International Agency 

for Research on Cancer (IARC), a division of the World Health Organization (WHO). 

The emission of free formaldehyde from the resin during impregnation process and 

service life of the treated products will causes health problems to the consumers 

(Soljacic and Katovic 1988). It has been reported that the formaldehyde emission from 

LmwPF resin impregnated wood reduced when the wood is impregnated with lower 

concentration of LmwPF resin (Nur Izreen et al. 2011; Rabi‘atol Adawiah et al. 2012). 

However, it is anticipated that the effectiveness in enhancing some the properties of 

wood would become inferior if using lower concentration of LmwPF resin as the 

effectiveness in enhancing the dimensional stability of wood through this method is 

very much associated with the ultimate cell wall bulking effect (ultimate polymer of 

chemicals deposited in cell wall) of the impregnated wood (Deka and Saikia 2000; Ang 

2010; Rabi‘atol Adawiah et al. 2012; Leemon et al. 2015).  

 

The polyphenolic nature of lignin makes it a potential substitute for phenol in the 

production of ordinary formaldehyde-based resin. In addition, lignin is the most 

abundant natural and renewable organic polymer in the world after cellulose. Large 

quantities of isolated lignin can be recovered from various pulping or biomass 

conversion processes. Therefore, lignin is an inexpensive raw material that potential for 

the production of environmentally friendly thermosetting resin by substituting the 

phenol in the ordinary formaldehyde based thermosetting resins (Alonso et al. 2004; 

Khan and Ashraf 2007; Cetin and Ozmen 2002; El Mansouri et al. 2006; Cavdar et al. 

2008). Therefore, impregnation of wood with partial glyoxalated alkali lignin (GL) 

substituted-LmwPF resin as bulking agent thus offers advantages by reducing the free 

formaldehyde emission with using lesser neat LmwPF resin while retaining the 

ultimate WPG in the impregnated wood as majority of the solid content deposited in 
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the impregnated wood (especially in the cell walls) was comprised of natural and 

renewable lignin polymer.  

 

To process lignin into various end products, it would be advantageous to use material 

with a more homogenous structure, chemistry and purity (Stewart 2008). The 

homogeneity of lignin can be enhanced by sequential fractionation in different organic 

solvents (Wang et al. 2010; Li et al. 2012). The heterogeneity of lignin can be reduced 

because different parts of the lignin molecule have different hydrogen-bonding capacity 

(Hildebrand solubility parameter) in different organic solvents. Low-molecular weight 

lignin fragments are dissolved in organic solvents with weak or moderate hydrogen-

bonding capacities with a wider range of Hildebrand solubility parameters than the 

higher-molecular weight lignin fragments (Schuerch 1952).  

 

Apart from this, lignins also offer no advantages in terms of chemical reactivity. The 

low reactivity of lignins is the main obstacle limits their utilization in the production of 

resins (Vishtal and Kraslawski 2011). Hence, the reactivity of lignins needs to be 

enhanced in order to increase the possibility of using lignins as feedstock for the 

production of resins. Hydrolysis of lignin in an alkaline medium has been shown to 

increase the reactivity of lignin by liberating lower molecular weight phenolic 

compounds which possess more reactive sites and reduced steric hindrance effect 

(Cheng et al. 2013; El Mansouri et al. 2006; Thring 1994). Apart from this, 

depolymerisation of lignin macromolecule into lower molecular weight fragments is 

also important as one of the requirements for wood bulking treatment is that the 

molecular weight of bulking agents used should be low to ensure the penetration of 

bulking agents into wood cell walls (Norimoto 2000). It has been reported that 

hydroxymethylation is also one of the chemical modification methods applied to 

enhance the reactivity of lignin toward crosslinking agents such as formaldehyde (Lin 

et al. 2010; Mu et al. 2009; Malutan et al. 2008; Zhao et al. 1994). Hydroxymethylation 

enhances the reactivity of lignin by introducing reactive functional groups to the lignin 

molecules. Instead of using toxic and volatile formaldehyde as crosslinking agent in 

hydroxymethylation, non-toxic and non-volatile dialdehydes such as glyoxal also has 

been used as a replacement for formaldehyde (Navarrete et al. 2012; El Mansouri et al. 

2011). Glyoxal can be obtained as a by-product from the generation of hydrogen 

peroxide required by manganese-dependent peroxidase enzymes (Kersten 1990; 

Hirayama et al. 1984).  

 

Although the modifications of lignin to enhance its structural homogeneity and 

chemical reactivity may slightly increase the cost of processing, the cost of processing 

can be reduced by monitoring the concentration of chemicals used by developing the 

optimum treatment method. Furthermore, the treated products are very potential for 

commercialization because it is Green Building Index (GBI) and Leadership in Energy 

and Environmental Design (LEED) complaint material. The treated products could sell 

with better price as it is value-added product that renders superior performance under 

service life. The needs of developing thermosetting resin from renewable raw materials 

as bulking agent for impregnation modification are crucial in order to ensure that the 

sustainability of thermosetting resins raw materials for this modification.  
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1.3 Main Objective 
 

The objective of this study was to enhance the structural homogeneity and chemical 

reactivity of alkali lignin through sequential organic solvents fractionation and 

glyoxalation, and enhance the dimensional stability of jelutong (Dyera costulata) wood 

using glyoxalated alkali lignin (GL) incorporated low molecular weight phenol 

formaldehyde (LmwPF) resin as bulking agent.  

 

 

1.3.1 Specific Objectives  

                                 
1. To obtain optimal yield of alkali lignin with more homogeneous structure 

through base catalysed depolymerisation (BCD) and sequential organic 

solvents fractionation treatments.  

 

2. To optimise the ratios of glyoxal to sodium hydroxide used in the glyoxalation 

process based on the relative intensity of methylene (CH2) bridge using 

response surface methodology (RSM).  

 

3. To determine the molecular weight distributions and thermal stability of 

glyoxalated alkali lignin (GL).  

 

4. To identify the functional groups in low molecular weight phenol 

formaldehyde (LmwPF) resin and GL-LmwPF admixture resin.  

 

5. To evaluate the effectiveness of using GL-LmwPF admixture resin as bulking 

agent to enhance the dimensional stability of jelutong (Dyera costulata) wood.  
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