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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

EXISTENCES AND UNIQUENESS OF SOLUTIONS FOR SOME CLASSES 
OF ITERATIVE FRACTIONAL FUNCTIONAL INTEGRAL AND 

DIFFERENTIAL EQUATIONS

By

       FATEN HASAN MOHAMMED DAMAG

November 2017

Chairman: Professor Adem Kilicman, PhD
Faculty: Science

The iterative functional equations are important classes and deal with fractional
differential and integral equations which involve the composition of unknown.
The related theory for some classes of iterative fractional integral and differential
equations are not established yet and there are still many open problems in this
field.

In this thesis, we focus on some classes of initial value problems in the iterative
fractional integral and differential equations. The existence and uniqueness of
the solutions for such equations, including their qualitative behavior are investi-
gated.

Fixed Point Theorems, Schauder Fixed Point Theorem, Banach Fixed Point The-
orem, Browder-Ghode-Kirk Fixed Point Theorem, Schaefer Fixed Point Theo-
rem, Burton fixed point theorem, Weakly Picard Operator, Power Series, Non
Expansive Operators and function g-Non Expansive Operators are used to prove
the existences and uniqueness of solutions for particular classes of iterative frac-
tional integral and differential equations.

We establish the sufficient conditions for the existence of solutions for three types
of iterative fractional equations i.e iterative fractional differential equations, it-
erative fractional integro-differential equations and iterative fractional integral
equations. Further, the uniqueness and existence of solutions are proved. The
convergence of solutions for special type of iterative fractional differential equa-
tions is also studied.

i



© C
OPYRIG

HT U
PM

The existences and uniqueness of solutions for generalized iterative fractional
differential equations, iterative fractional differential equations with state depen-
dent, and system of iterative fractional differential equations, and the existences
and uniqueness of solutions for generalized classes of iterative fractional integral
equations and system of iterative fractional integral equations are proved.

We also examine the existences and uniqueness of solutions for nonlinear itera-
tive fractional differential equations by testing the convergence of solutions. The
sufficient conditions for nonlinear quadratic iterative integral equations are es-
tablished. A new type of stability based on the Burton fixed point theorem for
the general iterative fractional differential equations is investigated. In order to
verify the theorems, several examples are provided.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KEWUJUDAN DAN KEUNIKAN PENYELESAIAN bAGI BEBERAPA
KELAS PERSAMAAN KAMIRAN DAN PEMBEZAAN FUNGSIAN

PECAHAN BERLELAR

Oleh

        FATEN HASAN MOHAMMED DAMAG

November 2017

Pengerusi: Adem Kilicman, PhD
Fakulti: Sains

Persamaan fungsi berlelar adalah kelas penting dan berkaitan dengan per-
samaan pembezaan dan kamiran pecahan yang melibatkan komposisi yang
tak diketahui. Teori yang berkaitan untuk beberapa kelas persamaan kamiran
dan pembezaan pecahan berlelar belum ditubuhkan dan masih terdapat banyak
masalah terbuka dalam bidang ini.

Dalam tesis ini, kami memberi tumpuan kepada beberapa kelas masalah nilai
awal dalam persamaan kamiran dan pembezaan pecahan berlelar. Kewujudan
dan keunikan penyelesaian untuk persamaan tersebut, termasuk kelakuan kual-
itatif mereka disiasat.

Teorem Titik Tetap, Teorem Titik Tetap Schauder, Teorea Titik Tetap Banach, Teo-
rem Titik Tetap Browder-Ghode-Kirk, Teorem Titik Tetap Schaefer, Teorem Titik
Tetap Burton, Operator Weakly Picard, Siri Kuasa, Operator Tak Mengembang
dan fungsi g -Operator Tak Mengembang digunakan untuk membuktikan kewu-
judan dan keunikan penyelesaian untuk kelas tertentu bagi persamaan kamiran
dan pembezaan pecahan berlelar.

Kami menubuhkan syarat kecukupan untuk kewujudan penyelesaian untuk tiga
jenis persamaan pecahan berlelar iaitu persamaan pembezaan pecahan berlelar,
persamaan kamiran-pembezaan pecahan berlelar dan persamaan kamiran pec-
ahan berlelar. Seterusnya, keunikan dan kewujudan penyelesaian dibuktikan.
Penumpuan penyelesaian untuk persamaan pembezaan pecahan jenis khas juga
dikaji.
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Kewujudan dan keunikan penyelesaian bagi persamaan pembezaan peca-
han berlelar teritlak, persamaan pembezaan pecahan berlelar dengan keadaan
bersandar, dan sistem persamaan pembezaan pecahan berlelar, dan kewujudan
dan keunikan penyelesaian untuk kelas teritlak bagi persamaan kamiran peca-
han berlelar dan sistem persamaan kamiran pecahan berlelar persamaan dibuk-
tikan.

Kami juga meneliti kewujudan dan keunikan penyelesaian bagi persamaan
pembezaan pecahan berlelar tak linear dengan menguji penumpuan penyele-
saian. Syarat kecukupan untuk persamaan kamiran berlelar kuadratik tak lin-
ear ditubuhkan. Jenis kestabilan baharu berdasarkan Teorem Titik Tetap Burton
untuk persamaan pembezaan pecahan berlelar umum diselidiki. Untuk menge-
sahkan teorem tersebut, beberapa contoh disediakan
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CHAPTER 1

INTRODUCTION

1.1 Fractional Calculus

Fractional Calculus (FC) is a branch of mathematical that has been developed
in the traditional definitions of calculation of integral operators and derivatives.
The FC is also referred to by several other names, among them generalized
integral and differential calculus and calculus of arbitrary order. The name “FC
”has been maintained from the time when it meant calculus of rational order
(Podlubny, 1998; Malinowska et al., 2015).

Fractional Calculus was started three centuries ago (Sabatier et al., 2007; Ma-
linowska et al., 2015). FC can be considered an old subject and at the same
time it is a novel one. It was back in the 17th century from a few speculations
of Leibniz and Euler, and gradually advanced until the present (Machado et al.,
2011). The most common notations for β − th order derivative of a function v(s)
defined in interval (a, b) are v(β)(s) or Dβv(s). Negative values of β correspond
to fractional integrals (Podlubny, 1998; Loverro, 2004).

The past few decades have seen the increasing application of FC in pure
mathematics and other scientific fields. However, it would be wrong to classify
FC as a newcomer to science for in actual fact its origin is almost as old as that of
classical calculus itself (Oldham and Spanier, 1974; Loverro, 2004). Over the past
decade, the FC has been acknowledged as one of the greatest tools for describ-
ing long memory processes. The fractional models are useful in engineering,
chemistry, mechanics, electric power, biology and physics, as well as in pure
mathematics (Hilfer, 2000; Loverro, 2004). The most significant of these models
are defined by differential equations with derivatives of fractional order. Their
development has greater complexity compared with the classical integer-order
case and studying the correspondence theory is a highly demanding task
(Loverro, 2004; Machado et al., 2011). Despite the fact that some outcomes of
qualitative analysis of fractional differential equations are similarly obtainable,
numerous classical methods face difficulty in enforcing directly to the fractional
differential equation. Therefore, there is a need to develop specifically new
theories and methods to address the problem of the difficulty encountered
in research. Compared to the classical theory of differential equations, work
on the theory of fractional differential equations is still in its infancy (Zhou, 2014).
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1.1.1 Historical Preface of Fractional Calculus

The concept of derivatives of fractional order first appeared in a notable com-
munication between L’Hospital and Leibniz in 1695. So, the birthday of FC
was on September 30, 1695. On that day, L’Hopital asked Leibniz, “What would
the result be if n = 1

2?”Leibniz’s replied: “An apparent paradox, from which
one day useful consequences will be drawn.”It was thus that, FC came into
existence. Following L′Hospital’s and Leibniz’s first enquiry, fractional calculus
was exclusively a field only for the best minds in mathematics. The question
raised by Leibniz for some derivatives of fractional order was a topical issue for
over 300 years (Ross, 1975; Kiryakova, 1993; Loverro, 2004; Malinowska et al.,
2015).

FC is an old topic since, starting from some speculations of Leibniz in 1695
and Euler in 1730, it has been developed up to nowadays. A list of scientists
had interested for provided important contributions up in this field, includes:
Euler, Lagrange, Laplace, Fourier, Abel, Liouville, Riemann, Greer, Holmgren,
Grunwald, Letnikov, Sonin, Laurent, Nekrassov, Krug, Hadamard, Heaviside,
Pincherle, Hardy and Littlewood, Weyl, Lèvy, Marchaud, Davis, Zygmund,
Love, Erdèlyi , Kober, Widder, Riesz and Feller (see Podlubny (1998); Zhou
(2014); Malinowska et al. (2015)). Nevertheless, studying the derivatives with
non-integer order was in the literature until 1819, when Lacroix (1800) presented
an introduction to fractional derivative on the basis of the conventional expres-
sion for the n− th derivative of the power function (Kiryakova, 1993). Over the
years, FC has become a very attractive subject for mathematicians, and several
varying forms of fractional (i.e. non integer) differential operators have been
introduced: the Grunwald-Letnikov, Riemann-Liouville Hadamard, Caputo,
Riesz (see Oldham and Spanier (1974); Kiryakova (1993); Podlubny (1998);
Hilfer (2000)), and the more recent notions of Cresson (2007), Katugampola
(2011), Klimek (2005), Kilbas et al. (2004) or variable order fractional operators
introduced by Samko and Ross (1993).

In 2010, an interesting perspective to the subject, unifying all mentioned notions
of fractional derivatives and integrals, was introduced in Agrawal (2010) and
later studied in Bourdin et al. (2014), Klimek and Lupa (2013), Odzijewicz et al.
(2012b,a, 2013).

The first application of semi-derivatives (derivatives on the order of half) was
made by Abel in 1823 (see Miller and Ross (1993)). These applications of FC are
in relation to the integral equation for solving the problem tautochronous, re-
lated to the determination of the shape of the curve so that the time of descent of
frictionless point mass sliding down along the curve as a result of gravity is not
influenced by the starting point. Recent decades have shown that derivatives of
arbitrary order and integral are suitable for the description of the real materials
properties, such as in the case of polymers. New fractional order models are

2



© C
OPYRIG

HT U
PM

more satisfactory than the former integrated command. The derivatives of
fractional order are great tools for describing the properties of memory and
several processes and hereditary material, while with the integrated control
models such effects are neglected (Samko et al., 1993; Podlubny, 1998; Gorenflo
and Mainardi, 2000; Malinowska et al., 2015).

In the second half of the 20th century, much research in FC was published in the
engineering literature. In fact, recent progress of FC issues dominates modern
examples of applications in differential and integral equations, physics, signal
processing, fluid mechanics, viscoelasticity, mathematical biology and electro-
chemistry (Debnath, 2004; Odzijewicz et al., 2012a). The majority of the mathe-
matical theories that can be applied when examining FC already existed before
the advent of the last millennium. However, the last century was the time when
the most significant developments occurred by way of application in engineer-
ing and various scientific fields. Mathematics has sometimes had to be modified
to meet what was demanded by physical reality (Debnath, 2003; Loverro, 2004;
Gorenflo and Mainardi, 2008; Dalir and Bashour, 2010).

1.1.2 Different Definitions of Fractional Calculus

FC has some different definitions (see (Oldham and Spanier, 1974; Ross, 1975;
Miller and Ross, 1993; Mainardi, 1997; Podlubny, 1998; Debnath, 2003; Sabatier
et al., 2007)) as:

Definition 1. The Abel integral representation is defined by∫ s

0

v′(τ)

(s− τ)β
dβ = Ψ(s)

for arbitrary β and then

v(s) =
1

Γ(1− β)
.
d−βΨ(s)

ds−β
. (1.1)

Definition 2. The Riemann fractional integral is defined by

D−βv(s) =
1

Γ(β)

∫ s

c

G(µ)

(s− µ)1−β
dµ. (1.2)

Definition 3. The Cauchy integral formula are defined by

G(m)(s) =
m!

2iπ

∫ s+

c

G(µ)

(s− µ)m+1
dµ, (1.3)

and substituted m by β to get

Dβv(s) =
Γ(β + 1)

2iπ

∫ s+

c

G(µ)

(s− µ)1+β
dµ. (1.4)

3
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The proper definition of fractional integral operator is Riemann-Liouvilles

Definition 4. The Riemann-Liouvilles (R−L) derivatives of fractional order is defined
by

Dβ
aG(s) =

1

Γ(m− β)
[
d

du
]m

∫ s

a

G(µ)

(s− µ)β−m+1
dµ, (m− 1) ≤ β < m, (1.5)

in which m is an integer and β is a real number.

Definition 5. The Grunwald-Letnikove derivatives of fractional order is defined by

Dβ
aG(s) = lim

h→0

1

hβ

s−β
h∑

i=0

(−1)i
(

β
i

)
G(t− ih). (1.6)

Definition 6. The Caputo derivatives of fractional order is defined by

CD
a

βG(τ) =
1

Γ(m− β)

∫ τ

a

G(m)(µ)

(τ − µ)γ−m+1
dµ, (m− 1) ≤ β < m, (1.7)

where m is an integer and β is a real number.

Comparison between Riemann-Liouvilles (R− L) and Caputo derivatives.
The definitions of R − L and Caputo are the popular definitions of fractional
derivative, and so most of the studies in this area used them. On the other hand,
there are differences between them such as:-

(1) If the function is positive then the Caputo sense and Riemann fractional
directives are overlapping

(2) If the function is not positive then computation of fractional derivatives are
different, in particular at zero.

(3) Both of them are not commutative.

C
a D

β
t (

C
a D

n
t f(t)) =

C
a Dβ+n

t f(t).(n = 1, 2, . . . .;m− 1 < β < m. (1.8)

aD
n
t (aD

β
t f(t)) =a Dβ+n

t f(t).(n = 1, 2, . . . .;m− 1 < β < m. (1.9)

The interchange of the differentiation operators in formulas (1.8) and (1.9)
is allowed under different conditions

C
a D

β
t (

C
a D

n
t f(t)) =

C
a Dn

t (
C
a D

β
t f(t)) =

C
a Dβ+n

t f(t). (1.10)

f (n) = 0, s = m, (m+ 1) + · · · , n. n = 1, 2, . . . .;m− 1 < β < m.

aD
n
t (aD

β
t f(t)) =a Dβ

t (aD
n
t f(t)) =a Dβ+n

t f(t). (1.11)

f (n) = 0, s = m, (m+ 1) + · · · , n. n = 1, 2, . . . .;m− 1 < β < m.

4
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(4) The R − L fractional derivative and the Caputo fractional derivative are
also particular cases of the following sequential derivative

aD
β
t f(t) =

d

dt

d

dt
. . .

d

dt
aD

(n−β)
t f(t), (n− 1) ≤ β < n (1.12)

C
a D

β
t f(t) =

C
a D

(n−β)
t

d

dt

d

dt
. . .

d

dt
f(t), (n− 1) < β ≤ n (1.13)

The properties of the R-L derivatives and the Caputo derivatives of the
same cumulative order β are different due to the different sequence of dif-
ferential operators d

dt and aD
(n−β)
t .

(5) The derivative of Caputo at a constant c is zero, whereas R − L fractional
derivative to a constant c is nonzero but is equal to

Dβ
s c =

c(s− a)−β

Γ(1− β)
.

(6) The Laplace transform technique in R − L requires the knowledge of the
(bounded) initial values of the fractional integral Jn−β and of its integer
derivatives of order k = 1, 2, . . . , n − 1. In Caputo requires the knowledge
of the (bounded) initial values of the function and of its integer derivatives
of order k = 1, 2, . . . , n− 1 in analogy with the case when β = n.

(7) The Table 1.1 explains some differences between the properties of R − L
and Caputo definitions.

Property Riemann-Liouvill Caputo

g(t) = c = const Dβc =
c.s−β

Γ(1− β)
, c = const Dβc = 0, c = const

Representation Dβ
+g(s) = DnJn−βg(s) Dβ

+g(s) = Jn−βDng(s)

Interpolation
lim
β→n

Dβ
+g(s) = g(n)(s)

lim
β→n−1

Dβ
+g(s) = g(n−1)(s)

limβ→n Dβ
+g(s) = g(n)(s)

limβ→n−1 D
β
+g(s) = g(n−1)(s)

−g(n−1)(0)

Linearity Dβ(λg(s) + h(s)) = λDβg(s)
+Dβh(s)

Dβ
+(λg(s) + h(s)) = λDβ

+g(s)

+Dβ
+h(s)

Non-
commutation

DmDβg(s) = Dβ+m

̸= DβDmg(s)
Dβ

+Dmg(s) = Dβ+m
+

̸= DmDβg(s)

Laplace trans-
form

L
{
Dβg(s);u

}
= uβG(u)−

m−1∑
i=0

ui[Dβ−i−1g(s)]s=0

L
{
Dβ

+g(s);u
}

= uβG(u)−
m−1∑
i=0

uβ−i−1g(i)(0)

Leibniz
Dβ(g(s)h(s)) =

∞∑
i=0

(
β
i

)
(D(β−i)g(s))h(i)(s)

Dβ
+(g(s)h(s)) =

∞∑
i=0

(
β
i

)
(D(β−i)g(s))h(i)(s)

−
n−1∑
i=0

si−β

Γ(i+ 1− β)

(
(g(s)h(t))(i)(0)

)

Table 1.1: Comparison between Riemann-Liouvilles and M. Caputo
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In this thesis, we will use the R − L and Caputo definitions in establising the
theorem and solutions. On the other hand, the R− L fractional derivative could
hardly interpret the physical of the initial conditions required for the initial value
problems that embody fractional differential equations. Furthermore, that oper-
ator has the advantages of rapid convergence, greater stability, and is more ac-
curate in developing various types of numerical algorithms (Kilbas et al., 2006).

Remark 1. From definitions 4 and 6, we can easily get

Dβsµ =
sµ−β

Γ(1− β + µ)
,

D−βsµ =
sµ+β

Γ(1 + β + µ)
,

DβA = A
s−β

Γ(1− β)
,

DβA = 0,

D−βA = A
sβ

Γ(1 + β)
.

1.1.3 Fractional Integral

The integral equation is an equation in which an unknown function appears un-
der an integral sign. In the other hand, the fractional integral equation (FIEs)
is an equation in which an unknown function appears under fractional integral
sign (Davis (1962); Miller and Ross (1993); Podlubny (1998); Prüss (2013)). In our
scoring Cauchy formula reads

Jn
a g(s) = gn(s) =

∫ s

a

(t− τ)n−1

(n− 1)!
g(τ)dτ, s > 0, n ∈ N, (1.14)

where N is the set of positive integers. Based on this definition it should be
noted that gn(s) vanishes at s = 0 with its derivatives of order 1, 2, ..., n− 1. For
convention, it is required that g(s) and from now on gn(s) be a causal function,
(i.e. identically vanishing for s < 0).

Naturally, it is necessary to extend the above formula from the positive integer
values of the index for positive real values using the Γ function, and in fact,
observing that (n − 1)! = Γ(n). By the introduction of arbitrary positive real
numbers β, one can introduce the fractional integral of order β > 0:

Jβ
a g(s) =

∫ s

a

(s− τ)β−1

Γ(β)
g(τ)dτ, s > 0, β ∈ R+, (1.15)

where R+ is the set of non negative real numbers. For complementation we
introduce G0 := J0 = I (Identity operator), (i.e. we mean G0g(s) = g(s)).
Moreover, and Jβg(0+) means the limit (if there is) of Jβg(s) for s → 0+ ; this
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limit may be infinite.

The formulation of the integrated fractional involves some major properties,
which in turn demonstrate the importance in the solution of equations including
integrals and derivatives of fractional order.
First, setting β = 0 for an operator identity, we have

J0g(s) = g(s). (1.16)

Moreover, repeated Cauchy’s integral equation can be seen as

J iJj = J i+j = JjJ i, i, j ∈ N+, (1.17)

which can be generalized as

JβJγ = Jβ+γ = JγJβ , β, γ ∈ R+. (1.18)

The one pre-supposed condition placed upon a function g(s) that needs to be
fulfilled for these and other similar properties to remain true, is that g(s) be a
causal function, i.e. that it is disappearing for s ≤ 0. Another feature of R − L
integral emerges after the function Ψβ(s) is introduced by

Ψβ(s) =
sβ−1

Γ(β)
⇒ Ψβ(s) ∗ g(s) =

∫ s

0

(s− τ)β−1
+

Γ(β)
g(τ)dτ, (1.19)

where s+ denotes the function vanishes for s ≤ 0 and therefore Eq.(1.18) is
a causal function (Oldham and Spanier (1974); Loverro (2004); Gutiérrez et al.
(2010)).

1.1.4 Fractional Derivative

The differential equations can be traced to the mid 17th century, when the
calculation was discovered independently by Newton and Leibniz (Robinson,
2004). The differential equation is any equation that possesses derivatives, either
ordinary derivatives or partial derivatives. ODEs is a differential equation
for a function of a single variable,(example, (w(s))), while a partial differential
equation (PDEs) is a differential equation for a function of several variables,
(example, (w, z, v, s)) (Chasnov (2009); Perko (2013); Hale and Lunel (2013)).
On the other hand, the fractional differential equation (FDEs) an offshoot of
mathematics studying the properties of derivatives of non integer orders (i.e, it
is including ι < β < ι+1 order) (Miller and Ross (1993); Podlubny (1998); Hilfer
(2000); Zhou (2014)).

After defining the fractional integral, it is easy to define the fractional differential
of any positive real power by combining the standard differential operator with a
fractional integral order between 0 and 1. Simply select the operator that will be
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applied first. For instance, one can deduce the derivative of order 3
2 of a function

g(s) as follows:
D

3
2 g(s) = D2J

1
2 g(s),

D
3
2 g(s) = J

1
2D2g(s).

Both approaches provide the basis of two different definitions of fractional
derivatives. The first definition in the integrated fractional before differentia-
tion is applied, is called the fractional derivative of R − L (see the definition
4). The second, which applies the integrated fractional, subsequently called
the derivative of Caputo (see the definition 6 )(Ishteva et al. (2005); Vance (2014)).

The fractional derivatives provide an excellent instrument for describing mem-
ory and inborn properties of different materials and processes. In particular,
the issue of FDEs has been gaining much prominence and attracted attention.
Remarkable case studies offer the main theoretical tools for quality analysis of
FDEs, and simultaneously show where the interconnection of the disparity
between the models of integer differential and models of fractional differential,
are. A great deal of work on the existence, periodicity of solutions, stability,
and optimal solutions for all types of FDEs has been reported (Agarwal et al.
(2010); Ahmad and Nieto (2011); Ahmad et al. (2011)).

The fractional derivatives have many applications in our lives and in many sci-
entific fields such as engineering, physics, biology and economics, etc.(Miller
and Ross (1993); Podlubny (1998); Robinson (2004); Agarwal and O’Regan (2008);
Coddington (2012); Hale and Lunel (2013)).

1.1.5 Concepts Related to the Fractional Calculus

An understanding of the definitions and use of FC will become clearer when
discussing some quick comparatively simple definitions, that arise in studying
these notions such as the Gamma function, Complementary Error Function, and
the Mittag-Leffler function which are processed in the following: -

1.1.5.1 Gamma Function (Γ)

The Gamma function is essentially linked to FC by definition (see the fractional
integral), where if can be clearly explained as a simple generalization factor for
all real numbers defined defined as follows:

Γ(y) =

∫ ∞

0

ezzy−1dz, y ∈ R. (1.20)

The beauty of the Γ function can be found in its properties. The Eq.(1.21) is
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Figure 1.1: Gamma Function of the real argument

unique in which the value for any quantity is, consequence of the form of the
integral, equivalent to that quantity y− 1 times the Γ of the quantum minus one.

Γ(y + 1) = yΓ(y); for y ∈ N+; Γ(y) = (y + 1)!. (1.21)

This can be demonstrated by integrating in parts. The result of this relation for
integer values of y is the definition for factorial. Figure 1.1 shows the Γ function
at and around zero. Note that for non positive integer values, the Γ function goes
to infinity, by yet is defined at non-integer values. From the Γ function we can
define the function Ψ(s), which was helpful for showing alternate forms of the
integral of fractional order. Ψ(s) is obtained by Eq.(1.19) (Loverro, 2004).

Ψβ(s) =
sβ−1

Γ(β)
. (1.22)

1.1.5.2 Complementary Error Function (erfc)

The complementary error function (see Podlubny (1998); Ishteva (2005)) is an
entire function, introduced as

erfc(x) =
2√
π

∫ ∞

x

e−t2dt. (1.23)

The Figure 1.2 explains the erfc function. Special values of the complementary
error functions are

(1) erfc(∞) = 0, (2) erfc(−∞) = 2, (3) erfc(0) = 1.
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Figure 1.2: The Complementary Error Function

The following relationships are worth mentioning

(1) erfc(−x) = 2− erfc(x), (2)

∫ ∞

0

erfc(x)dx =
1√
π
,

(3)

∫ ∞

0

erfc2(x)dx =
2−

√
2√

π
.

1.1.5.3 Mittag-Leffler Function

The Mittag-Leffler function is a powerful function, which is widely used in the
field of FC. It is a natural exponential from solution of differential equations
of an integer order. The Mittag-Leffler function has a similar role in solving
differential equations of non-integer order. Actually, the exponential function
itself is specifically, one of an infinite set, of this seemingly ubiquitous function
(Debnath (2003)), while the Γ function generalizes the factorial function, and the
Mittag-Leffler Function generalizes the exponential function where β = 1. First,
introduced as a one-parameter function by the series

Eβ(v) =
∞∑
i=0

vi

Γ(iβ + 1)
, β > 0. (1.24)

The exponential function corresponds to β = 1. Figure 1.3 shows the Mittag-
Leffler function for different values of β. Also, it is common for Mittag-Leffler
function to be represented as the function of two arguments, β and γ, by taking
the following formula:-

Eβ,γ(v) =

∞∑
i=0

vi

Γ(iβ + γ)
, β > 0, γ > 0. (1.25)
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Most widespread form of the function, but it is not always needed when coupled

Figure 1.3: The MittagLeffler Function for different β, γ = 1.

Figure 1.4: Examples of the two parameters function of Mittag-Leffler type.

with fractional differential equations. Some of its interesting properties can be
found in Miller and Ross (1993); Podlubny (1998); Loverro (2004)

Example 1. We show some examples types of Mittag-Leffler function

(1) E1,1(x) = ex, (2) E2,1(x
2) = cosh(x),

(3) E2,2(x
2) =

sinh(x)

x
, (4) E 1

2 ,1
(x) = ex

2

erfc(−x),

where erfc(x) is the complementary error function and Figure 1.4 illustrates the
Mittag-Leffler type functions give in Example 1 (Ishteva (2005)).
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1.2 Iterative Functional Equations

The term “iterative functional equations”adopted here means “functional equa-
tions in one variable”. With the development of nonlinear dynamic systems,
focus is on not only the movement behavior but also the process that touches on
the problem of the inverse of the iterative operation. For the iterative functional
equation generally it means identical equation consisting of unknown functions,
and composite operations. The iterative functional equation has turned into a
modern branch of mathematics that deals with the differential equation, integral
equations and different dynamic systems. Many mathematical models in the
form of the equation are the data iterative functions of the economy, biology,
gemology, astronomy, geology and other disciplines (Liu and Mai (2002);
Ibrahim (2012); Podisuk (2013a)).

At a given g(u) of the j − th iteration is the function which is composed with
itself j times

g0(u) = u, g1(u) = g(u), g2(u) = g(g1(u)), . . . , gj(u) = g(gj−1(u)),

and denoted by gj(u). A iterative functional equation refers to the equation,
where analytically from a function g(u) is not known, but its composition with
itself is known.

Despite their prevalence, they are very hard to solve, and there are some
mathematical tools for analysis. Generally, resolving mathematical equations
implies deep vision and experimentation with different reformulations and
substitutions. In the literature, there is in-depth research on iteration and
functional equations, classic books (Kuczma et al. (1990); Nechepurenko (1997);
Aczél (2014)), and Latest polls and studies (Kobza (2000); Liu and Mai (2002);
Brown et al. (2003); Liu (2011a); Kruchinin and Kruchinin (2013)).

In this thesis, to focus of the mathematical model of biological experiments, so
the iterative equations for all types are the best methods to study the mathemati-
cal model of biological experiments. In this studies, is interested about two types
of iterative functional equation as iterative fractional integral equation IFIEs
and iterative fractional differential equation IFDEs.

1.2.1 Iterative Integral Equations of Order Fractional

The IFIEs is no less important than integral iterative equations in terms of their
applications and use in our daily lives but are more generalized, and accurate
and applied (see the definition 1.15) (Muresan (2003); El-Sayed et al. (2009);
Lauran (2011b, 2013a)).
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The theory of integral equations describes numerous applications in many
events and real world issues. As such, the Iterative integral equations (IIEs) in
order fractional are usually applied in engineering, mathematics, physics, eco-
nomics and biology. Bear in mind that the integral equations of fractional order
are to create an interesting and important branch of the theory of integral equa-
tions. The theory of these integral equations has been developed significantly
in recent years with the theory of differential equations of fractional order (Pod-
lubny (1998); Babakhani and Daftardar-Gejji (2003)). The IFIEs are open prob-
lems as they have not been studied until now so that we the first work to study
this problem.

1.2.2 Iterative Differential Equations of order Fractional

Amongst the fractional differential equations (FDEs), there is a major class
involving iteration, so the researcher will address previous studies of a special
class of FDEs, called IFDEs. The IFDEs are no less important than iterative
differential equations (IDEs) in terms of their applications and use in our daily
lives but are more generalized and accurate and applied because they use very
little differentiation (µ) and are trapped between ι and ι+1 (Norkin et al. (1973);
Ross (1975); Podlubny (1998)).

Over the past 30 years, there has been a lot of work done in the field of IDEs.
On the other hand, the study of IFDEs began no more than 10 years ago and is
therefore very modern. The IFDEs has emerged in a wide range of science and
technical applications, including modeling of problems of natural and social sci-
ences, such as physics, biology and economics (Stephan, 1969; Podisuk, 2013b,a).

The IFDEs such as certain kinds of delay differential equations depending on
the state, have distinctive features (Egri and Rus, 2007; Liu and Tunç, 2015), and
the arguments of deviation depending on both the state variables w and time τ , it
is of importance in the theory and practice. Furthermore, the IFDEs providing
an effective means for finding approximate solutions have been studied for their
practical applications for a long time (Wang et al. (2013)).

1.3 Existence and Uniqueness

The primary objective of this section of the which is to introduce a unified
area for researching the theories of the existence and uniqueness of a variety of
IDEs and IIEs in fractional order. For all we know, many complex processes
in nature and technology are described by functional differential equations
that dominate today due to the functional components in the equations used
to consider prehistory or after-effect impact. Different classes of functional
differential equations and integral equations are of fundamental importance in
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many problems in the bionomics, epidemiology, electronics, theory of neural
networks,biological ,automatic control, etc.(Norkin et al. (1973); Oregan (1995);
Delbosco and Rodino (1996); Zhou (2014)).

The theorems of the existence and uniqueness of most differential equations and
integral equations are generally produced by the technique of fixed point, for
example, by the fixed point theorem of Schauder or by the principle of mapping
contractions, etc. (Li et al. (2001); Li and Cheng (2009); Lauran (2011a); Granas
and Dugundji (2013)).

1.4 Statement of the Problems

In order to find a good mathematical model for biological experiments re-
searchers to study approximation to solutions. It was proved that fractional
modeling is more appropriate and efficient method. Thus the statement of the
problem in the present study are as follow:
(a) Extended some classes iterative functional in classical calculus to fractional
order and use the same technique to determine the existence and uniqueness
solutions as:

(1) w′(s) = g(s, w[1](s), w[2](s), . . . , w[j](s)). (1.26)

(2) w′(s) = wi(s). (1.27)

(3) w′(s) = g
(
s, w

(
f(s) + h(w(s))

))
. (1.28)

(4)


w′

i(s) = fi

(
s, w1(s), w2(s), w1(w1(s− µ1)), w2(w2(s− µ2))

)
, s ∈ [c, d],

wi(s) = θi(s), i = 1, 2, s ∈ [s0 − µi, s0].
(1.29)

(5) ,
w′(s) = g

(
s, w(w(s)),

∫ s

s0

K(s, r)w(w(r)))dr
)
,

w(s0) = v0,
(1.30)

also

w′(s) = g
(
s, w(w(s)), w(w′(s)),

∫ s

s0

K(s, r)w(w(r))dr
)
,

w(s0) = w0.

(1.31)

(6) w(s) = h(s) +

∫ s

s0

(s− u)β

Γ(β + 1)
K(u,w(w(u)))du, (1.32)

w(s) = h(s) +

∫ s

s0

(s− u)β

Γ(β + 1)
K(u,w(u), w(w(u)))du, (1.33)

w(s) = h(s) +

∫ s

s0

(s− u)β

Γ(β + 1)
K(u,w(w(w(u))))du, (1.34)
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w(s) = h(s) +

∫ s

s0

(s− u)β

Γ(β + 1)
K(u,w(w(u)), w(w(w(u))))du, (1.35)

and

w(s) = h(s) +

∫ s

s0

(s− u)β

Γ(β + 1)
K(u,w,w(w(u), w(w(w(u))))du. (1.36)

(7)


w1(s) = h1(s) +

∫ s

0

(s− r)β

Γ(β + 1)
k1(r, w1(r), w2(r), w1(w1(r)))dr

w2(s) = h2(s) +

∫ s

0

(s− r)β

Γ(β + 1)
k2(r, w1(r), w2(r), w2(w2(r)))dr.

(1.37)

(b) The fractional integral and differential equations with argument depend on
state variable which has been studied within the lasts 10 years. Therefore, some
classes of IFDEs and IFIEs are not established yet and there are still many open
peoblems to be resolved such as:

(1)
dβw(s)

dsβ
= ℵ(s, w(s), w(w(s))).

(1.38)
(2) Dβw(s) = h(s, w(s), w(w(s)), w′(s)),

w(s0) = w0, w′(s0)− w′
0,

(1.39)
Dβw(s) = h(s, w(w′(s))),

w(s0) = w0, w′(s0)− w′
0,

(1.40)

Dβw(s) = h(s, w(s), w(w(s)), w′(s), w′′(s)),

w(s0) = w0, w′(s0) = w′
0, w′′(s0) = w′′

0 ,
(1.41)

and
Dβw(s) = h(s, w(s), w(wv′′(s))),

w(s0) = w0.
(1.42)

(3)



Dβ1w(s) = ϕ1(s)g1

(
s, w(s), w(w(s)), z(s), z(z(s))

)
+

∫ s

0

(s− r)α1−1

Γ(α1)
g1

(
r, w(r), z(r), w(w(r)), z(z(r))

)
dr

Dβ2z(s) = ϕ2(s)g2

(
s, w(s), w(w(s)), z(s), z(z(s))

)
+

∫ s

0

(s− r)α2−1

Γ(α2)
g2

(
r, w(r), z(r), w(w(r)), z(z(r))

)
dr

w(0) = a, z(0) = b, s ∈ [0, 1],
(1.43)

(4) w(s) = h(s, w(s)) + g(s, w(s))

∫ s

0

(s− u)β

Γ(β + 1)
K(u,w(u), w(w(u)))du.

(1.44)
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1.5 Objectives of the Study

1. To extend the solutions of the Eqs.(1.26) and (1.27) to fractional order and
prove the existence and uniqueness solutions by using Schauder fixed
point theorem, Banach fixed point theorem and power series, and inves-
tigate a new type of stability method based on the Burton fixed point theo-
rem of fractional differential equation of Caputo type.

2. To find the approximate and convergent solution by using power series of
the equation (1.38).

3. To extend the solutions of the equations (1.28) and the system (1.29) to frac-
tional order and prove the existence and uniqueness of the solutions by us-
ing Schauder fixed point theorem and Weakly Picard Operator technique.

4. To find the existence and uniqueness solutions of the equations (1.39) −
(1.42) by using Browder-Ghode-Kirk fixed point theorem and Banach
fixed-point theorem.

5. To extend the solutions of the equations (1.30) and (1.31) to fractional order
and prove the existence and uniqueness solutions by using non-expansive
operators and fixed point theorem of the equation.

6. To examine the existence and uniqueness solution of the system (1.43) by
using the Banach fixed point theorem and Schaefer fixed point theorem.

7. To extend the solutions of the equations (1.32)−(1.36) and the system (1.37)
to fractional order and prove the existence and uniqueness solutions by us-
ing function g non-expansive operators technique, non expansive operator
technique and Schauder’s fixed point theorem.

8. To propose a new method for the existing solution of equation (1.44) by
using the principle of contraction and Schaefer fixed point theorem and
establish conditions sufficient for existing solutions.

1.6 Outline of the Thesis

This study is deals with the qualitative aspects of the solution and not the
numerical solutions, so it will focus on the existence of the solution, and
uniqueness (i.e. no necessity to find a solution) because this study is theoretical
and not numerical.

In this thesis, the focus is on the iterative fractional differential equations
and the iterative fractional integral equations. Such equations are significant
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models in studying infection and are associated with studying the motion of the
charged particles in delayed interaction. Also, these equations are of particular
interest to mathematical models in biology, which have a large and fundamental
influence on our lives such as the growth of bacteria. Furthermore, the IFIEs
and the IFDEs provide an effective means of finding approximate solutions
that have been studied for their practical applications for a long time. This thesis
is organized in six self-contained chapters.

Chapter 1 provides a short history of FC and its applications. The fractional
order differentiation and integration is almost as old as the classical calculation
itself; however, there seems to be a striking lack of knowledge in this area
among most mathematicians. This chapter also offers the iterative equations
and their applications and explains why we have chosen this to be the subject of
this study. Furthermore, this chapter presents the research objectives which will
be discussed in the chapters that follow.

Chapter 2 reviews previous studies that focused on this area, which insists of
IDEs or IFDEs and IIEs, or IFIEs.

Chapter 3 focuses on the achievement of the first objectives. In this chapter the
focus is on the theoretical framework used to study the existence and uniqueness
of the generalized IFDEs and Burton stability. There is also a study of the Local
existence and unique results of simple IFDEs to get approximate solutions
for non-linear IFDEs and convergence of this equation by power series. Also,
in this chapter, studies the solutions of the Cauchy problem derived from the
IFDEs with state-dependent by using fixed point theorem of Schauder. Finally,
also presented are solutions of the system of IFDEs achieved by using R − L
differential operator and the technique of the weakly Picard operator, and some
applications of these theorems are provided.

Chapter 4 is concerned with the achievements of the second set of objectives,
including the study of some classes of IFDEs involving the first order and
second order derivatives by using R − L differential operator and fixed point
theorem of Browder-Ghode-Kirk and Banach fixed-point theorem. It also in-
volves the integro-differential equations by using R.L. differential operator and
non-expansive operators and fixed point theorem. Then,the chapter proceeds
to study the solutions of IFDEs involving the derivatives and integral by
using R − L differential operator and non-expansive operators and fixed point
theorem. Finally, , there is the investigation of the existence and uniqueness of
the solution of system iterative integro-differential equations using Banach’s
theorem of fixed-point and Schaefer’s fixed-point theorem with some examples
of each type provided.

Chapter 5 discusses the achievement of the third objective, which studies the
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existing results for some IFIEs, fractional quadratic integral iterative equations
and system of IFIEs by using R.L. differential operator and non-expansive op-
erators and fixed point theorem and the principle of contraction and Schaefer’s
theorem of fixed point and Schauder’s fixed point theorem and some examples
of each type are given.

Chapter 6 concludes the thesis and makes recommendations for future research.
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Fečkan, M. (1993). On a certain type of functional differential equations. Mathematica
Slovaca, 43(1):39–43.

Ge, W. and Mo, Y. (1997). Existence of solutions to differential-iterative equation. Journal
of Beijing Institute of Technology, 6(3):192–200.

Gorenflo, R. and Mainardi, F. (2000). Essentials of fractional calculus. Springer Citeseer.

Gorenflo, R. and Mainardi, F. (2008). Fractional calculus: integral and differential equa-
tions of fractional order. arXiv preprint arXiv:0805.3823.

Górniewicz, L. and Rozpłoch-Nowakowska, D. (1996). On the schauder fixed point theo-
rem. Banach Center Publications, 35(1):207–219.

Granas, A. and Dugundji, J. (2013). Fixed point theory. Springer Science & Business Media.

Grande, Z. (2011). On some equations y′(x) = f(x, y(h(x) + g(y(x)))). Discussiones
Mathematicae, Differential Inclusions, Control and Optimization, 31(2):173–182.

Gutiérrez, R. E., Rosário, J. M., and Tenreiro Machado, J. (2010). Fractional order calcu-
lus: basic concepts and engineering applications. Mathematical Problems in Engineering,
2010(ID 375858):1–19.

Hale, J. K. and Lunel, S. M. V. (2013). Introduction to functional differential equations, vol-
ume 99. Springer Science Business Media.

Haloi, R., Pandey, D. N., and Bahuguna, D. (2011). Existence of solutions to a non-
autonomous abstract neutral differential equation with deviated argument. J. Nonl.
Evol. Equ. Appl, 5:75–90.

Hartung, F. and Turi, J. (1997). On differentiability of solutions with respect to parameters
in state-dependent delay equations. Journal of Differential Equations, 135(2):192–237.

Hilfer, R. (2000). Applications of fractional calculus in physics. World Scientific.

Ibrahim, R. W. (2012). Existence of deviating fractional differential equation. Cubo
(Temuco), 14(3):129–142.

Ibrahim, R. W. (2013). Existence of iterative cauchy fractional differential equation. Journal
of Mathematics, 2013.

130



© C
OPYRIG

HT U
PM

Ibrahim, R. W. and Darus, M. (2014). Infective disease processes based on fractional differ-
ential equation. In Proceedings of the 3rd International Conference on Mathematical Sciences,
volume 1602, pp. 696–703. AIP Publishing.

Ibrahim, R. W., Kilicman, A., and Damag, F. H. (2015). Mixed solutions of mono-
tone iterative technique for hybrid fractional differential equations. arXiv preprint
arXiv:1509.08238.

Ibrahim, R. W., Kılıçman, A., and Damag, F. H. (2016). Extremal solutions by monotone it-
erative technique for hybrid fractional differential equations. Turkish Journal of Analysis
and Number Theory, 4(3):60–66.

Ishikawa, S. (1976). Fixed points and iteration of a nonexpansive mapping in a banach
space. Proceedings of the American Mathematical Society, 59(1):65–71.

Ishteva, M. (2005). Properties and applications of the caputo fractional operator. Depart-
ment of Mathematics, University of Karlsruhe, Karlsruhe.

Ishteva, M., Boyadjiev, L., and Scherer, R. (2005). On the caputo operator of fractional
calculus and c-laguerre functions. Mathematical Sciences Research Journal, 9(6):161.

Katugampola, U. N. (2011). New approach to a generalized fractional integral. Applied
Mathematics and Computation, 218(3):860–865.

Kendre, S., Kharat, V., and Narute, R. (2015). On existence of solution for iterative inte-
grodifferential equations. Nonlinear Analysis and Differential Equations, 3(3):123–131.

Kilbas, A. and Marzan, S. (2005). Nonlinear differential equations with the caputo frac-
tional derivative in the space of continuously differentiable functions. Differential Equa-
tions, 41(1):84–89.

Kilbas, A. A., Saigo, M., and Saxena, R. (2004). Generalized mittag-leffler function and
generalized fractional calculus operators. Integral Transforms and Special Functions,
15(1):31–49.

Kilbas, A. A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and applications of
fractional differential equations, volume 204. Elsevier Science Limited.

Kiryakova, V. S. (1993). Generalized fractional calculus and applications. CRC Press.

Klafter, J., Lim, S., and Metzler, R. (2012). Fractional dynamics: recent advances. World
Scientific.

Klimek, M. (2005). Lagrangian fractional mechanicsa noncommutative approach.
Czechoslovak Journal of Physics, 55(11):1447–1453.

Klimek, M. and Lupa, M. (2013). Reflection symmetric formulation of generalized frac-
tional variational calculus. Fractional Calculus and Applied Analysis, 16(1):243–261.

Kobza, J. (2000). Iterative functional equation x(x(t)) = f(t) with f(t) piecewise linear.
Journal of Computational and Applied Mathematics, 115(1):331–347.

Kruchinin, D. and Kruchinin, V. (2013). Method for solving an iterative functional equa-
tion a2

n

(x) = f(x). arXiv preprint arXiv:1302.1986.

Kuczma, M., Choczewski, B., and Ger, R. (1990). Iterative functional equations. Number 32.
Cambridge University Press.

131



© C
OPYRIG

HT U
PM

Lacroix, S. (1800). Traité du calcul différentiel et du calcul intégral (tome 3 traité des
différences et des séries)[tratado de cálculo diferencial y de cálculo integral (tomo 3
tratado de diferencias y de series)]. París, Francia: Libraire pour les Mathématiques.(Versión
digital obtenida de http://gallica. bnf. fr/el 23 de agosto de 2005).

Lakshmikantham, V., Leela, S., and Devi, J. V. (2009). Theory of fractional dynamic sys-
tems. CSP.

Lakshmikantham, V. and Vatsala, A. (2008). Basic theory of fractional differential equa-
tions. Nonlinear Analysis: Theory, Methods & Applications, 69(8):2677–2682.

Lauran, M. (2011a). Existence results for some differential equations with deviating argu-
ment. Filomat, 25(2):21–31.

Lauran, M. (2011b). Existence results for some integral equation with modified argument.
General Mathematics, 19(3):85–92.

Lauran, M. (2012). Existence results for some nonlinear integral equations. Miskole
Mathem. Notes, 13(1):67–74.

Lauran, M. (2013a). Nonexpansive operators associated to a system of integral equations
with deviating argument. Scientific Studies and Research, 23(2).

Lauran, M. (2013b). Solution of first iterative differential equations. Annals of the University
of Craiova-Mathematics and Computer Science Series, 40(1):45–51.

Lepik, . (2009). Solving fractional integral equations by the haar wavelet method. Applied
Mathematics and Computation, 214(2):468 – 478.

Li, W.-r. and Cheng, S. S. (2009). A picard theorem for iterative differential equations.
Demonstratio Mathematica, 42(2):373–382.

Li, W. R., Cheng, S. S., and Lu, T. T. (2001). Closed form solutions of iterative functional
differential equations. Appl. Math. E-Notes, 1(1):4.

Li, W.-T. and Zhang, S. (2002). Classifications and existence of positive solutions of higher
order nonlinear iterative functional differential equations. Journal of Computational and
Applied Mathematics, 139(2):351–367.

Liu, B. and Tunç, C. (2015). Pseudo almost periodic solutions for a class of first order
differential iterative equations. Applied Mathematics Letters, 40:29–34.

Liu, H. and Li, W. (2008). The exact analytic solutions of a nonlinear differential iterative
equation. Nonlinear Analysis: Theory, Methods & Applications, 69(8):2466–2478.

Liu, J. (2017). Local analytic solutions of an iterative functional differential equation with
deviating arguments depending on the state derivative. International Journal of Emerging
Engineering Research and Technology, 5(2):21–31.

Liu, L. (2011a). Existence of analytic solutions of an iterative functional equation. Applied
Mathematics and Computation, 217(17):7245–7257.

Liu, L. X. (2011b). Analytic solutions of an iterative functional differential equation. In
Key Engineering Materials, volume 474, pp. 2208–2212. Trans Tech Publ.

Liu, X. and Mai, J. (2002). Analytic solutions of iterative functional equations. Journal of
Mathematical Analysis and Applications, 270(1):200–209.

132



© C
OPYRIG

HT U
PM

Lizama, C. and Vergara, V. (2004). Uniform stability of resolvent families. Proceedings of
the American Mathematical Society, 132(1):175–181.

Loverro, A. (2004). Fractional calculus: history, definitions and applications for the engi-
neer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical
Engineering, pp. 1–28.

Machado, J. T., Kiryakova, V., and Mainardi, F. (2011). Recent history of fractional calcu-
lus. Communications in Nonlinear Science and Numerical Simulation, 16(3):1140–1153.

Mainardi, F. (1997). Fractional calculus: Fractals and fractional calculus in Continuum Mechan-
ics. 291–348: Springer.

Malinowska, A. B., Odzijewicc, T., and Torres, D. F. (2015). Advanced methods in the frac-
tional calculus of variations. Springer.

Marian, O. I. (2006). Functional-differential equations of mixed type, via weakly picard
operators. Stud. Univ. Babes-Bolyai, Math. Li (2), pp. 83–95.

Miller, K. S. and Ross, B. (1993). An introduction to the fractional calculus and fractional
differential equations. ISBN-10: 0471588849: Wiley-Interscience.

Mishra, L. N. and Sen, M. (2016). On the concept of existence and local attractivity of so-
lutions for some quadratic volterra integral equation of fractional order. Applied Math-
ematics and Computation, 285:174–183.

Mollapourasl, R. and Ostadi, A. (2015). On solution of functional integral equation of
fractional order. Applied Mathematics and Computation, 270:631–643.

Muresan, V. (2003). Volterra integral equations with iterations of linear modification of
the argument. Novi Sad J. Math, 33(2):1–10.

Muslim, M. and Bahuguna, D. (2008). Existence of solutions to neutral differential equa-
tions with deviated argument. Electron. J. Qual. Theory Differ. Equ, 27:1–12.

Nechepurenko, M. (1997). Iterations of real functions and functional equations. Institute
of Computational Mathematics and Mathematical Geophysics, Novosibirsk.

Norkin, S. et al. (1973). Introduction to the theory and application of differential equations with
deviating arguments, volume 105. Academic Press.

Odzijewicz, T., Malinowska, A. B., and Torres, D. F. (2012a). Fractional calculus of vari-
ations in terms of a generalized fractional integral with applications to physics. In
Abstract and Applied Analysis, volume 2012. Hindawi Publishing Corporation.

Odzijewicz, T., Malinowska, A. B., and Torres, D. F. (2012b). Generalized fractional cal-
culus with applications to the calculus of variations. Computers and Mathematics with
Applications, 64(10):3351–3366.

Odzijewicz, T., Malinowska, A. B., and Torres, D. F. (2013). A generalized fractional cal-
culus of variations. arXiv preprint arXiv:1304.5282.

Oldham, K. and Spanier, J. (1974). The fractional calculus theory and applications of differenti-
ation and integration to arbitrary order, volume 111. Elsevier.

Olver, P. J. (2008). Numerical analysis, lecture notes. http://www-
users.math.umn.edu/ olver/num/lno.pdf., 15(5) : 152−−187.Most.

133



© C
OPYRIG

HT U
PM

Oprea, N. (2009). Numerical solutions of first order iterative functional-differential equa-
tions by spline functions of even degree. Scientific Bulletin of the" Petru Maior" University
of Targu Mures, 6:34.

Oregan, D. (1995). Existence results for nonlinear integral equations. Journal of Mathemat-
ical Analysis and Applications, 192(3):705–726.

Otrocol, D. (2006). Iterative functional-differential system with retarded argument. Revue
d’Analyse Numerique et de Theorie de l’Approximation, 35(2):147–160.

Pata, V. (2014). Fixed point theorems and applications. Technical report, Mimeo.

Perko, L. (2013). Differential equations and dynamical systems, volume 7. Springer Science
Business Media.

Podisuk, M. (2002). On simple iterative ordinary differential equations. Science Asia,
28(2):191–198.

Podisuk, M. (2010). Numerical solution of iterative ordinary differential equation by inte-
gration method. In International Conference on Mathematical and Computational Methods
in Science and Engineering-Proceedings, Almeria, Spain, pp. 57–62. Advances in Mathe-
matical and Computional Methods.

Podisuk, M. (2013a). Application of simple iterative ordinary differential equations.
Procedia-Social and Behavioral Sciences, 88:179–186.

Podisuk, M. (2013b). More on simple iterative ordinary differential equation. Procedia-
Social and Behavioral Sciences, 88:187–195.

Podisuk, M. and Udomchalermpat, S. (2013). Numerical solutions of second order itera-
tive ordinary differential equations. Procedia-Social and Behavioral Sciences, 88:196–204.

Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives,
fractional differential equations, to methods of their solution and some of their applications,
volume 198. Academic press.

Prüss, J. (2013). Evolutionary integral equations and applications, volume 87. Birkhäuser.

Robinson, J. C. (2004). An introduction to ordinary differential equations. Cambridge Univer-
sity Press.

Ross, B. (1975). A brief history and exposition of the fundamental theory of fractional
calculus. In Fractional calculus and its applications, pp. 1–36. Springer.

Rus, I. A. (1993). Weakly picard mappings. Comment. Math. Univ. Carolinae, 34(4):769–773.

Rus, I. A. and Egri, E. (2006). Boundary value problems for iterative functional-differential
equations. Studia Univ. Babes-Bolyai Math, 51:109–126.

Rus, I. A. and Serban, M.-A. (2014). Some existence results for a system of operatorial
equations. Bulletin Mathematique De La Societe Des Sciences Mathematique De Roumanie,
57(1):101–108.

Sabatier, J., Agrawal, O. P., and Machado, J. T. (2007). Advances in fractional calculus, vol-
ume 4. Springer.

Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993). Fractional integrals and derivatives.
Theory and Applications, Gordon and Breach, Yverdon, 1993.

134



© C
OPYRIG

HT U
PM

Samko, S. G. and Ross, B. (1993). Integration and differentiation to a variable fractional
order. Integral Transforms and Special Functions, 1(4):277–300.

Scudo, F. M. (1971). Vito volterra and theoretical ecology. Theoretical Population Biology,
2(1):1–23.

Si, J. and Zhang, W. (2004). Analytic solutions of a class of iterative functional differential
equations. Journal of Computational and Applied Mathematics, 162(2):467–481.

Si, J., Zhang, W., and Kim, G.-H. (2004). Analytic solutions of an iterative functional
differential equation. Applied Mathematics and Computation, 150(3):647–659.

Si, J.-G., Li, W.-R., and Cheng, S. S. (1997). Analytic solutions of an iterative functional
differential equation. Computers & Mathematics with Applications, 33(6):47–51.

Si, J.-g. and Wang, X.-p. (1998). Smooth solutions of a nonhomogeneous iterative func-
tional differential equation with variable coefficients. Journal of Mathematical Analysis
and Applications, 226(2):377–392.

Si, J.-G., Wang, X.-P., and Cheng, S. S. (2000). Nondecreasing and convex c2-solutions of
an iterative functional-differential equation. Aequationes Mathematicae, 60(1-2):38–56.

Song, Y. and Kim, H. (2014). The solution of volterra integral equation of the second kind
by using the elzaki transform. Appl. Math. Sci, 8(11):525–530.

Srivastava, H. M. and Owa, S. (1989). Univalent functions, fractional calculus, and their
applications. Ellis Horwood; New York; Toronto: Halsted Press.

Stanek, S. (1995). On global properties of solutions of functional differential equation
x′(t) = x(x(t)) + x(t). Dynamic Sys, 4:263–278.

Stanek, S. (2004). Global properties of decreasing solutions of the equation x′(t) =
x(x(t)) + x(t). Functional Differential Equations, 4(1-2):p–191.

Stephan, B. H. (1969). On the existence of periodic solutions of z(t) = az(t r + k(t, z(t))) +
f(t). Journal of Differential Equations, 6(3):408 – 419.

Talwong, S., Laohakosol, V., and Cheng, S. S. (2004). Power function solutions of iterative
functional differential equations. Applied Mathematics E-Notes, 4:160–163.

TeBeest, K. G. (1997). Classroom note: Numerical and analytical solutions of volterra’s
population model. SIAM Review, 39(3):484–493.

Vance, D. (2014). Fractional derivatives and fractional mechanics.
https://sites.math.washington.edu/ morrow/33614/papers/danny.pdf.

Wang, J., Deng, J., and Wei, W. (2016). Fractional iterative functional differential equations
with impulses. Fixed Point Theory, 17(1):189–200.

Wang, J., Fec, M., Zhou, Y., et al. (2013). Fractional order iterative functional differential
equations with parameter. Applied Mathematical Modelling, 37(8):6055–6067.

Wang, J., Feckan, M., and Zhou, Y. (2014). Weakly picard operators method for modifed
fractional iterative functional differential equations. Fixed Point Theory, 15:297–310.

Wang, J., Zhou, Y., and Medved, M. (2012). Picard and weakly picard operators technique
for nonlinear differential equations in banach spaces. Journal of Mathematical Analysis and
Applications, 389(1):261–274.

135



© C
OPYRIG

HT U
PM

Wang, K. (1990). On the equation x′(t) = f(x(x(t))). Applied Mathematics Letters, 33(3):405–
425.

Wang, W. (2015). Positive pseudo almost periodic solutions for a class of differential iterative
equations with biological background. Applied Mathematics Letters, 46:106–110.

Wang, X. and Si, J. (2001a). Differentiable solutions of an iterative functional equation. Ae-
quationes Mathematicae, 61(1-2):79–96.

Wang, X.-P. and Si, J.-G. (2001b). Analytic solutions of an iterative functional differential
equation. Journal of Mathematical Analysis and Applications, 262(2):490–498.

Wazwaz, A. (2011). Linear and nonlinear integral equations, volume 639. Springer.

Wazwaz, A.-M. (2010). Partial differential equations and solitary waves theory. Number
310400928. Springer Science and Business Media.

Yang, D. and Zhang, W. (2004). Solutions of equivariance for iterative differential equations.
Applied Mathematics Letters, 17(7):759–765.

Yu, C. and Gao, G. (2005). Existence of fractional differential equations. Journal of Mathemat-
ical Analysis and Applications, 310(1):26–29.

Zhang, P. (2012). Analytic solutions for iterative functional differential equations. Electronic
Journal of Differential Equations, 2012(180):1–7.

Zhang, P. and Gong, X. (2014). Existence of solutions for iterative differential equations.
Electronic Journal of Differential Equations, 2014(07):1–10.

Zhang, P. and Mi, L. (2009). Analytic solutions of a second order iterative functional differ-
ential equation. Applied Mathematics and Computation, 210(2):277–283.

Zhang, W. (1990). Discussion on the differentiable solutions of the iterated equation i =
1nλif

i(x) = f(x). Nonlinear Analysis: Theory, Methods and Applications, 15(4):387–398.

Zhou, Y. (2014). Basic theory of fractional differential equations, volume 6. World Scientific.

136


	Blank Page



