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Two series of zinc borotellurite glasses that were doped with thulium and cerium 

oxide were successfully fabricated using the known melt-quenching technique. The 

glasses were prepared based on the empirical formula of 

{[(TeO2)0.7(B2O3)0.3]0.7[ZnO]0.3}1-x{Tm2O3/CeO2}x with the concentration of the rare earth 

oxides were varied from 0.00 to 0.05 mol.  The structural, elastic and optical 

properties of the glass samples were tested using densimeter, Fourier Transform 

Infrared Spectrometer (FTIR), X-ray diffraction (XRD) analysis, ultrasound 

technique and UV-Visible Spectrophotometer (UV-VIS). The samples with 1 mol% 

of dopants were exposed to gamma radiation with dose ranging from 10 to 35 kGy 

and all the tests were done before and after the radiation process. As the rare earth 

oxides were added into the glass system, the density of the glass was found to 

increase from 3.69 to 4.99 g/cm3. Meanwhile, the molar volume (Vm) of glass 

decreases rapidly at 0.01 mol of the additional oxide and varies beyond that. The 

minimum and maximum values for Vm are 25.57 and 31.75 cm3/mol respectively. In 

terms of FTIR spectra, the absence of Zn-O, Tm-O and Ce-O bonds implies that 

these bonds have been broken and these oxides take the role as network modifier by 

filling up the interstitial spaces inside the glass network. The amorphous nature of 

the glass is confirmed using XRD analysis. Besides, the elastic moduli and other 

elastic parameters of the glass under study generally found to increase with the 

substitution of Tm2O3 and CeO2 while the value of Poisson’s ratio lies in the range of 

0.2633 to 0.2740. In terms of optical parameters, all of them exhibit some variations 

as the dopants are added. After the glass samples with 1 mol% of rare earth oxides is 

radiated with gamma rays, the density for Ce-doped glass found to decrease from 

4.600 to 3.576 g/cm3 whereas for Tm-doped glass, it varies with minimum value of 

4.57 g/cm3 and maximum value of 4.66 g/cm3. Meanwhile, the molar volume for 

both glass series is totally opposite to density. The glass samples also maintain their 

amorphous nature after radiation even though new absorption bands were found to be 

produce in the FTIR analysis. The elastic moduli for cerium doped glass show a 

decrement after exposed to gamma rays while in thulium doped glass, they show an 



© C
OPYRIG

HT U
PM

ii 

 

increasing trend. Furthermore, the optical band gaps for both glass series tend to 

decrease with the increment of radiation dose. In conclusion, the addition of thulium 

and cerium oxide into zinc borotellurite glass found to alter the glasses’ properties 

differently. In addition, the effects of gamma radiation also are different for both 

glass series. This research can contribute new knowledge regarding rare-earth doped 

zinc borotellurite glass and the effect of gamma radiation on them. Besides that, 

these glasses also have a high potential to be used as gain media in laser devices for 

medical surgery and as fibre amplifier in radiation-exposed environment.  
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Dua siri kaca zink borotelurit yang didop dengan tulium dan serium oksida berjaya 

dihasilkan menggunakan teknik sepuh lindap yang terkenal. Kaca ini disediakan 

berdasarkan formula empirikal {[(TeO2)0.7(B2O3)0.3]0.7[ZnO]0.3}1-x{Tm2O3/CeO2}x 

dengan kepekatan nadir bumi oksida divariasikan daripada 0.00 hingga 0.05 mol. 

Sifat struktur, kenyal dan optik sampel kaca diuji menggunakan densimeter, 

Spektrometer Inframerah Jelmaan Fourier (FTIR), analisis pembelauan sinar-X 

(XRD), teknik ultrabunyi dan Spektrofotometer UV-nampak (UV-VIS). Selepas itu, 

sampel dengan 1 mol% dopan didedahkan kepada sinar gama dengan julat dos dari 

10 ke 35 kGy dan semua ujian dilakukan sebelum dan selepas proses radiasi. Apabila 

nadir bumi oksida ini ditambahkan ke dalam sistem kaca, ketumpatan kaca itu 

didapati meningkat dari 3.69 kepada 4.99 g/cm3. Sementara itu, isipadu molar kaca 

(Vm) turun secara mendadak pada 0.01 mol oksida tambahan dan bervariasi selepas 

itu. Nilai minima dan maksima untuk Vm masing-masing adalah 25.57 dan 31.75 

cm3/mol. Dari segi spektra FTIR, ketidakhadiran ikatan Zn-O, Tm-O dan Ce-O 

bererti bahawa ikatan-ikatan ini telah terputus dan bahan oksida ini mengambil 

peranan sebagai pengubah rangkaian dengan memenuhi ruang interstis di dalam 

rangkaian kaca itu. Sifat amorfus kaca itu dipastikan dengan menggunakan analisis 

XRD. Selain itu, modulus kenyal dan parameter kenyal yang lain untuk kaca yang 

dipelajari ini secara umumnya didapati meningkat dengan penggantian Tm2O3 dan 

CeO2 manakala nilai nisbah Poisson terletak pada julat 0.2633 hingga 0.2740. Dari 

segi parameter optik, kesemuanya menunjukkan perubahan apabila dopan ditambah. 

Selepas sampel kaca dengan 1 mol% nadir bumi diradiasi dengan sinar gama, 

ketumpatan untuk kaca yang didop Ce didapati menurun daripada 4.600 kepada 

3.576 g/cm3 sedangkan untuk kaca yang didop Tm, ianya berubah dengan nilai 

minima 4.57 g/cm3 dan nilai maksima 4.66 g/cm3. Sementara itu, isipadu molar 

untuk kedua-dua siri kaca adalah bertentangan dengan ketumpatan. Sampel kaca ini 

juga mengekalkan sifat amorfus mereka selepas radiasi walaupun jalur penyerapan 

baru ditemui terhasil di dalam analisis FTIR. Modulus-modulus kenyal untuk kaca 

yang didop dengan serium menunjukkan penurunan selepas didedahkan kepada sinar 

gama manakala di dalam kaca yang didop dengan tulium, mereka menunjukkan trend 
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yang meningkat. Tambahan pula, nilai jurang jalur optik bagi kedua-dua siri 

cenderung untuk menurun dengan kenaikan dos radiasi. Kesimpulannya, 

penambahan tulium dan serium oksida kepada kaca zink borotelurit telah merubah 

ciri-ciri kaca tersebut secara berbeza-beza. Selain itu, kesan sinar gama juga berbeza 

bagi kedua-dua siri kaca tersebut. Kajian ini boleh menyumbang ilmu baharu 

mengenai kaca zink borotelurit yang didop dengan nadir bumi dan kesan sinar gama 

kepada kaca-kaca tersebut. Selain itu, kaca-kaca ini juga mempunyai potensi yang 

tinggi untuk digunakan sebagai media gandaan di dalam peralatan laser untuk 

pembedahan perubatan dan sebagai amplifier gentian dalam persekitaran yang 

terdedah pada sinar gama. 
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CHAPTER 1  

INTRODUCTION 

This chapter deals with the research background and consists of a brief introduction 

to glass, tellurite glass, and all chemicals that were used in this research. Besides 

that, other important components of the study were also included, such as the 

problem statement, objectives of study, significance of study and hypothesis as well 

as scope and limitations.  

1.1 Research background 

1.1.1 Definition of glass 

The word glass is derived from the Latin term glæsum, referring to a lustrous and 

transparent material. During early civilizations, the most significant properties 

attributed to glass are luster or shine, and in particular its durability when being 

exposed to natural elements (Varshneya, 2013) . It is the oldest man-made material 

and its invention has enabled man to have a broad daylight in his protected 

environment (Aben and Claude, 2012).  

According to the American Society for Testing Materials (ASTM) in 1945, glass can 

be defined as “an inorganic product of fusion which was cooled to a rigid condition 

without crystallizing”. However, this definition does not give a full explanation about 

glass, since several other ways to produce glass were discovered later. These include 

vapour deposition, sol-gel processing of solutions and neutron irradiation of 

crystalline materials. Both sol-gel processing and chemical vapour deposition are 

techniques that would avoid the normal high temperatures applied for glass 

formation. 

Among the common characteristics of glass are, it does not have a long range, 

periodic atomic arrangement and it shows time-dependent glass transformation 

behaviour that makes it different when compared to the other types of solid. The 

absence of long-range order is the property that made glass known as an amorphous 

solid. From the above statement, glass can be fully defined as an amorphous solid 

that is completely lacking in long range, periodic atomic structure, and exhibiting a 

region of glass transformation behaviour (Shelby, 2005).  
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Figure 1.1: Network structure of crystalline and amorphous solid (Mayhugh, 

2010)

1.1.2 Tellurite glass (TeO2) 

Tellurium dioxide is a conditional glass former which can form a glass on its own. 

The term ‘conditional’ is used as the process to produce the glass is very difficult if 

the chemical is not added with other chemical compounds. Before 1985, the studies 

on this type of glass are very scarce and unattractive to international attention (Rivera 

and Manzani, 2017). However, this situation recently has started to change when the 

TeO2 glass was found to possess many unique properties as it was doped with 

transition metals or rare earth ions. Some advantages of tellurite glass are low 

melting points, high refractive index, high dielectric constant and good infrared 

transmission (Halimah et al., 2005a). Besides that, Podmaniczky (1976) and Warner 

et al., (1972) mentioned that it has low acoustic losses and slow-shear wave 

propagation velocity. Hence, they suggested that tellurite glass has a potential to be 

used in laser light modulators.  

In terms of rare-earth doped tellurite glass, many researchers suggested that it has a 

potential to be used in optoelectronic areas. El-Mallawany et al., (2004) stated in 

their study that Er3+ doped tellurite-titanium-tungsten glasses are suitable to be 

applied as fibre amplifier since a broad emission spectrum can be detected at 1550 

nm with a width of 121 nm and decay time 4.5 ms. In addition, the increment of 

overall upconversion fluorescence and relative increase in the intensity of red 

emission with respect to green emission make the glass a promising candidate for 

infrared amplifiers as well as for red and green upconversion emissions. Besides that, 

Er3+ - Yb3+ codoped TeO2-PbF2 oxyhalide tellurite glasses that was studied by Yang 

et al., (2014) was found to enhance the performance of amorphous silicon solar cell 

as they were coupled together.  
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1.1.3 Borate (B2O3) 

Borate is also one of the glass formers which can form glass on its own. According to 

Kotz, (2016), borates are a large number of boron-containing oxyanions that are 

(BO3)
3- units. These units exist in trigonal planar BO3 and tetrahedral BO4 structural 

units which are connected in linear or cyclic arrangement. Borate can also be studied 

by obtaining information regarding two elements that are present in it namely boron 

and oxygen. In the periodic table, boron is the fifth element and categorized as a 

metalloid. Metalloid properties lie between metals and non-metals. It does not 

conduct electricity and heat as good as a metal like copper (Cu) but conducts better 

than non-metal such as sulphur (S) (Adair, 2007). Boron and oxygen in borates form 

strong covalent bonds and thus make them suitable to be used as a glass former. 

Borate glass is known to have high transparency, low melting point, good rare-earth 

ion solubility and high phonon energy (Maheshvaran et al., 2013).  Besides that, 

several researchers also stated that it has high chemical durability, thermal stability 

and cost effective properties (Reddy et al., 2015; Nurbaisyatul et al., 2014). These 

advantages make the glass suitable for various applications such as optical materials, 

low temperature sealing glasses and electronic devices (Chimalawong et al., 2010; 

Rejisha et al., 2016; Beckmann et al., 2013). However, borate glass is also known to 

possess a hygroscopic nature where it can react with atmospheric water. This, in turn, 

limits the glass applications. In order to overcome this problem, other chemical 

oxides are added into the glass system such as alkali metal, heavy metal and rare-

earth oxides. 

1.1.4 Zinc oxide (ZnO) 

Zinc oxide is an inorganic compound which is white in colour (powdered form) and 

insoluble in water. It is widely used as additive in materials such as plastic, glass, 

lubricants and cement. It is naturally found as mineral zincite which is yellow to red 

in colour and usually contains a certain amount of manganese (Klingshirn, 2007). 

Besides that, ZnO can also be synthetically produced via direct, indirect and wet 

chemical processes (Porter, 1991). In the periodic table, zinc is the first element in 

group 12 and classified as a transition metal. Some general properties of transition 

metals are high melting points, good electrical conductivity and have a moderate-to-

extreme hardness (Petrucci et al., 2010). In addition, Helmenstine, (2016) stated that 

transition metal also has low ionization energy, positive oxidation states and exhibits 

metallic luster. Transition metal ions are used as dopants in glasses mainly due to 

two reasons; 1) they have defined and sharp energy levels that can serve as structural 

probes for the dopant environment, and 2) modifications of energy level structure 

due to dopants insertion may lead to interesting applications, such as new lasers and 

luminescence materials (Al-Shamiri and Eid, 2012). 

Many previous researchers have reported the improvement in the properties of a 

material when zinc oxide (ZnO) is added into it. Kundu et al., (2014) mentioned that 

the insertion of ZnO into glass system produces stability and increases the glass 

forming ability. Furthermore, Azlan et al., (2013) stated that ZnO can reduce the 
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melting point and optical band gap as well as increase the refractive index of glass. 

On top of that, it can also act both as the network former and network modifier with 

a certain composition.   

1.1.5 Thulium oxide (Tm2O3) 

Thulium with chemical formula Tm was firstly discovered by Per Teodor Cleve, a 

Swedish chemist, who separated it from an impure sample of erbia in 1879 (Gagnon, 

n.d.). It is a pale green colour compound and can also be prepared synthetically by 

burning thulium metal in air or decomposition of their oxyacid salts such as thulium 

nitrate. Tm is categorized as a rare-earth element which is found in very small 

amount in the vast majority of the geological environment (Atwood, 2012). In 

lanthanide series, thulium is the thirteenth element which is situated between erbium 

(Er) and ytterbium (Yb). The common oxidation state for Tm is +3 while it is also 

available in +2. According to Bonnelle and Spector, (2015), thulium is found in the 

trivalent state in TmAl2, TmS, and Tm2O3 while it can exists in both trivalent and 

divalent states in TmTe and TmSe. A few known uses of Tm and its isotopes are as a 

radiation source in portable X-ray equipment and dopant in ceramic magnetic 

materials used in microwave equipment. (Weast and Lide, 1989). 

In terms of thulium oxide specifically, it can be used in numerous applications such 

as X-ray devices, phosphors, atomic reactors and semiconductors (Sidorowicz et al., 

2016). Meanwhile, Cho et al., (2000) stated that the insertion of Tm3+ into tellurite 

glass network produces an excellent candidate material for efficient optical fibre 

amplifiers at 1.47 µm region. Besides that, Tm-doped materials also have drawn 

much interest due to its ability to produce blue coherent radiation pumped by infrared 

lasers (Santos et al., 2001). A blue laser is very useful as it can be applied in many 

fields such as submarine communications and optical data storage (Hanna et al., 

1990). Furthermore, lasers containing thulium are also used in surgery, dentistry, 

atmospheric testing and remote sensing. 

1.1.6 Cerium oxide (CeO2) 

Cerium (Ce) is a soft, ductile and malleable metal which is very reactive in air or 

water (“Cerium,” n.d.). It is the second element in lanthanide series and located 

between lanthanum (La) and Praseodymium (Pr). Among the rare earth elements, Ce 

is the most abundant and making up 0.0046% of the Earth crust. It was firstly 

discovered in 1803 by Klaproth, Berzalius and Hisinger. A number of minerals found 

to contain cerium include allanite (also known as orthite), samarskite, monazite, 

cerite and bastnasite. Besides that, it can also be produced synthetically by 

metallothermic reduction techniques such as reducing cerous fluoride with calcium 

or using electrolysis of molten cerous chloride. These techniques can produce high-

purity cerium (“Cerium,” 2016). This element is extensively used in the manufacture 

of pyrophoric alloys for cigarette lighters. Furthermore, it is used in carbon-arc 

lighting, especially in the motion picture industry and also useful as a catalyst in 

petroleum refining, metallurgical and nuclear applications. 
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Nowadays, cerium oxide also called ceria is the most common form of cerium that is 

widely used in many applications. The main use of CeO2 is as a polishing compound 

for glass, replacing rouge as it can polish much faster. Moreover, it is also an 

important constituent of incandescent gas mantles. The other emerging application is 

as a hydrocarbon catalyst in the self-cleaning oven where its incorporation into the 

oven walls can prevent cooking residues collection. In terms of cerium-doped 

glasses, Singh and Singh, (2011) reported that they are used in various applications 

such as laser active media, radiation protection of fibre optic materials and 

scintillation materials. 

1.2 Problem statement 

Nowadays, numerous studies have been done on the properties of glass and its 

potential applications. Based on the previous researches, it is widely known that the 

characteristic of glass can be controlled via the addition of chemical oxides. This is 

due to the fact that each chemical oxide possesses unique properties which can then 

alter the glass overall characteristics. The insertion of zinc oxide (ZnO) for example, 

can decrease tellurite glass density (Kaur et al., 2010; Redman and Chen, 1967) 

while the incorporation of aluminium oxide (Al2O3) causes the elastic moduli of 

tellurite-based glass to increase (Balaji et al., 2014). Besides that, it is also important 

to note that this modification is not only dependent on the modifier oxide but also on 

the overall composition of the glass system.   

The doping of glass with rare earth oxides grabs the researchers’ attention due to 

their ability to enhance the optical properties of glass. This is attributed to the 

existence of 4f electrons in these elements. According to Reddy et al., (2015), the 

effect of ligand environment on the 4f shell is minimum as rare earth is embedded 

into a solid matrix. This is caused by 4s and 5p shells which effectively shield the 4f 

shell. As a result, it is easier for the 4f electrons to be ejected from the atom and 

produce the optical transitions that do not exist in the other compound. However, 

some problems arise when the rare earth oxides are added to a high composition, 

where the glass samples tend to become more fragile and in some cases attain a 

crystalline nature. Thus, another method was used in the present study to alter the 

glass properties which is an exposure to gamma radiation. Using this method, it is 

believed that the glass characteristic can be further modified while at the same time 

maintain a low percentage of rare earth ions.  

Several studies were conducted on borotellurite-based glass by previous researchers. 

Maheshvaran et al., (2013) mentioned that B2O3-TeO2 glass with the addition of 

alkali oxide produce glasses with low phonon energy, high refractive index and high 

optical non-linearity. Besides that, it also stated that borotellurite-based glass is 

suitable to be used in the fabrication of various new optical devices. Recently, there 

have been several studies that investigated on zinc borotellurite glass (Eevon et al., 

2016; Faznny et al., 2016; Hazlin et al., 2017), but different types of rare earth oxides 

are used in their study. There is still lack of research that presented on thulium and 

cerium-doped zinc borotellurite glass system. Moreover, exposing thulium and 

cerium-doped zinc borotellurite glass to gamma radiation also has not been done by 
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other researchers before. Hence, this study was conducted in order to study the 

structural, elastic and optical properties of the glass system. Furthermore, the 

influences of gamma radiation to the properties of the prepared glasses were also 

studied. All the data are presented in this thesis. 

1.3 Objectives of study 

This research was conducted based on four clear and concise objectives. The 

objectives are stated below; 

1. To study the effect of Tm2O3/CeO2 on elastic properties of zinc borotellurite 

glass system. 

2. To analyze the effect of Tm2O3/CeO2 on optical properties of zinc 

borotellurite glass system. 

3. To determine the elastic properties of Tm2O3/CeO2 doped zinc borotellurite 

glass using theoretical approach and compare with the experimental values.   

4. To investigate the effect of gamma radiation on elastic and optical properties 

of Tm2O3/CeO2 doped zinc borotellurite glass. 

1.4 Hypotheses 

Based on the above objectives, the hypotheses for this study are; 

1. The addition of Tm2O3 and CeO2 into glass samples are expected to enhance 

the elastic properties of the glass by increasing the elastic moduli, 

microhardness and Debye temperature while decreasing the value of 

Poisson’s ratio. This is because rare earth ion causes the formation of 

bridging oxygen that will increase the rigidity of the glass samples.  

2. These rare earth additions are expected to improve the optical properties of 

the glass by decreasing the energy band gap while increasing molar 

polarizability, molar refraction and also refractive index. The advantage of 

rare earth ion that has 4f electron is the contributing factor to the 

enhancement of these properties. 

3. It is expected that the experimental and theoretical data of elastic properties 

are in a close range.  

4. The exposure to gamma radiation is expected to change the structure, elastic 

and optical properties of glass samples. Gamma radiation will break the 

network bond in the structure and lead to the changes in its properties. 
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1.5 Scope and limitations 

The objectives of this study are achieved by following the scope of the study stated 

below; 

1. The preparation of the glasses was done by using melt-quenching technique 

and based on the stoichiometric equation: {[[(TeO2)0.7 

(B2O3)0.3]0.7(ZnO)0.3]}1-x{Tm2O3/CeO2}x. Tm2O3 and CeO2 act as the dopants 

and vary from 0 to 0.05 mol.  

2. The structures of glasses were analyzed using the Fourier Transform Infrared 

Spectroscopy (FTIR) to study the chemical bonding of the glasses and X-ray 

Diffraction (XRD) to confirm their amorphous nature. 

3. The ultrasonic technique was used to obtain the ultrasonic wave velocity of 

the glass. Then, the longitudinal and shear velocities were used to determine 

the elastic properties of the glasses. 

4. The optical properties of the glasses were investigated by using UV-VIS 

Spectrophotometer. Then, the optical parameters were calculated, such as 

optical band gap, Urbach energy, refractive index, molar and oxide ion 

polarizability and metallization criterion.  

5. The effects of gamma radiation on the glasses were studied by exposing 

glasses containing 0.01 mol of dopant concentration to Co-60 gamma source 

with radiation doses ranging from 10 until 35 kGy.  

1.6 Significance of study 

Nowadays, glass is needed not only for windows and doors but also used as 

photonic, optical and electronic devices. Some studies about rare earth doped glass 

were found to enhance the properties of glass, especially in terms of its optical 

properties. Since then, there was a growing interest among researchers to study about 

rare earth doped-glass in order to produce glass with better properties.  

Gamma radiation was found to be one of the factors that can modify the optical and 

elastic properties of glass. Thus, the outcome of this study may provide a deeper 

knowledge about the properties of the new composition of glasses and influence of 

gamma radiation to them. This research can be a guiding reference for further 

research on elastic and optical properties of rare earth-doped glass in the educational 

field and also in industrial applications.  
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