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Carbon nanotube (CNT) aerogel is a novel nanomaterial with three-dimensional (3D) 

macrostructure. The long CNTs assemble display high porosity, spinnability, 

structural stability, and good electrical conductivity. These characteristic represents a

critical approach towards practical applications such as supercapacitors, gas storage, 

catalyst support, filtration, separation, biological sensors and oil spill removal. CNT 

aerogel is directly synthesized by floating catalyst chemical vapor deposition 

(FCCVD) using petrochemicals such as methane, cyclohexane, toluene or 

dichlorobenzene as a carbon source. Nevertheless, the high cost, depletion of the 

petrochemical products, and environmental aspects have brought the consideration of 

using waste engine oil (WEO) instead as a carbon source. This work is the first ever 

attempt to utilize WEO for CNT aerogel production. It was done via catalytic 

decomposition of WEO with ferrocene as a catalyst through FCCVD method. Prior to 

the reaction process, WEO was first filtered to remove dirt and any solid particles that 

might present. This was later followed by fractional distillation of the oil into different 

fractions which resulted in five (5) fractions. Gas chromatography-mass spectrometry 

(GC-MS) showed successful separation of low molecular weight hydrocarbons which 

was necessary for dissolving the catalyst, while Carbon-nitrogen-sulfur (CNS) 

analysis indicated that each fraction has more than 69% carbon, less than 0.2% 

nitrogen and less than 0.09% sulfur. The reaction was carried out at 1150 °C and 1200 

°C in hydrogen with a flowing rate of 550 - 650 mL min-1. The carbon source solution 

(10 mL) was continuously injected into the furnace tube at a feeding rate of 10 mL h-

1 during one hour reaction time. It was found that all the synthesized CNT aerogel 

were multi-walled carbon nanotubes (MWCNTs) with 99.14% yield for CNT aerogel 

3 synthesized at 1150 °C. Interestingly, CNT aerogel 2-2 and CNT aerogel 3-2 

revealed graphenated carbon nanotubes (G-CNTs) structure obtained at reaction 

temperature 1200 °C. The CNT aerogels had a mesopore distribution with specific 
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surface area in the range between 80.6 - 222.0 m2 g-1. Field emission scanning electron 

microscopy (FESEM) revealed randomly orientated to entangle thin multi-walled 

structure. Oil spill removal study was done by conducting benzene, toluene, and m-

xylene (BTX) as well as kerosene, diesel oil, palm oil and waste engine oil absorption 

of the synthesized CNTs. Results showed that CNT aerogel 5-2 gave the highest 

sorption capacity (Qe) for kerosene in both oil and oil/water system at 71.43 and 75.19 

(g g-1), respectively. Absorption capacity was sustained at 90% for benzene, toluene, 

and m-xylene, 93% for kerosene, 87% for diesel fuel, 68% for palm oil, and 65% for 

waste engine oil even after 10 absorption cycles. Therefore, it can be concluded that 

CNT aerogel were successfully prepared from WEO by using FCCVD method which 

produced MWCNT at 1150 °C and graphenated CNT aerogel at 1200 °C. The CNT 

aerogel showed an excellent sorption capacity for all tested solvents and oils in both 

oil and oil/water systems with commendable recycle performance. 
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HAYDER BAQER ABDULLAH 
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Pengerusi : Profesor Madya Irmawati Ramli, PhD
Fakulti : Sains 

Aerogel nanotiub karbon (CNT) ialah bahan nano baru dengan makrostruktur tiga 

dimensi (3D). Himpunan CNT panjang memaparkan keliangan tinggi, kebolehan spin, 

kestabilan struktur, dan kekonduksian elektrik yang baik. Ciri-ciri ini merupakan 

pendekatan kritikal ke arah aplikasi praktikal seperti superkapasitor, penyimpanan 

gas, sokongan pemangkin, penapisan, pemisahan, penderia biologi dan penyingkiran 

tumpahan minyak. Aerogel CNT disintesis secara langsung secara mangkin terapung 

pemendapan wap kimia (FCCVD) menggunakan petrokimia seperti metana, 

sikloheksana, toluena atau diklorobenzena sebagai sumber karbon. 

Walaubagaimanapun kos yang tinggi, pengurangan produk petrokimia dan aspek-

aspek alam sekitar telah membawa pertimbangan kepada penggunaan sisa minyak 

enjin (WEO) sebagai sumber karbon. Kajian ini merupakan tindakan yang pertama 

kali dilakukan untuk menggunakan WEO untuk penghasilan aerogel CNT. Ianya 

dilaksanakan melalui penguraian bermangkin WEO dengan ferosena sebagai 

pemangkin melalui kaedah FCCVD. Sebelum proses tindak balas, WEO ditapis 

terlebih dahulu untuk membuang kotoran dan sebarang zarah pepejal yang mungkin 

hadir. Ini diikuti oleh penyulingan berperingkat minyak menjadi pecahan-pecahan 

yang berbeza yang menghasilkan lima (5) pecahan Kromatografi gas-spektrometri 

jisim (GC-MS) menunjukkan kejayaan pemisahan hidrokarbon berat molekul rendah 

yang diperlukan untuk melarutkan pemangkin, manakala analisis karbon, nitrogen, 

dan sulfur (CNS) menunjukkan bahawa setiap pecahan mempunyai lebih daripada 

69% karbon, kurang daripada 0.2% nitrogen dan kurang daripada 0.09%. Tindak balas 

telah dilakukan pada suhu 1150 °C dan 1200 °C di dalam hidrogen pada kadar aliran 

550 - 650 mL min-1. Larutan sumber karbon (10 mL) disuntik berterusan ke dalam 

tiub relau melalui pam picagari pada kadar suapan 10 mL j-1 selama satu jam masa 

tindak balas. Didapati semua aerogel CNT yang disintesis adalah berbilang dinding 
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nanotiub karbon (MWCNT) dengan hasil paling tinggi, 99.14% diperolehi oleh 

aerogel CNT 3 yang disintesis pada 1150 °C. Menariknya, aerogel CNT 2-2 dan 

aerogel CNT 3-2 menunjukkan struktur nanotiub karbon bergrafen (G-CNTs) 

diperolehi pada suhu tindak balas 1200 °C. Aerogel CNT tersebut mempunyai taburan 

leliang meso dan luas permukaan spesifik sekitar 80.6-222.0 m2g-1. Mikroskopi 

elektron imbasan (SEM) memaparkan orientasi rawak yang mengkusutkan struktur-

struktur nipis berbilang-dinding. Kajian penyingkiran tumpahan minyak telah 

dilakukan dengan menjalankan ujian penyerapan benzena, toluena dan m-xilena 

(BTX) serta kerosen, minyak diesel, minyak kelapa sawit dan sisa minyak enjin ke 

atas CNT yang disediakan. Hasil kajian menunjukkan aerogel CNT 5 mempunyai 

kapasiti erapan tertinggi (Qe) terhadap kerosen bagi kedua-dua sistem minyak dan 

minyak/air iaitu masing-masing 71.43 dan 75.19 (g g-1). Kapasiti serapan dikekalkan 

pada 90% untuk benzena, toluena, dan m-xilena, 93% untuk kerosen, 87% untuk 

minyak diesel, 68% untuk minyak kelapa sawit, dan 65% untuk sisa minyak enjin 

walaupun selepas 10 kitaran serapan. Oleh itu, dapat disimpulkan bahawa aerogel 

CNT telah berjaya disediakan dari WEO menggunakan kaedah FCCVD yang 

menghasilkan MWCNT pada suhu 1150 °C dan CNT tergrafen pada suhu 1200 °C.

Aerogel CNT tersebut menunjukkan kapasiti erapan yang sangat baik terhadap pelarut 

dan minyak yang diuji untuk kedua-dua sistem minyak dan air/minyak, dengan 

prestasi kitaran semula yang dibanggakan. 
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 CHAPTER 1 

1 INTRODUCTION 

1.1 Background and motivation 

The discovery of multi-walled carbon nanotubes (Iijima, 1991) and single-walled 

carbon nanotubes (Iijima and Ichihashi, 1993), both by Iijima of NEC Laboratories in 

Japan has stimulated researchers all over the world to explore their remarkable 

properties. As described by Iijima 1991, multi-walled carbon nanotubes (MWCNTs) 

consist of two or more concentric graphene sheets while single-walled carbon 

nanotubes (SWCNTs) consist of a single graphene cylinder. Compared to MWCNTs, 

SWCNTs exhibit superior properties that emerge from the firm one-dimensionality 

and crystalline perfection of the structure. These two are often simply called Carbon 

Nanotubes (CNTs). 

Realizing that these structures exhibit remarkable mechanical, electrical, and 

electronic properties, the focus of the CNTs research has moved to the engineering 

viewpoint of the production of CNTs. A significant limiting aspect for carbon 

nanotubes as a commercial material is their size which is limited to small sizes; making 

it very difficult in transferring their nanoscale properties to macroscale applications.

Also, the limits of conventional growth processes, which can grow pristine forests of 

nanotubes for use in research, or as additives in another process (De Volder et al.,
2013). Countless papers have been published describing methods for growing longer 

nanotubes, some evencontinuously, but none have been able to demonstrate a material 

with properties even close to the theoretical limits of individual nanotubes. Up to the 

present time, the longest nanotubes can be grown only a few centimeters (Zhang et 
al., 2013b), and although films (Meng et al., 2014), ribbons (Nath and Sahajwalla, 

2011) and aerogels (Skaltsas et al., 2011) can be produced in laboratories; these are 

still agglomerations of individual nanotubes and not continuous structures.  

While these are interesting approaches and worthy of further research, they are still 

under aspiration approach, where the material strength relies upon the van der Waals 

interactions between the nanotubes, and not on the nanotubes themselves. Even if 

further research improves the utility of such methods, it must be remembered that the 

more complicated a process is, the more difficult and expensive it will be to scale up 

for commercial applications. 

It is of fundamental and practical distinction to scale unique properties of individual 

CNT into macroscopic three-dimensional (3D) porous structures, which take 

advantage of CNT’s flexibility, excellent electrical and thermal properties, and 
mechanical integrity (Scarselli et al., 2015). Therefore, synthesis assembly of CNTs 

into 3D porous architectures is of scientific and technological significance to translate 

the intrinsic features of individual CNT to a macroscopic level (Liu et al., 2011a; 

Nardecchia et al., 2013), thereby allowing for some unprecedented properties. 
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The emerging technologies, including energy storage, sensors, water treatment, etc., 

have driven high demand in the synthesis of lightweight, elastic and robust materials. 

Beside, controlled porosity are destined to provide a variety of functionalities such as 

high surface area, low density, mechanical integrity and great transport properties 

(Hashim et al., 2012). The scientific and engineering challenge is to design and 

produce these structures in applied dimensions while manage accurate control over 

their chemical and physical properties at the nanoscale. Carbon nanotubes are 

extremely appealing with their low density and versatility in many applications. 

Inspired by some natural structures (Ajayan and Zhou, 2001), creating 3D porous 

carbon nanotubes macroscopic design, including all properties of CNTs could be a 

strategy for achieving promising performance for widespread applications. The main 

forms of the 3D macroscopic design of carbon nanotubes are carbon nanotube array 

(Cao et al., 2013), carbon nanotube yarn (Miao, 2013), carbon nanotube ribbon (Wang

et al., 2014), carbon nanotube sponge (Li et al., 2016a), and carbon nanotube aerogel 

(Bryning et al., 2007). Carbon nanotube aerogel (CNT aerogel) is self-sustaining 

assemblies of carbon nanotube tangled well to construct 3D macroscopic design. It 

shows high porosity, lightweight, spin ability to yarn, structural stability, and excellent 

electrical conductivity. CNT aerogel exhibits promising candidate material to be 

employed in various critical applications such as sensors for detecting pressure, gas 

and chemical vapor, catalysts for chemical adsorption, photocatalysis, water 

treatment, electrodes in supercapacitors, microbial fuel cells, lithium-ion batteries, 

dye-sensitized solar cells, environmental materials for chemical removal, capacitive 

desalinization process, and biomaterials for tissue engineering. Therefore, these high-

value applications have driven the development of reliable routes for fabrication of 

CNT aerogel.  

The floating catalyst chemical vapor deposition (FCCVD) method is a practical 

process which produces CNT aerogel through the direct self-sustaining assembling of 

CNTs in the vapor phase (Gspann et al., 2014; Mikhalchan et al., 2016; Motta et al.,
2007). This process can create dens of CNT aerogel in one step and is considered as a 

promising process for large-scale productions, as well as having the ability to control 

the aerogel structure due to the self-assembly of pure CNTs in the vapor phase. 

Basically, the association of CNTs during gas flow produces an aerogel, which is 

formed by assembly of the grown CNTs by van der Waals attractions before 

condensation to a tangled CNTs (Gspann et al., 2014). The previous synthesis of CNT 

aerogel was conducted on commercial carbon sources such as methane, ethanol, 

hexane, and toluene. To convey in the consideration on the depletion of fossil fuel, 

waste engine oil (WEO) is the preferred candidate for the imminent studies. However, 

control the assembly of CNTs in stable form during gas flow remains a main challenge 

for continuous synthesis of CNT aerogel with desired structures. 

Therefore, the motivation to develop a feasible and scalable method of CNT aerogel 

production with controllable structures based on abundant carbon source is for 

emerging practical applications. 
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1.2 Research problems 

The high cost of CNTs synthesis, which restricts its large scale in macrostructure 

production, is the crucial aspect to the success of the development and 

commercialization of CNTs industries. Practically, the CNTs are currently produced 

in a relatively high quality but in limited quantities. Therefore, future use of this 

worthwhile material strongly depends on the development of a technology for its 

large-scale macrostructure production. Accordingly, large-scale synthesis of CNT 

aerogel has been the subject of intensive researches, and many attempts have been 

conducted to optimize and control the CNTs growth. 

The CNTs macro-assembling of individual CNTs to aerogel require implementing 

technologies such as pyrolysis, freeze drying, or supercritical point drying to replace 

trapped solvents with air (Maleki, 2016). This technique requires the use of specific 

chemicals, or surfactants, also, the CNT aerogels produced from these methods require 

the existing of additional binders such as polymers and is typically fragile. Besides, 

these technologies could require a thermal annealing and purification step to improve 

the porosity and surface area. Therefore, eventually, the process becomes extremely 

unfeasible and expensive. 

Previous works on synthesis of CNT aerogel using Floating catalyst chemical vapor 

deposition method, reported that the synthesis of CNT aerogel was succeeded by 

utilizing methane, ethanol, hexane, and toluene (Gspann et al., 2014; Mikhalchan et 
al., 2016). Whereas, the escalate depletion of fossil fuel requires decrease dependent 

on such carbon source and establishes a new one for the CNT aerogel production. 

Therefore, this study would like to see whether waste engine oil could be used as the 

carbon source for CNT aerogel production.  

Floating catalyst CVD systems provide a convenient space for a mixture of reactants 

and catalyst components in the gas phase which result in more effective production in 

high temperature. This feature made FCCVD as an efficient process for the synthesis 

of large quantities of CNT aerogel. However, the performance of a floating catalyst 

system toward CNT aerogel production is strongly determined by many essential 

features, such as the catalyst and promoter ratio, carbon source characteristic, reactor 

design, and operating conditions such as feedstock flow rate, gas flow rate, reaction 

temperature and reaction time, that all together determine the CNT aerogel quality. 

The entire optimization of the FCCVD process is a complicated task, especially with 

waste engine oil characteristics as a carbon source. 

Oil spills which are leakage of petroleum onto the surface of large areas of water are 

a major worldwide problem. Various pollutants are entering water resources from 

anthropogenic activities, from conventional pollutants such as BTX (benzene, toluene, 

Xylene) (Guelli Ulson De Souza et al., 2012), and waste engine oil (Jin et al., 2015).

Some of these contaminants could not be removed from water efficiently via 

traditional water treatment methods. Moreover, more effective and low-cost 
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technologies to decontaminate and disinfect water for point-of-use purposes are 

needed, especially in rural regions. 

1.3 Hypothesis 

Floating catalyst chemical vapor deposition (FCCVD) method has proven as the 

adequate process for the CNT aerogel production. In the reported works, the 

researchers used commercially available carbon sources which are commonly a single 

component hydrocarbon and highly pure such as methane, ethanol, and toluene. These 

carbon sources are small size and can dissolve catalyst (ferrocene) for the FCCVD 

process. The process requires mixing the carbon source with ferrocene as a catalyst 

which must be dissolved well with the carbon source before it was introduced to the 

furnace chamber.  However, in this work, instead of using a single component and 

highly pure hydrocarbon, a high density and multicomponent hydrocarbon source 

which is waste engine oil (WEO) was used. Chemically, WEO is a highly viscous 

liquid which contains long chain hydrocarbons and other impurities. To obtain the 

smaller size and shorter chain hydrocarbons, fractional distillation must be conducted.

Nevertheless, pre-treated WEO still contains long chain hydrocarbons with high 

molecular weights that would negatively affect the properties of the resultant products. 

Therefore, the control of FCCVD parameters such as catalyst ratio, injection rate, gas 

flow rate, reaction temperature, and reaction time may result with a production of CNT 

aerogel.  

Utilizing thiophene as a promoter would prevent the catalyst particles from coarsening 

and aggregation. This will increase the opportunity of produce CNTs from 

multicomponent carbon source by enhancing the adsorbing and dissociation of carbon 

atoms on the growing ends of the CNTs. Moreover, adding thiophene as a promoter 

would produce mostly long and small diameter CNTs due to its property as a surfactant 

which encourages CNTs nucleation and growth and therefore prevents carbon 

encapsulation on the catalyst particle.

1.4 Objectives of the study 

The project is primarily undertaken to synthesize CNT aerogel using waste engine oil 

via floating catalyst chemical vapor deposition. Under this umbrella, the objectives of 

the research project are then described as follows: 

1- To identify and characterize the waste engine oil fractions produced by a fractional 

distillation process of waste engine oil in order to use them as carbon sources.  

2- To synthesize CNT aerogel from WEO fractions through the floating catalyst CVD 

method by controlling the catalyst ratio, injection rate, gas flow rate, reaction 

temperature parameters.  

3- To characterize the structure and properties of CNT aerogel produced from waste 

engine oil. 



© C
OP

UPM

5 

4- To evaluate CNT aerogel for oil spill removal and investigate the absorption ability 

for several chemicals and oils.  

1.5 Scope of study 

In this study, the CNT aerogels are synthesized in one step process using floating 

catalyst chemical vapor deposition (FCCVD) method at the reaction temperature 1150 

°C and 1200 °C, and flow rate of hydrogen as a carrier gas of 550-650 sccm in a one 

hour reaction time. In an effort to develop a potentially feasible and efficient method 

for the large quantities of CNT aerogel production, the synthesis experiments focused 

on the design of process based on WEO as a carbon source in FCCVD method. There 

is no report yet declared the synthesis of CNT aerogel from WEO. The carbon source 

was prepared from waste engine oil by fractional distillation under nitrogen at 400 °C 

to attain several fractions which were used as carbon sources. The viscosity and 

density of the oil fractions were obtained beside CNS and GC-MS analysis, while the 

CNT aerogels were characterized by FESEM, EDX, HRTEM, TGA, Raman, and BET 

analysis.    

For the ability of synthesized CNT aerogel on absorption application, it was tested for 

sorption study over hydrocarbons such as benzene, toluene, m-xylene and kerosene as 

well as oils which were diesel fuel, palm oil, and waste engine oil. The equilibrium 

sorption capacity (Qe) was calculated by following the weight of CNT aerogel before 

and after absorption for comparison with other absorbents. In addition, kinetics study 

were considered by applying Pseudo-second-order model Fractal like - linear driving 

force (FL-LDF) model for oil and oil/water systems.     

1.6 Thesis outline 

Chapter 1 gives a motivation of the work presented in the subsequent chapters. 

Although each chapter briefly introduces itself, the information contained in this 

chapter is general to state the motivation of the thesis study and gives justification to 

the problems presented and briefly what measures were undertaken to address them 

and how that was achieved. The main objectives of the study are also presented in this 

chapter. 

Chapter 2 is a general literature review. The chapter will be brief and will give a 

description of aims at providing an in-depth understanding of available synthetic 

methodology and routes of carbon nanotube macrostructure. Emphasis will be on 

carbon nanotube aerogel. The commonly used CNT synthesis procedures, relevant 

properties of the CNTs as well as their characteristics will be discussed briefly to 

reveal their role in carbon nanotube aerogel. The discussion is then shifted towards 

synthesis method for CNT aerogel emphasis review on floating chemical vapor 

deposition (FCCVD) method and the growth mechanism of CNTs using this 

technique. 
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Chapter 3 describes the experimental work completed to accomplish the goals of this 

study. The experiments are divided into three sections. The first section is dedicated 

to the fractional distillation of waste engine oil and the results characterization. The 

second section deals with CNT aerogel synthesis experimental via FCCVD method 

and the results characterization. The third section elucidates the absorption study for 

several chemicals and oils. 

Chapter 4 discuss the results of experiments and the data collected from analysis in 

order to come out with the best description of the project findings. This chapter is 

divided into three sections. The first section is devoted to the fractional distillation of 

waste engine oil. Study the properties of the fractions that result from the process 

compare with WEO by proper characterization. The second section deals with the 

CNT aerogel synthesized from WEO fractions via FCCVD. Discuss the process 

parameters that control the CNT aerogel production. Several reaction processes were 

done as a preliminary study by varying the parameters involved in the formation of 

CNT aerogel. The parameters investigated are injection rate of reactant, temperature 

stability during reaction, the position and length of injection tube, sonication time of 

the reactants, catalyst ratio, and gas flow rate. Then study CNT aerogel production by 

varying several parameters such as catalyst ratio, gas flow rate, and reaction 

temperature have done. Morphology analysis, thermal stability, the degree of 

graphitization, surface area, N2 adsorption isotherm and pore size distribution are 

studied.  The third section exposes to the sorption study for several chemicals and oils. 

Investigate the sorption performance of the CNT aerogel sorption study which 

includes sorption capacity, kinetic study, and recyclability was conducted on various 

chemicals and oils were selected which are benzene, toluene, m-xylene, kerosene, 

diesel fuel, palm oil, and waste engine oil. The study has done using two system oil 

and oil in water (oil/water). 

Chapter 5 elucidate the conclusions and recommendations for future work. 
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