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GRAIN SIZE EFFECT ON THE STRUCTURAL, ELECTRICAL, 
MAGNETIC AND MAGNETO-TRANSPORT PROPERTIES OF Pr-A-Mn-

O (A= Sr, Ba, Na AND K) NANOMANGANITE 
 

By 
 

NG SIAU WEI 
 

October 2017 
 

Chair: Lim Kean Pah, PhD  
Faculty: Science 
 

Colossal magnetoresistance (CMR) effect in the manganese oxide compounds are 
nowadays a very potential technological applications in the information storage, 
sensors, magnetic sensing devices and magnetic refrigeration. These CMR effects 
can be tuned up as the grains size is reduced to nanometers. However, the physics 
phenomenons of nano-sized manganites were still not yet fully understood. 
Although a number of works had been carried out on the effect of grain size (in 
nanometric regime) towards its physical properties, but less research work had 
been put attention in praseodymium based nano-manganese so far. Therefore, in 
this work, Pr0.67(Sr, Ba)0.33MnO3 and Pr0.85(Na, K)0.15MnO3 had been synthesized 
by sol-gel technique and sintered from 600oC to 1000oC to investigate the 
influence of grain size reduction from micro to nano-size. XRD results showed that 
all samples are polycrystalline with orthorhombic structure and no significant 
lattice distortion was observed as the sintering temperature increased. As the grain 
size increase from nano to micron-size, the resistivity of Pr0.67Sr0.33MnO3 (PSMO) 
and Pr0.67Ba0.33MnO3 (PBMO) decreased and Tp shifted to higher value while 
Pr0.85Na0.15MnO3 (PNMO) showed semiconductor behavior where Tp were 
estimated to be lower than 80 K. However, for Pr0.85K0.15MnO3 (PKMO), the Tp 
and resistivity shifted to lower value with increasing grain size. This variation was 
due to the different of grain shape and grain distribution. Besides, the Tc was 
shifted to higher value for PSMO (278 K to 295 K), PBMO (140 K to 188 K) and 
PKMO (124 K to 140 K) systems as grain size increase. Substitute A-site with 
divalent or monovalent produce a Jahn Teller distortion of MnO6 octahedron. By 
changing the ionic radius of A-site, the Mn-O-Mn angles and Mn-O lengths can be 
modified and hence affect the physical properties in the manganites system. From 
this work, we found that as the manganites system replace with monovalent, the Tc 
and Tp shifted to lower temperature (< 200 K) and the magnitude of MR around 
room temperature was relatively smaller compare with divalent system. Besides, 
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higher value of resistivity is observed for monovalent system as compare with 
divalent system. In general, every manganites system there exist an optimum grain 
size distribution at which the MR or LFMR reaches a maximum. This optimal 
grain size may vary for different system and may also depend on the synthesis 
technique. Out of all the four series samples under investigation, Pr0.85K0.15MnO3 
(PKS6) with average grain size of 51 nm was found to exhibit highest %MR of – 
53.3% (at 80 K with magnetic field of 1 Tesla). However, the highest %MR value 
at room temperature (300 K) was – 2.39% for sample Pr0.67Sr0.33MnO3 (PSS7 with 
average grain size of 37 nm). From a practical view-point, the high %MR values 
are beneficial in magnetoelectronic sensing devices. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KESAN SAIZ BUTIRAN TERHADAP CIRI-CIRI STRUKTUR, ELEKTRIK, 
MAGNET DAN MAGNETO-PENGANGKUTAN BAGI Pr-A-Mn-O  

(A= Sr, Ba, Na, K)  NANOMANGANITE  
 

Oleh 
 

NG SIAU WEI 
 

Oktober 2017 
 

Pengerusi: Lim Kean Pah, PhD 
Fakulti: Sains 
 

Kesan magnetorintangan raksaksa (MRR) pada sebatian manganites oksida dalam 
aplikasi teknologi pada masa kini adalah amat berpotensi dalam bidang 
penyimpanan maklumat, sensor, sensor peranti magnet dan penyejukan magnet. 
Kesan MRR ini boleh ditala melalui pengurangan saiz butiran kepada nanometer. 
Walau bagaimanapun, fenomena fizikal manganites bersaiz nano masih belum 
difahami sepenuhnya. Walaupun beberapa kerja telah dilakukan terhadap kesan 
saiz butiran (dalam rejim nanometrik) terhadap sifat-sifat fizikalnya, tetapi 
perhatian kepada kerja penyelidikan terhadap nano-manganites berdasarkan 
praseodymium adalah kurang setakat ini. Dengan itu, dalam kajian ini, Pr0.67(Sr, 
Ba)0.33MnO3 dan Pr0.85(Na, K)0.15MnO3 telah disintesis dengan teknik sol-gel dan 
sinter dari 600oC ke 1000oC untuk menyiasat kesan pengurangan saiz butiran dari 
mikro ke nano-saiz. Keputusan XRD menunjukan bahawa semua sampel adalah 
dalam bentuk polihablur dengan struktur otorombik dan tiada perubahan ketara ke 
atas parameter kekisi apabila suhu persinteran meningkat. Apabila saiz butiran 
meningkat dari nano ke saiz mikron, kerintangan bagi Pr0.67Sr0.33MnO3 (PSMO) 
dan Pr0.67Ba0.33MnO3 (PBMO) menurun dan Tp beralih ke nilai yang lebih tinggi 
sementara Pr0.85Na0.15MnO3 (PNMO) menunjukkan sifat semikonduktor di mana Tp 
dianggarkan lebih rendah daripada 80 K. Walau bagaimanapun, bagi 
Pr0.85K0.15MnO3 (PKMO), Tp dan kerintangan beralih ke nilai yang lebih rendah 
dengan saiz butiran yang semakin bertambah. Perubahan ini disebabkan oleh 
perbezaan bentuk butiran dan pengagihan butiran. Selain itu, Tc beralih kepada 
nilai yang lebih tinggi bagi sistem PSMO (278 K hingga 295 K), PBMO (140 K 
hingga 188 K) dan PKMO (124 K hingga 140 K) dengan peningkatan saiz butiran. 
Gantian tapak-A dengan divalen atau monovalen menghasilkan herotan Jahn Teller 
bagi octahedron MnO6. Dengan penukaran jejari ion tapak-A, sudut Mn-O-Mn dan 
panjang Mn-O boleh diubah suai dan dengan itu memberi kesan terhadap sifat 
fizikal dalam sistem manganite. Daripada kerja ini, kami mendapati bahawa 
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apabila sistem manganite ganti dengan monovalen, Tc dan Tp beralih ke suhu yang 
lebih rendah (<200 K) dan magnitud MR lebih kecil berbanding dengan sistem 
divalen pada suhu bilik. Selain itu, nilai kerintangan yang lebih tinggi dapat 
diperhatikan bagi sistem monovalen berbanding dengan sistem divalen. Secara 
umumnya, setiap sistem manganite mempunyai taburan saiz butiran yang optimum 
untuk mencapai maksimum MR atau LFMR. Saiz butiran yang optimum ini 
mungkin berbeza untuk sistem yang berlainan dan mungkin juga bergantung pada 
teknik sintesis. Daripada semua empat siri sampel yang disiasat, Pr0.85K0.15MnO3 
(PKS6) dengan saiz purata butiran 51 nm didapati menunjukkan %MR yang paling 
tinggi sebanyak - 53.3% (pada 80 K dengan medan magnetik 1 Tesla). Walau 
bagaimanapun, nilai %MR tertinggi pada suhu bilik (300 K) adalah - 2.39% untuk 
sampel Pr0.67Sr0.33MnO3 (PSS7 dengan saiz bijian purata 37 nm). Dari sudut 
praktikal, nilai %MR yang tinggi ini adalah bermanfaat dalam peranti sensor 
magnetoelektronik. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Overview 
 
 
In the early 1990s, a new kind of MR was rediscovered in mixed-valence 
manganese oxides (manganites) by group of Helmolt et al. (1993). This manganese 
oxide was possible to achieve magnetoresistance values up to 60% at temperature 
close to ambient temperature, leading to the name of colossal magnetoresistance 
(CMR) to distinguish it from the giant magnetoresistance (GMR). Manganites have 
a general composition A1−xBxMnO3 (where A is a trivalent rare-earth and B is a 
divalent or monovalent alkaline element) in perovskite structures. It is composed of 
interpenetrating simple cubic sublattices of A, B and Mn ions with O at the cube 
faces and edges where Mn–O–Mn bonds are formed and constitute the basis of the 
electrical and magnetic properties of these compounds. The occurrence of both 
divalent or monovalent and trivalent ions in the A site of the structure through 
chemical doping leads to a charge unbalance. Hence, create the appearance of 
Mn3+/Mn4+ pairs. The changes of different doping levels or with different cations 
lead to a great variety of magnetic and transport ground states, which can be 
ranging from antiferromagnetic insulators to ferromagnetic metals. Zener’s double-
exchange (DE) model is often describing the low-temperature state and the close 
connection between TC and Tp (ferromagnetic metallic state) and CMR transition 
(Zener, 1951). However, in the high-temperature region it has been argued that the 
carriers are coupled to the phonon system through a strong Jahn-Teller distortion in 
manganites (Millis et al., 1996). Besides intrinsic CMR, low field 
magnetoresistance (LFMR) effect could be observed in the polycrystalline or 
granular manganites over a wide temperature range below Tc due to the existence 
of grain boundaries. It has been proposed that the spin-polarized tunneling between 
ferromagnetic grains through an insulating grain boundary barrier should be 
responsible for LFMR (Hwang et al., 1996). 
 
 
1.2 Motivation 
 
 
Manganites offer a high degree of chemical flexibility leading to complex interplay 
between structural, electrical and magnetic properties. Their importance refers to 
their intriguing electrical and magnetic properties such as metal-insulator transition 
at Tp, ferromagnetic-paramagnetic transition temperature at Tc, and the 
magnetoresistance (MR) properties like the colossal magnetoresistance (CMR) 
effect and low-field magnetoresistance (LFMR) effect, which make them to be 
potential technological applications in the information storage field, sensors, 
magnetic devices, and magnetic refrigeration. 
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Currently, the physics of nanoscale magnetic materials has been a vivid research 
subject for both fundamental and technological reasons. When the size of the 
magnetic particles is reduced to nanometers, the magnetic particles are expected to 
exhibit outstanding physical properties such as superparamagnetism, small 
coercivity, low Curie temperature and low saturation magnetization as compared to 
bulk material. As the particle size decreases, the surface and interface effects 
become more and more important. However, a clear understanding of the physical 
properties for manganites at nanoscale is still lacking. Besides, nanomanganites 
promote formation of superparamagnetism phase which could arise in some new 
magnetic interaction mechanism. Hence, nano-sized reductions perturb the 
structural, magnetism and electrical properties of these nanomanganites. 
 
 
1.3 Problem Statement 
 
 
Manganites exhibit a wide range of magnetic and electric transport properties when 
the perovskite structure incorporates with different sized of A-site cation. The 
average A-site cation size of the perovskite <rA>, influences the magnetic 
transition temperature, Tc and the transport properties. However, the mismatch 
effect, represented by the variance of A-site cation radii distribution parameter σ2, 
also influences both the values of Tc and Tp. The structural disorder produces a 
strong local stress in MnO6 octahedra (resulting in rotation), modifying the Mn–O–
Mn angles and Mn-O lengths and thus changing lattice and electronic properties. 
Therefore, an effort has been made to correlate the anomalous variation of Tp and 
Tc observed among the samples of the present investigation with varying ionic radii 
of A-site cation as well as the size variance parameter, σ2. In this work, the size and 
the ration of the substitution ion on Pr-site is one of key factor influencing the 
different properties of manganites. Therefore, the influence of Mn-O band strength 
causes various changes in Mn-O bond length and the symmetry of MnO6. 
 
 
Another important parameter that can control the magnetic and transport properties 
of the manganites is the structure and microstructure. In previous study, 
conventional solid state synthesis of manganites needs higher sintering temperature 
to obtain desired structure and homogenous composition. However, this method 
are not appropriate for many advanced applications, due to formation of large 
grains (in microns), agglomerates, poor homogeneity, undesirable phases, 
abnormal grain growth and an imprecise stoichiometric control of cations and 
oxygen vacancies. In contrast, the wet technique such as sol-gel process was 
claimed to have a potential advantage over the other methods for achieving better 
homogenous mixing of the components on the atomic scale and high possibility of 
forming nano-sized with desired structure which are of technological importance. 
 
 
Beside, sintering temperature also affect the electrical properties in an efficient 
way for presently studied nanomanganites because different sintering temperatures 
provide different amounts of heat or thermal pressure to the smaller particles and 
grains to form larger grain that having higher impact strength and compactness. 
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This results in the reduction in number of boundaries between the particles and 
grains for higher sinter samples. The charge conduction is strongly affected by the 
movement of charge carriers across the defective boundaries in the lattice. Hence, 
boundary density plays an important key role in governing the electrical properties 
of presently studied nanomanganites.  
 
 
1.4 Objective 
 
 
Since the average A-site cation size <rA> and synthesized condition (method and 
sintering temperature) significantly influence the magnetic and transport properties 
of the manganites system, detailed studies of Pr0.67(Sr, Ba)0.33MnO3 and Pr0.85(Na, 
K)0.15MnO3 systems have been carried out. Hence, the objectives of this work are: 

1. To synthesize single phase of Pr0.67(Sr, Ba)0.33MnO3 and Pr0.85(Na, 
K)0.15MnO3 manganite via sol-gel method with different sintering 
temperature. 

2. To investigate the influence of grain size effect on the structural, 
microstructural, magnetic, electrical and colossal magnetoresistance 
behavior on all systems.  

3. To study the effect of different average A-site cation size of divalent and 
monovalent towards its structural, electrical, magnetic properties and 
colossal magnetoresistance.  

 
 
1.5 Thesis Content 
 
 
In Chapter 1, a brief overview of the colossal magnetoresistance, the motivation, 
the problem statement and the objectives of this work is included. Chapter 2 
contains some literature review on previous and current work done by other 
researchers. The theory related to the perovskite manganites compounds is also 
included. In Chapter 3, the method of sample preparation and characterization 
process for CMR compound is discussed. For Chapter 4, the experimental results 
and discussion are presented. Chapter 5 includes the conclusion for the study and 
suggestions for the further research on CMR materials.  
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