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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

EFFECTS OF Pr6O11 ADDITION AND SINTERING TEMPERATURE ON 

STRUCTURAL, OPTICAL AND LUMINESCENCE PROPERTIES OF 

Zn2SiO4 BASED GLASS CERAMICS 

By 

NURZILLA BINTI MOHAMED 

December 2017 

Chairman: Associate Professor Jumiah Hassan, PhD 

Faculty: Science  

In recent years, great interest was focused on glass ceramics for applications in laser, 

optical amplifier and optical sensor. Up to now, the commercial Zn2SiO4 were 

fabricated due to its high luminescence and chemical stability. This research highlights 

the alternative sources of SLS-ZnO glass in order to produce Zn2SiO4 glass ceramics 

by varying Pr concentration and sintering temperatures. The six series of Pr addition 

into SLS-ZnO glasses of the type x(Pr6O11).100-x(SLS0.5-ZnO0.5) (where x = 0, 1, 2, 3, 

4, at 5 wt. %) were prepared by mixing the raw materials Praseodymium Oxide 

(Pr6O11), Soda Lime Silica (SLS)and Zinc Oxide (ZnO) as starting materials in the 

appropriate amount. Then, these mixture materials were melted at 1400 oC for 2 hours 

in alumina crucibles by electrical furnace. The molten glass was poured into water by 

quenching technique in order to produce glass frit. The glass fritz was finely ground 

and sieved to be in powder form with the size of 63 µm. Density of SLS-ZnO glass 

increases by increasing Pr concentration. The glass system which consists of 

amorphous phase and more non-bridging oxygen were confirmed by XRD and FTIR 

analysis. The band gap fluctuated when Pr concentration is lower than 3 wt.% and 

enhanced at higher Pr concentration (4 and 5 wt.%). However, the luminescence 

intensity decreased as the Pr concentration increased from 4 to 5 wt.% may due to the 

concentration quenching effects. 

Besides that, Pr doped Zn2SiO4 glass ceramics were prepared by sintering SLS-ZnO 

glass from 600 to 1000 oC. The properties of Pr addition into Zn2SiO4 were evaluated 

in terms of structural, optical and luminescence properties at different sintering 

temperatures. The formation of α-Zn2SiO4 in the SLS-ZnO host matrix is proven by 

XRD, FTIR, FESEM and EDX analysis. The XRD indicates the peaks of α-Zn2SiO4 

increases in intensity with increasing sintering temperatures by increasing Pr 

concentration from 0 to 2 wt.% Pr. Nevertheless, the intensity of α-Zn2SiO4 phase 

decreases at 3 wt.% Pr but increases at high Pr concentration (4 and 5 wt.% Pr). The 
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FTIR spectra showed the presence of Zn2SiO4 phase in the glass ceramics network 

occurring at ~467 and ~697 cm-1 which is supported by EDX analysis. FESEM 

micrographs showed the grain growth increases with increasing sintering 

temperatures. The average grain growth decreases as Pr concentration increases from 

1 to 5 wt.%. The sharpness absorption band of ~444 nm increases as Pr concentration 

and sintering temperatures increases which is in good agreement with the excitation of 

blue LED for the fabrication of White Light Emitting Diode (WLED).  

 

 

The band gap increases with increasing sintering temperatures up to 900 oC and 

decreases with further sintering of 1000 oC due to the crystallinity of Zn2SiO4 phase. 

The substitution of Pr addition into the host matrix fluctuates the band gap when Pr 

concentration is lower than 4 wt.% and decreases at 5 wt.% Pr. The increase in 

crystallinity of Zn2SiO4 is suggested to be due to the enhancement of the luminescence 

with increasing sintering temperatures. It is interesting to note that the luminescence 

intensity decreases by increasing Pr concentration up to 3 wt.% to increase at 4 and 5 

wt.% Pr due to the incorporation of the Pr3+ ion in the Zn2SiO4. This suggests that Pr 

doped Zn2SiO4 possess suitable structural, optical and luminescence properties and 

could be a promising glass ceramic material for optoelectronics devices.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

KESAN PENAMBAHAN Pr6O11 DAN SUHU PENSINTERAN PADA SIFAT 

STRUKTUR, OPTIK DAN KEPENDARKILAUAN Zn2SiO4 BERASASKAN 

KACA SERAMIK 

Oleh 

NURZILLA BINTI MOHAMED 

Disember 2017 

Pengerusi: Prof. Madya Jumiah Hassan, PhD 

Fakulti: Sains  

Sejak kebelakangan ini, minat yang tinggi telah difokuskan pada seramik kaca untuk 

aplikasi dalam laser, penguat optik dan sensor optik. Sehingga kini, komersial Zn2SiO4 

telah direka kerana kependarkilauan tinggi dan kestabilan kimia. Kajian ini 

menekankan sumber alternatif kaca SLS-ZnO untuk menghasilkan seramik kaca 

Zn2SiO4 dengan pelbagai kepekatan Pr dan suhu pensinteran. Enam siri penambahan 

Pr kepada kaca SLS-ZnO dari jenis x(Pr6O11). 100-x(SLS0.5-ZnO0.5) (di mana x = 0, 1, 

2, 3, 4, pada 5 wt.%) telah disediakan dengan mencampurkan bahan-bahan mentah 

Praseodymium Oxide (Pr6O11), Soda Lime Silica (SLS) dan Zinc Oxide (ZnO) sebagai 

bahan permulaan dalam jumlah yang sesuai. Kemudian, bahan campuran ini dicairkan 

pada 1400 oC selama 2 jam di dalam mangkuk pijar alumina oleh relau elektrik. Kaca 

cecair dituangkan ke dalam air dengan teknik lindapan untuk menghasilkan fritz kaca. 

Fritz kaca itu dikisar dengan halus dan ditapis menjadi bentuk serbuk dengan saiz 63 

μm. Ketumpatan kaca SLS-ZnO meningkat dengan peningkatan kepekatan Pr. Sistem 

kaca yang terdiri daripada fasa amorfus dan lebih banyak oksigen bukan 

penyambungan (NBO) telah disahkan oleh analisisa XRD dan FTIR. Jurang band 

turun naik apabila kepekatan Pr lebih rendah daripada 3 wt.% dan dipertingkatkan 

pada kepekatan Pr yang lebih tinggi (4 dan 5 wt.%). Walau bagaimanapun, keamatan 

keperdakilauan menurun apabila kepekatan Pr meningkat dari 4 wt.% hingga 5 wt.% 

mungkin disebabkan oleh kesan kepekatan pelindapkejutan. 

Selain itu, seramik kaca Zn2SiO4 telah disediakan melalui pensinteran SLS-ZnO kaca 

dari 600 hingga 1000 oC. Pencirian penambahan Pr di dalam Zn2SiO4 sampel dinilai 

dari segi struktur, optik dan kependarkilauan pada suhu pensinteran yang berbeza. 

Pembentukan α-Zn2SiO4 dalam matriks SLS- ZnO dibuktikan oleh analisisa XRD, 

FTIR, FESEM dan EDX. XRD menunjukkan bahawa puncak keamatan α-Zn2SiO4 

meningkat dengan peningkatan suhu pensinteran. Keamatan fasa α-Zn2SiO4 

meningkat dengan meningkatkan kepekatan Pr dari 0 hingga 2 wt.% Pr. Walau 
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bagaimanapun, keamatan fasa α-Zn2SiO4 telah menurun pada 3 wt.% Pr dan 

meningkat pada kepekatan Pr tertinggi (4 dan 5 wt.% Pr). Spektrum FTIR 

menunjukkan kehadiran fasa Zn2SiO4 dalam rangkaian seramik kaca berlaku pada 

~467 dan ~697 cm-1 yang disokong oleh analisisa EDX. Mikrograf FESEM 

menunjukkan pertumbuhan butiran meningkat dengan peningkatan suhu pensinteran. 

Purata pertumbuhan butiran menurun apabila kepekatan Pr meningkat dari 1 hingga 5 

wt.%. Ketajaman jalur penyerapan pada ~444 nm telah meningkat apabila kepekatan 

Pr dan suhu pensinteran meningkat yang dipersetujui dengan pengujaan LED biru 

untuk fabrikasi Diode Pemancar Cahaya Putih (WLED).  

Jurang jalur meningkat dengan peningkatan suhu pensinteran hingga 900 oC dan 

berkurang dengan pensinteran lebih lanjut pada 1000 oC disebabkan oleh kekristalan 

fasa Zn2SiO4. Penggantian penambahan Pr ke dalam matriks tuan rumah akan turun 

naik dalam jurang jalur apabila kepekatan Pr lebih rendah daripada 4 wt.% dan 

berkurangan pada 5 wt.% Pr. Peningkatan kekristalan Zn2SiO4 disarankan untuk 

mempertingkatkan kependarkilauan dengan peningkatan suhu pensinteran. Adalah 

menarik untuk diperhatikan bahawa keamatan keperdakilauan berkurang dengan 

peningkatan kepekatan Pr hingga 3 wt.% dan kemudian mula meningkat pada 4 dan 5 

wt.% Pr disebabkan oleh penggabungan ion Pr3+ dalam Zn2SiO4. Ini menunjukkan 

bahawa penambahan Pr di dalam Zn2SiO4 mempunyai sifat struktur, optik dan 

kependarkilauan yang sesuai dan boleh menjadi bahan seramik kaca yang menjanjikan 

untuk peranti optoelektronik. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of study 

 

 

In recent years, special attention has been paid to the development of willemite 

(Zn2SiO4) for optical applications because of its unique properties, wide band gap (5.5 

ev) and excellent chemical stability. Willemite was first discovered in 1829 in a 

“calamine” orebody in Belgium by Armand Le´vy in Moresne (Simonov et al., 1977). 

According to Takesue et al. (2009), the name of willemite was dedicated to King 

Willem of the Netherlands. Since then, the existence of willemite was found to be 

distributed all over the world.  

 

 

Furthermore, Zn2SiO4 which formed the binary ZnO-SiO2 phase system have also been 

employed extensively as host matrices of rare earth ions for applications in the area of 

luminescent materials. Hence, the increasing demand in this field has motivated 

researchers to develop novel inorganic Zn2SiO4 phosphor which used a low energy 

process that would help to solve both energy and environmental problems of our 

society. There are various methods to synthesize Zn2SiO4 such as solid state, sol-gel, 

hydohermal, solvothermal, co-precipitation, and spray pyrolysis method (Yang et al., 

2013). Conventional solid- state method is important for fabrication of willemite due 

to its long history of practical use. This method involves the sintering and 

crystallisation of glass samples. Takesue et al. (2009) reported that the raw materials 

are well mixed and sintered at temperatures between 900 and 1500 oC for several hours 

in an electric furnace to form Zn2SiO4 inorganic phosphor. In brief, this method 

employed here involved the solid diffusion of atoms or atomic groups among solid raw 

materials. Solid-state methods provide irregularly shaped particles giving particle 

diameters of the order of microns with a wide size distribution. It was reported by 

Tammann and Kalsing (1925) that ZnO and SiO2 react at around 775 oC to form 

Zn2SiO4 that is confirmed by the appearance of an exothermic peak with differential 

scanning calorimetry. The phases of Zn2SiO4 are produced by solid-diffusion of ZnO 

from the surface of SiO2 are illustrated by the following equation (Leverenz and 

Urbach, 1950)  

𝑆𝑖𝑂2 + 2𝑍𝑛𝑂 = 𝑍𝑛2𝑆𝑖𝑂4 (2.1) 

 

Synthesis of Zn2SiO4 by sol- gel have had the lowest processing temperatures of all 

growth methods and produce spherical particles. Usually, this method involved a 

solvent, such as water, alcohol, ionic liquid and their mixtures at temperatures lower 

than the boiling point and at ambient pressure. Various Zn and dopant sources (e.g. 

nitrate, sulfate, chloride, acetate) and Si sources (e.g. silica, silicates, alkoxysilanes, 

water glass) are used as the starting materials. These materials are dissolved or 

dispersed in solvents and then mixed to produce a homogenous solution or uniform 

dispersion. The solutions or dispersions obtained are coated onto a substrate or simply 

dried. The phase formation of Zn2SiO4 by sol gel needs calcinations higher than 800 



© C
OPYRIG

HT U
PM

2 

oC to form α-phase Zn2SiO4 (Takesue et al., 2009). Similarly of solid-state method, the 

sol gel method also involves in high temperatures and based on the diffusion in the 

solid state in order to produce α-phase Zn2SiO4. 

The other methods such as hydrothermal and solvothermal can produce α-phase 

Zn2SiO4 without post calcinations. It is indicated that, the crystallization of α-phase 

Zn2SiO4 in solvent occurs at lower temperature than those required in solid diffusion. 

Generally, hydrothermal methods use water or an aqueous mixture as the reaction 

medium, while solvothermal methods use organic solvents. The method of 

hydrothermal and solvothermal are carried out in a Teflon-lined autoclave in which 

raw materials are loaded and then sintered at temperatures of 100 to 370 oC. However, 

this method produced a low crystallinity of Zn2SiO4 that have lower luminescence 

properties compared to the solid-state method. 

In this study, the techniques of melt-quenching and solid state were used to produce 

Zn2SiO4 since it has many advantages such as simple process and large-scale 

production in the industrial operation than the chemical method. Soda Lime Silica 

(SLS) has been the focus of numerous investigations because of its potential for low 

temperature viscous flow sintering and promising as low cost integrated optical 

amplifier. Host matrix based on ZnO has attracted increasing interest because of its 

wide band gap and large exciting binding energy (60 mev) for application in 

optoelectronic devices. According to Qian et al. (2008), ZnO act as a network former 

that is connected to the neighboring SiO4 to produce Si-O-Zn bond by bridging 

oxygen. Therefore, the combination of both SLS-ZnO is a promising host matrix for 

production of Zn2SiO4 phosphors due to their low melting point, good stability for rare 

earth ions and excellent properties in chemical stability and luminescence. 

1.2 Phase formation of willemite 

Recently, willemite ceramics were widely studied as luminescent material for their 

high stability and high efficiency. Therefore, the study of crystalline phases of Zn2SiO4 

ceramics is very important in order to develop useful glass ceramics in optical field.  

As shown in Figure 1.1, the melting temperature of Zn2SiO4 was 1498 oC instead of 

1512oC as reported by Williamson and Glasser (1964). It forms a eutectic with 

tridymite at 1,432° C and 49.1 per cent ZnO. Eutectic with ZnO occurred at 1,507° C. 

and 77.5 mol per cent ZnO. According to the ZnO-SiO2 binary phase diagram , α phase 

Zn2SiO4 was found in the 51.6 mol per cent ZnO, quenched at 1,440° C, and 65.0 mol 

per cent ZnO, quenched at 1,505° C. It is known, α phase Zn2SiO4 is the stable 

compound that can be synthesized at temperature greater than approximately 800 oC 

and at pressure greater than approximately 3 GPa (Syono et al., 1971). However, there 

are two metastable phase β-Zn2SiO4 and ϒ- Zn2SiO4 were reported in Williamson’s 

study. β -Zn2SiO4 occurs in rapid cooling of liquid melt with composition between 

33.3 and 63 mol% SiO2, while ϒ- Zn2SiO4 is produced by rapid quenching in the 

compositional range of 45 to 55 mol% SiO2.  
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Figure 1.1: Equilibrium phase diagram for ZnO-SiO2 system (Bunting, 1930) 

 

 

Figure 1.2 shows α phase Zn2SiO4 is a neosilicate or orthosilicates that consist of 

isolated SiO4
4- tetrahedrons and ZnO4

6- in the zinc silica system. It was reported by 

Taylor (1962), that ZnO and SiO2 react at around 775o C to form β-Zn2SiO4 which is 

confirmed by the appearance of an exothermic peak with differential scanning 

calorimetry. The transformation of orthorhombic - β phase into α -phase appeared at 

835oC as an exothermic reaction according to thermal analysis methods Gotz and 

Masson (1978)  
 

 
Figure 1.2: Crystalline structure of α phase Zn2SiO4 (Lukic et al., 2008) 
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1.3 Significant and motivation of research 

 

 

White Light Emitting Diodes (WLEDs) are of interest in optoelectronics field because 

of their benefits in terms of long lifetime, long energy consumption, high luminous 

efficiency and reliability. Generally, the most common technique to produce WLEDs 

by coating yellow phosphor on the surface GaN blue LED chips. However, they have 

low color rendering index due to lack of red content. Among rare earth materials, 

trivalent Praseodymium (Pr3+) ions are considered as a promising red activator in host 

materials via red emission wavelengths at ~618 nm and ~650nm. Besides Pr3+ ions 

having strong blue excitation in the wavelength at ~450 nm. It is significant to search 

for a stable red phosphor with environmental friendliness under blue excitation for 

WLEDs application. Thus, this study has been focused on structural, luminescence and 

optical properties of Pr doped SLS-ZnO glass ceramics at varying sintering 

temperature for the production of low cost red Zn2SiO4 phosphors. 

 

 

1.4 Problem statements 

 

 

Nowadays, the combination of SiO2-ZnO are of great interest as a host lattice for the 

fabrication of efficient optical system. However, pure SiO2 glasses with high viscosity 

requires melting temperature at above 2000 oC may lead to high cost for mass 

production. Thus, SLS glasses are potential candidates for synthesizing SiO2 would be 

an effective effort in reducing disposal cost and preserving environment. According to 

Chimalawong et al. (2010), SiO2 glass is a suitable host matrix for rare earth ions due 

to its interesting properties such as good durability, good chemical stability and high 

UV transparency. 

 

 

The production of Zn2SiO4 glass ceramics by utilizing SLS-ZnO glass may lead to 

high homogeneity, well controlled dopant concentration, easy fabrication and 

improved optical properties. From previous literatures (Gao, 2013), rare earth ions 

incorporated into glass ceramics enhanced PL properties by changing of ligand field 

around rare earth ions. Regarding to the enhancement of PL properties, Pr3+ is a very 

interesting rare earth ion which offers the possibility of simultaneous emission 

wavelength in the blue, green, orange, red and infrared region. However, there is 

limited report on Pr doped Zn2SiO4 glass ceramics system for optical and PL 

properties. Therefore, the knowledge of structural, thermal, optical and luminescence 

properties is a very useful tool in order to develop a new kind of Pr doped Zn2SiO4 

glass ceramics for optoelectronic application. 
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1.5 Objectives 

 

 

1.5.1 Main research project objective 

 

 

The main objective of this research project is to produce a low cost red emitting 

phosphor glass ceramic with strong absorption in the blue wavelength region. 

Generally, phosphor host material is based on Zn2SiO4 can be identified as a proper 

host material which achieves excellent luminescence. Trivalent Praseodymium (Pr3+) 

ions doped into Zn2SiO4 matrix are interesting due to search for new material in the 

field of optoelectronic devices. Therefore, it is necessary to develop a red Zn2SiO4 

phosphor based on SLS– ZnO host matrix doped with Pr without incorporating 

expensive materials. 

 

 

1.5.2 Work-phase objectives 

 

 

Hence, this research embarks on the following work-phase objectives which are: 

1. To synthesize Zn2SiO4 based glass ceramics added with Pr6O11 by 

conventional melt-quenching method. 

2. To investigate the effect of Pr addition on structural, optical and luminescence 

properties of Zn2SiO4 at different sintering temperatures. 

3. To study the effect of Pr3+ addition in Zn2SiO4 on phase formation and 

microstructure at different sintering temperatures. 

 

 

1.6 Hypothesis 

 

 

According to work phase objectives, this study is hypothesized as follows; 

1. The glass transition would increase with increase of Pr content due to the 

formation of non-bridging oxygen in SLS-ZnO glass matrix, thus increasing 

the optical and luminescence properties.  

2. The crystalline peaks of Pr addition in Zn2SiO4 would increase with increase 

in sintering temperature. It is expected that, Pr3+ would incorporate into the 

Zn2SiO4 host matrix in a successful substitution of Zn2+ by Pr3+ in the Zn2SiO4 

framework. 

3. Optical and luminescence properties of Pr addition in Zn2SiO4 would enhance 

with increase in sintering temperature. The introduction of Pr into Zn2SiO4 

would achieve red emission intensity for the red phosphor. 
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1.7 Thesis outline 

 

 

The thesis is organised according to the following chapters. The general introduction 

of willemite, its phase formation and a statement of the motivation, problems as well 

as objectives and hypothesis of the research are provided in Chapter 1. In Chapter 2, 

the framework of research area is presented by literature surveys on density, thermal, 

structural, optical and luminescence properties of willemite materials. Chapter 3 

describes the related theories on optical absorption and luminescence of glass and glass 

ceramics systems. The details of the experimental techniques employed in this research 

are discussed in Chapter 4. The results of the Pr addition willemite glass ceramics 

materials at different sintering temperatures are presented in Chapter 5. Chapter 6 

summarizes the results as conclusion and suggestions for future work in Pr addition 

willemite system.  
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