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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirements for the degree of Doctor of Philosophy 

ROBUST DIAGNOSTIC AND ROBUST ESTIMATION METHODS FOR 
FIXED EFFECT PANEL DATA MODEL IN PRESENCE OF HIGH 

LEVERAGE POINTS AND MULTICOLLINEARITY 

By

SHELAN SAIED ISMAEEL

December 2017 

Chairman : Professor Habshah Midi, PhD 
Faculty  : Science 

The Diagnostic Robust Generalized Potential based on Minimum Volume Ellipsoid 
(MVE) is proposed in linear regression to detect high leverage points (HLPs).  
However, it takes a very long computational running time and also has small rate of 
swamping and masking effects. Hence the Improvised Diagnostic Robust Generalized 
Potential based on Index Set Equality (IDRGP (ISE)) is proposed to linear and fixed 
effect panel data model. The results indicate that IDRGP(ISE) successfully identify 
high leverage points with the reduction in the rate of swamping and masking effects 
and has less computational running time.  

To date no research has been done to identify HLPs for panel data. Hence, to close the 
gap in the literature we propose Within Group Improvised Diagnostic Robust 
Generalized Potential (WIDRGP).  It is very successful in detecting HLPs and 
relatively fast to compute. 

The Generalized M-estimator (GM6) is the widely used method to overcome the 
problem of HLPs for multiple linear regression model.  However, this method is less 
efficient since it is based on Robust Mahalanobis Distance RMD- MVE as an initial 

–weight function. Its efficiency decreases as the number of good leverage points 
increases. Hence, the Generalized M-estimator (GM) based on Fast Improvised 
Generalized Studentized Residuals (FIMGT), denoted as (GM-FIMGT) is developed. 
The results show that the GM-FIMGT is highly efficient and relatively fast.  A robust 
Within Group GM estimator based on FIMGT estimator (WGM-FIMGT) for fixed 
effect panel data model is proposed. The findings indicate that the WGM-FIMGT is 
very efficient compared to the existing estimators.  



© C
OP

UPM

ii

Thus far, no research has been done on the detection of multicollinearity for fixed 
effect panel data models in the presence of HLPs. Hence, Robust Variance Inflation 
Factor based on GM-FIMGT (RVIF(GM-FIMGT)) is formulated. The results of the 
study show that it is very effective in detecting multicollinearity in the presence of 
HLPs. 

The Jackknife ridge regression is one of the commonly used method to remedy the 
problem of multicollinearity.  Nonetheless, it is very sensitive to outliers and HLPs. 
Hence Robust Jackknife ridge regression based on FIMGT (RJFIMGT) is developed 
to rectify the combined problem of multicollinearity and high leverage points.  The 
results of the study indicate that the RJFIMGT is the most efficient method when 
multicollinearity problem come together with the presence of HLPs.  

Still no research has been done on the parameter estimation of fixed effect panel data 
model in the presence of multicollinearity and HLPs. Thus the within Group Robust 
Jackknife ridge regression based on FIMGT (WRJFIMGT) is developed to close the 
gap in the literature. The findings signify that WRJFIMGT provides the best 
estimates when multicollinearity and HLPs are present in a data set 



© C
OP

UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

KAEDAH DIAGNOSTIK TEGUH DAN ANGGARAN TEGUH UNTUK 
MODEL LINEAR BERGANDA DAN MODEL DATA PANEL KESAN 

TETAP DENGAN KEHADIRAN TITIK TUASAN TINGGI DAN 
MULTIKOLINEARAN 

Oleh 

SHELAN SAIED ISMAEEL

Disember 2017 

Pengerusi : Profesor Habshah Midi, PhD 
Fakulti : Sains 

Kaedah teguh berdiagnostik potensi teritlak (DRGP) berasaskan isipadu minimum 
ellipsoid (MVE) telah dicadangkan untuk mengesan titik tuasan tinggi (HLPs). Walau 
bagaimanapun, ianya mengambil masa yang lama dari segi masa pengiraan dan juga 
mempunyai kadar yang kecil bagi kesan swamping dan masking.  Oleh itu kaedah 
teguh berdiagnostik potensi teritlak tertambahbaik berasaskan indeks set kesaksamaan 
(IDRGP(ISE))  dicadangkan untuk model linear dan model data panel kesan tetap.  
Keputusan menunjukkan bahawa (IDRGP(ISE))  berjaya mengesan titik tuasan tinggi 
dengan penurunan kadar kesan swamping dan masking dan juga masa pengiraan dapat 
dikurangkan. 

Setakat ini, tidak ada penyelidikan yang telah dijalankan untuk mengesan HLPs bagi 
data panel. Oleh itu, untuk menutup jurang kesusasteraan ini, kami mencadangkan 
kaedah teguh berdiagnostik potensi teritlak tertambahbaik dalam kumpulan 
(WIDRGP). Kaedah ini sangat berjaya dalam mengesan HLPs dan pengiraannya 
pantas.  

Kaedah penganggar M-teritlak GM6 digunakan secara meluas untuk mengatasi 
masalah HLPs bagi model linear regresi berganda. Walau bagaimanapun, kaedah ini 
kurang cekap kerana ianya berasaskan RMD-MVE sebagai fungsi  pemberat -�
permulaan. Kecekapannya berkurangan apabila bilangan titik tuasan yang baik 
meningkat. Oleh itu penganggar GM berasaskan reja teritlak student tertambahbaik 
(FIMGT) dinamakan  (GM-FIMGT) di bangunakan.  Keputusan menunjukkan 
bahawa GM-FIMGT adalah sangat cekap dan pantas secara relatif. 
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Penganggar teguh GM dalam kumpulan  berasaskan penganggar FIMGT (WGM-
FIMGT) dicadangkan bagi model data panel kesan tetap. Hasil kajian menunjukkan 
bahawa WGM-FIMGT adalah sangat cekap berbanding dengan kaedah penganggar 
yang sedia ada. 

Setakat ini, tidak ada kajian telah dijalankan untuk mengesan multikolinearan bagi 
model data panel kesan tetap dengan kehadiran titik tuasan tinggi. Oleh itu, Faktor 
Inflasi Varians Teguh berasaskan WGM-FIMGT (RVIF(WGM-FIMGT)) telah 
diformulasikan. Keputusan menunjukkan bahawa kaedah ini sangat berkesan untuk 
mengenalpasti multikolinearan dengan kehadiran HLPs. 

Kaedah regresi Jackknife Ridge adalah salah satu kaedah yang biasa digunakan  untuk 
pemulihan masalah multikolinearan. Walau bagaimanapun, ianya  sangat sensitif 
terhadap titik terpencil dan HLPs. Oleh itu, regresi teguh Jackknife Ridge berasaskan 
FIMGT (RJFIMGT) telah dibangunkan untuk menyelesaikan masalah gabungan 
multikolinearan dengan HLPs. Keputusan kajian menunjukkan bahawa  RJFIMGT 
adalah kaedah yang sangat berkesan bagi masalah multikolinearan bersama dengan 
kehadiran HLPs.  

Masih tiada kajian telah dijalankan untuk menganggar parameter bagi model data 
panel kesan tetap dengan kehadiran multikolinearan dan HLPs. Oleh itu, regresi 
Jackknife ridge  teguh dalam kumpulan berasaskan FIMGT (WRJFIMGT) telah 
dibangunkan untuk menutup jurang kesusasteraan. Hasil kajian menunjukkan 
WRJFIMGT adalah penganggar terbaik apabila kehadiran multikolinearan dan HLPs 
dalam set data. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background and Purposes 

Regression analysis is a statistical process for estimating the linear relationships 
between two or more variables. It involves several techniques for modeling and 
analyzing several variables. The earliest form of regression was the Least Squares, 
commonly known as Ordinary Least Squares (OLS) method which was introduced by 
the two famous statisticians Legendre and Gauss (Maronna et al.,2006). To this day, 
empirical researchers use OLS and its generalizations since the Gauss-Markov 
theorem asserts that OLS provides the Best Linear Unbiased Estimator (BLUE) for 
the parameters of the standard linear model. The estimator is best, in the sense that it 
is the most efficient one among the linear estimators when the data are smooth or 
normally distributed, i.e. do not contain outlying observations. Rousseeuw and Van 
Zomeren (1990) distinguished outliers (high leverage points and/or vertical outliers) 
when defining these anomalous observations. Data items for which the independent 
variable lies far from the majority of the explanatory observations are called leverage 
points. On the other hand, the data points which are far away from the majority of the 
data point in Y-direction are refers to as vertical outlier. This is the reason why 
observations corresponding to very large residuals are treated as residual outliers. 
These observations deserve special attention from the statistician since they may 
invalidate classical statistical inference (Maronna, 1976;Maronna et al.,2006; Tyleret 
al.,1994; Hubber, 2005). OLS is inefficient and produce dramatically different 
estimates even when a single outlying observation is added or present in a data set. 
The survival of OLS for about two centuries in empirical studies is not justified by its 
performance on contaminated data (Belsley et al., 1980; Hocking and Pendelton, 1983; 
Rousseeow and Leroy, 1987).  

Similarly, an observation can be both a vertical outlier and a high leverage point (HLP) 
or can be horizontal outlying without being a vertical outlier when it perfectly fits the 
linear relation between the independent variable and the explanatory variables which 
referred to as good leverage points. Good leverage points may have no effects in OLS 
technique. 

Habshah et al. (2009) developed the Diagnostic Robust Generalized Potential (DRGP) 
based on MVE to improve the rate of detection of high leverage points. Also, 
Mohammed and Midi (2015) proposed MGti-DRGP which is very successful to 
classifying observations into regular observation, vertical outliers, good and bad 
leverage points. Imon et al. (2015) introduced a robust influence distance that can 
identify multiple IOs, and propose a six-fold plotting technique based on the well-
known group deletion approach to classify regular observations, outliers, high 
leverage points and IOs simultaneously in linear regression. 
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Imon and Khan (2003) verified that HLPs is a new source of multicollinearity. HLPs 
have high impact on the OLS estimates in regression model and also responsible for 
causing multicollinearity problem as they may increase (enhancing observation) or 
decrease (reducing observation) as explained by Midi et al. (2011). Multicollinearity 
exist in a data set when two or more independent variables are highly correlated.  

Moreover, panel data regression model is one of the most widely used models 
especially in finance and economics due to the advantage it has over cross-sectional 
and time-series model. A data collected over time and over the same individual is 
referred to as Panel data. It is usually analyzed by running a regression over this two-
dimensions (cross section/time series) using a classical least square called pooled OLS 
(pooling of time series and cross-sectional observations). Two methods of analysis 
exist for panel data models i.e. fixed effect and random effect model. The major 
difference between these two models is the definition of the time invariant variable in 
the data set. Therefore, the same problem of multicollinearity and outlier affect panel 
data estimator as in classical linear regression.  

Therefore, in general the existence of multicollinearity and anomalous points causes 
OLS deviate from the normality assumption in regression analysis. This was addressed 
by many researchers in   articles and books. In recent years, several techniques and 
methods which deal separately with multicollinearity and outliers are available such 
as: Imon and Khan (2003) attempted to show how generalized potentials can be used 
as a remedy to multicollinearity problem due to HLP.  Bagheri and Midi (2011) 
developed variance inflation factor to be more resistant to HLPs. They proposed robust 
variance inflation factor based on GM(DRGP) for detection of multicollinearity when 
the source is due to HLPs. Nonetheless, there is not much significant work reported in 
the literature which takes into account the presence of both multicollinearity and 
outlying observations problems concurrently (see Johnston, 1984; Montgomery et al., 
2015; Gujarati, 2002; Kutner et al., 2004; Chatterjee and Hadi, 2006; Kamruzzaman 
and Imon, 2002; Imon, 2005). 

1.2 Importance and Motivation of the Study 

The presence of outlying observation in a data set has serious problem in the parameter 
estimation.  It is now evident that in the presence of outliers, inferential procedure will 
produce an invalid inferential statement, for example, the OLS performs poorly in the 
presence of outliers (Rousseeuw and Leroy, 1987).  It is very important to detect them 
so that appropriate measure can be taken. Moreover, many statistics practitioners are 
not aware that erroneous estimation may occur due to the presence of outliers. 
Detection of outliers is very important in statistical estimation. However, most of the 
method of detecting outliers may not perform well due to the swamping and masking 
effect. Different methods have been developed in the literature to detect the existence 
of outliers in a data set.  
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The existences of HLPs in a data set are responsible for causing masking and 
swamping effect of outliers in linear regression (Pena and Yohai, 1995). The HLPs 
cause multicollinearity problem and also have a great effect on the potential values 
(Hadi, 1992). The Hadi’s method detect a single leverage point but they are not 
successful to identify multiple leverage points (Ruppert and Simpson, 1990; Imon, 
2005, Habshah et al., 2009). This problem was addressed by Imon (1996), where he 
proposed a generalized potentials (GP) as a diagnostic technique for identifying 
multiple HLPs. The generalized potential method provides an extension from a single 
detection to multiple detection of HLPs. Also, the GP suffers much set back due to its 
inefficiency to successfully identifying the correct number of HLPs due to the masking 
effects (Habshah et al. 2009). The remedial measure of this problem is the provision 
of another step by Habshah et al. (2009) to confirm whether all the detected HLPs in 
Step 1 is a genuine HLPs. They developed a new method called Diagnostic Robust 
Generalized Potential (DRGP) which is very successful in identifying HLPs and also 
reduce the rate of masking and swamping effect. Nonetheless, the DRGP technique is 
much successful for small sample size and high percentage of contamination. Midi
and Mohammed (2015) added another step to the DRGP algorithm termed as 
Improvised DRGP (IDRGP) in order to improve the efficiency of DRGP method and 
to reduce the rate of masking and swamping. The problem of this IDRGP is that the 
procedure is very time consuming as it employed minimum volume ellipsoid (MVE) 
in it computation. Lim and Midi (2016) proposed diagnostic robust generalized 
potential based on Index Set Equality ISE (DRGP(ISE)) which is less time consuming.  
However, the method of Lim and Midi (2016) still has some percentage of swamping 
and masking effect. We are aware from these discussion that several shortcomings can 
be seen in some of these methods, such as having swamping and masking, longer 
running times and computational complexity. 

Therefore, their work has motivated us to propose a Fast Improvised Diagnostic 
Robust Generalized Potential based on Index Set Equality (IDRGP (ISE)), which is 
expected to be more efficient in the identification of HLPs and able to reduce the rate 
of swamping, masking and computational time. To date, no research has been done to 
identify outliers /HLP for panel data. Hence, we also propose a new method of 
identification of HLPs in panel data, an extension identification method from linear 
regression model to fixed panel data model. 

The thesis also considered an efficient estimation technique in linear and fixed effect 
panel data model when there is HLPs in the data set. The GM6 estimation method 
proposed by Rousseeuw (1985) is the widely used method to overcome the HLPs.
However, this method is less efficient since it is based on robust Mahalanobis Distance 
Square which utilized minimum volume ellipsoid (MVE) as an initial –weight 
function. The shortcoming of MVE is that it is not only tends to swamp some low 
leverage points as high leverage, it attempts to identify high leverage points without 
taking into consideration whether they are good or bad leverage points. Hence, the 
GM6 considers the good leverage point as bad leverage points and its efficiency tends 
to decrease as the number of good leverage points increases. Dhhan et al. (2016) have 
successfully developed a new GM estimator that satisfied all the three properties of 
good robust estimator.  However, the method is based on support vector regression 
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which is quite complicated and difficult to understand by non-expert SVR statistics 
practitioners. Their work has motivated us to develop another version of GM estimator 
which is relatively simple and easy to understand compared to GM-SVR (Dhhan et 
al., 2016) and uses less computational running time. The new proposed GM estimator 
termed Fast GM estimator (FIMGT) which is quite fast and only down weight vertical 
outliers and bad leverage points. The good high leverage points are not down weighted 
because they have no impact or little effect on the parameter estimates and may 
contribute to the precision of the estimates. We also proposed the Within Group 
WGM-FIMGT estimator for fixed effect panel data model an extension from the linear 
regression model method.  To the best of our knowledge no such method has been 
proposed in panel data model. 

The thesis also addressed the problem of multicollinearity in parameter estimation in
the presence of HLPs. The OLS estimator suffers tremendous effect in the presence of
multicollinearity. The presence of high leverage points also effect multicollinearity.

The traditional multicollinearity diagnostic methods cannot correctly detect the 
existence of multicollinearity when there is HLPs in a data (Rosen, 1999). It is now 
evident that the traditional diagnostic measure Variance Inflation Factor (VIF) cannot 
correctly detect multicollinearity in the presence of HLPs. Bagheri and Midi (2011) 
proposed RVIF(MM) and RVIF(GM(DRGP)) to diagnose multicollinearity. 
Nonetheless, the RVIF(MM) is not efficient (Bagheri and Midi, 2011). The 
RVIF(GM(DRGP)) is also less effective because it is formulated based on DRGP 
which is less efficient as it down weight all detected HLPs irrespective of whether it 
is good or bad. The shortcoming of this method has inspired us to propose new robust 
VIF, namely the RVIF(GM-FIMGT) which is anticipated to be more efficient and 
reliable as it was developed based on IDRGP(ISE) which is relatively fast and only 
down weight vertical outliers and bad leverage point. Again we would like to develop 
robust VIF for panel data since such measure has not been focused by any researcher 
in fixed effect panel data model.

This thesis also considered the parameter estimation to remedy multicollinearity in the 
presence of HLPs. The Jackknife ridge estimator (JRR) and Latent Root Regression 
(LRR) which have small bias is put forward to remedy this problem. Nevertheless, it 
is now evident that these classical estimation methods perform poorly when outliers 
exist in a data set. In literature, not much work is available for the combined problems 
of multicollinearity and the existence of outliers in linear as well as panel data model. 
Jadhav and Kashid (2011) suggested using a Jackknife ridge M-estimator to overcome 
multicollinearity and outliers in the Y direction. Mohammed and Midi (2015) 
integrated MM-estimator and the GM2-estimator in the JRR algorithm for the 
establishment of the improvised versions of JRR. The suggested method is called 
jackknife ridge MM based denoted by JRMM and the jackknife ridge GM2denoted by 
JRGM2.As already mentioned, the shortcoming of  GM2 is that it formulation is based 
on DRGP which down weight HLPs without considering whether it is bad or good 
leverage points. In order to improve this estimator, we propose new Jackknife ridge 
(GM-FIMGT), denoted by JRFIMGT which is based on FIMGT with reasons already 
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mentioned. This method simultaneously rectifies the problems of multicollinearity and 
outliers.

As already started earlier, this thesis also addressed the same issues for panel data 
model. Some robust estimation technique for panel data were proposed, such as
Bramati and Croux (2007) who applied the robust Generalized M estimator and also 
combine of S and M-estimates to provide alternatives to the classical Within Group 
estimator using median-centering data transformation, in which the data are centered 
within the time series by using the median instead of the mean in order to eliminate 
the fixed effect in a robust method. The within GM-estimator and Within MS estimator 
moderately achieved low breakdown points. Recently, Verardi and Wagner (2011) 
used S-estimator for another robust Within Group estimator. They used the same 
method of robust data transformation in their studies. Unfortunately, median centering 
method is found to produce nonlinearity to the resulting data and make the 
equivariance properties of the robust estimators redundant (Bakar and Midi, 2015).  

More recently, Bakar and Midi (2015) used different centering approach whereby data 
are centered by MM-estimate of location and then employed robust MM and robust 
GM6 within group estimator. This robust approach is maintained not only to bring 
linearity back to the transformed data but also to enhance their performances. The 
weaknesses of their method is that it is based on MM estimate which is not bounded 
influence and also based on GM6 which down weight all HLPs irrespective of whether 
they are Good HLPs or Bad HLPs. This motivated us to employ a new proposed 
method namely WGM-FIMGT to the transformed data following Bramati and Croux 
(2007) who applied the GM6 estimator to the transformed data. Our transformed data 
is based on MM centering but Bramati and Croux (2007) based on median centering 
which has low efficiency under normal distribution. 

This thesis also focuses on both detection of multicollinearity and estimation of 
parameter in fixed effect panel data model. To the best of our knowledge, to date no 
work has been done for simultaneously taking care of multicollinearity and outliers in 
panel data. Hence, this inspired us to extend all methods that we developed earlier in 
linear model to panel data model. 
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1.3 Objective of Thesis 

The foremost objective of our research can be outlined systematically as follows:  

1. To develop a new fast method for detecting HLPs in linear regression and fixed 
effect panel data model.

2. To develop a simple version of high breakdown, high efficiency, bounded 
influence and fast GM estimator based on Index Set Inequality in both linear 
regression and fixed effect panel data model.

3. To formulate a new method for detecting multicollinearity in the presence of 
HLPs in both linear regression and fixed effect panel data.

4. To establish a new parameter estimation method to remedy multicollinearity 
in both linear and fixed effect panel data model in the presence of HLPs.

1.4 Scope and Limitation of study 

Panel data is still anew area in robust statistics. It is widely used in many field of study 
such as economics, finance and social science. Since robust statistic is relatively new 
technique in panel data model, there are not so many algorithms and statistical 
softwares related to panel data are available. Writing our own programming codes is 
the most challenging job. 

Since not much robust work is developed in panel data model, not many well referred 
outlying datasets and references are variable in the literature for discussion purposes. 

Not to mention that the outlying datasets with multicollinearity problems in panel data. 
Thus, generated data are used to apply our proposed method in panel datasets. 

1.5 Outline of the Thesis 

In accordance with the objectives and the scope of the study, the contents of this thesis 
are organized in the nine chapters. The thesis chapters are structured so that the study 
objectives are apparent and are conducted in the sequence outline. 

Chapter Two : This chapter briefly presents the literature reviews of the ordinary least 
squares estimation method and basic concepts of robust regression. Diagnostic 
methods of vertical outliers and high leverage points are reviewed. Moreover, 
important existing robust regression methods for estimation parameter in the presence
of HLPs and vertical outliers are also presented. The literature reviews on 
multicollinearity diagnostic methods and remedial techniques are presented.  Some 
literatures in panel data also include in this chapter. 
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Chapter Three : This chapter discusses the existing Fast Improvised Diagnostic 
Robust Generalized Potential (IDRGP) which is developed by Midi and Mohammed 
(2015). The new proposed Fast Improvised Diagnostic Robust Generalized Potential 
method based on Index Set Equality (IDRGP (ISE)) for identification of HLPs is 
presented. Finally, a Monte Carlo simulation study is discussed to evaluate the 
performance of the proposed method. 

Chapter Four : This chapter deals with development of the GM-estimator denoted by 
GM-FIMGT in multiple linear regressions. Monte Carlo simulations are presented to 
assess the performance of the proposed method. 

Chapter Five : In this chapter, we extend our proposed (IDRGP(ISE)) method that 
have discussed in Chapter three to panel data setting for the identification of HLPs.
Also, the effect of high leverage points before and after transformation is presented. 

Chapter Six : In this chapter, we used our proposed method that is discussed in 
Chapter four for estimation parameter in panel data set. Monte Carlo simulation 
studies and numerical example is carried out to assess the performance of the proposed 
method. 

Chapter Seven : This chapter is divided into two sections;

First Section : deals with a new proposed VIF based on GM-FIMGT denoted by 
RVIF(GM-FIMGT) method to diagnose multicollinearity in multiple linear regression 
model. 

Second Section : In this section, we extend our new proposed method in the first 
section to panel data setting to detect the multicollinearity problem in the presence of 
HLPs. Monte Carlo simulation studies and two artificial data sets are carried out to 
assess the performance of the proposed method. 

Chapter Eight : we divided this chapter into two sections;  

First Section : deals with robust jackknife ridge regression estimation method named 
(RJFIMGT) to remedy problem of multicollinearity in the presence of high leverage 
points in linear regression. A Monte Carlo simulation study and some numerical 
examples are given to assess the performance of our proposed method.  



© C
OP

UPM

8 

Second Section : In this section, we extend our proposed method in the first section 
to panel data setting to remedy problem of multicollinearity in the presence of high 
leverage points. A Monte Carlo simulation study is presented to assess the 
performance of our method. 

Chapter Nine : This chapter provides summary and detailed discussions of the thesis 
conclusions. Areas for future research are also recommended.  
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