UNIVERSITI PUTRA MALAYSIA

INDUCTION OF PERIODONTAL DISEASE VIA RETENTIVE LIGATURE, LIPOPOLYSACCHARIDE INJECTION AND THEIR COMBINATION IN A RAT MODEL

HANA HASSAN MUSTAFA

FPV 2018 12
INDUCTION OF PERIODONTAL DISEASE VIA RETENTIVE LIGATURE, LIPOPOLYSACCHARIDE INJECTION AND THEIR COMBINATION IN A RAT MODEL

By

HANA HASSAN MUSTAFA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Veterinary Science

January 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I wish to dedicate this dissertation work to my entire family. I specifically want to appreciate and express my gratitude to my parents, siblings, husband and daughter whose love and prayers kept me on and saw me through this challenging period of my life.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Veterinary Science

INDUCTION OF PERIODONTAL DISEASE VIA RETENTIVE LIGATURE, LIPOPOLYSACCHARIDE INJECTION AND THEIR COMBINATION IN A RAT MODEL

By

HANA HASSAN MUSTAFA

January 2018

Chairman : Associate Professor Chen Hui Cheng, PhD
Faculty : Veterinary Medicine

Periodontitis is a highly prevalent, chronic immune-inflammatory disease of the periodontium that results in progressive degradation of the periodontium and alveolar bone loss. This thesis aims to evaluate the induction of periodontal disease via retentive ligature, lipopolysaccharide, and their combination in a rat model. Seventy two Sprague Dawley rats were distributed into four treatment groups: 1) control group with no treatment; 2) application of 4/0 nylon ligature around 2nd maxillary molars; 3) intragingival injection of *Porphyromonas gingivalis* lipopolysaccharide (LPS) to the palatal mucosa of the 2nd maxilla molars; 4) combination of ligature and LPS injection (ligature-LPS). At 7, 14, 30 days after the induction of periodontal disease, 6 rats of each group were sacrificed. Morphological changes in the gingival tissues were evaluated according to Loe & Sillness Gingival Index and Plaque Index. Alveolar bone loss were evaluated histologically and via microcomputed tomography. Parametric data were analysed using two-way ANOVA followed by Tukey test with significance set at 5%. Non-parametric data were analysed using Kruskal-Wallis followed by multiple comparisons with Bonferroni’s correction. The morphological, histological and radiological results revealed significant degenerative changes in the periodontal tissues and alveolar bone following both the ligature and ligature-LPS induction techniques. These changes were evident as early as 7 days; maintained until 14 days, and declined with time. There was minimal difference in the changes induced by ligature-LPS when compared to ligature alone. Injection with LPS alone resulted in minimal increase of the Gingival and Plaque Index, and insignificant histological and radiological changes when compared to the controls. In conclusions, the ligature technique was effective to induce acute periodontal disease. The LPS injection technique in this study was not effective to induce alveolar bone loss, and its combination to ligature added insignificant effect.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Veterinar

INDUKSI PENYAKIT PERIODONTIUM MELALUI LIGATUR, SUNTIKAN LIPOPOLISAKARIDA, DAN KOMBINASI LIGATUR-LIPOPOLISAKARIDA PADA MODEL TIKUS

Oleh

HANA HASSAN MUSTAFA

Januari 2018

Pengerusi : Profesor Madya Chen Hui Cheng, PhD
Fakulti : Perubatan Veterinar

ACKNOWLEDGEMENTS

I wish to express my gratitude ALLAH (SWA) for giving me good health and the wisdom to achieve this important milestone. I will also like to extend my gratitude to my supervisor, Assoc. Prof. Dr. Chen Hui Cheng, for your kindness and intellectual guidance. I am most grateful for your time and efforts for always proffering solutions to my numerous challenges during the course of my studies. I also appreciate the immense assistance rendered to me by Dr. Rozanaliza Radzi, and I am grateful for your financial assistance and efforts during the surgical procedures. My appreciation also goes to other members of my supervisory committee, Prof. Dr. Noordin Mohamed Mustafa and Dr. Lau Seng Fong for their time and efforts put in on the course of this work whose professional guidance and help along the way were essential in completing this project.

I would also like to extend my appreciations to the staff of the surgery and histology lab UPM, for tolerating me and for their kindness and assistance during my lab work.

A special thank you goes to Dr. Ahmed Ali, Dr. Khunaw Abdulla, Dr. Mehdi Ibrahim, Dr. Dyary Hiewa and Dr. Bashir, Dr. Ubed Kaka. You all invested a significant amount of time throughout different parts of this project, all of for which i am grateful and cannot thank you enough.

I willh like to conclude by extending my most sincere love and gratitude to my family, my husband Pshdar Abdulla and daughter Lani for their patience and support during this most trying period of our lives. I salute your courage, resilience and tolerance. May ALLAH spare our lives to benefit from the results of these sacrifices.

Finally, I am grateful to my parents and siblings for their prayers, love and encouragement. I am grateful and may ALLAH reward you abundantly.
I certify that a Thesis Examination Committee has met on 12 January 2018 to conduct the final examination of Hana Hassan Mustafa on her thesis entitled "Induction of Periodontal Disease via Retentive Ligature, Lipopolysaccharide Injection and their Combination in a Rat Model" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Veterinary Science.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Loqman bin Haji Mohamad Yusof, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Zamri Radzi, PhD
Associate Professor
University of Malaya
Malaysia
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 February 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Veterinary Science. The members of the Supervisory Committee were as follows:

Chen Hui Cheng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noordin Mohamed Mustafa, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Rozanaliza Radzi PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Lau Seng Fong PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ___________________
Name and Matric No.: Hana Hassan Mustafa, GS 45109
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature : ________________________________
Name of Chairman of Supervisor Committee : Associate Professor Dr. Chen Hui Cheng

Signature : ________________________________
Name of Member of Supervisor Committee : Professor Dr. Noordin Mohamed Mustapha

Signature : ________________________________
Name of Member of Supervisor Committee : Dr. Rozanaliza Radzi

Signature : ________________________________
Name of Member of Supervisor Committee : Dr. Lau Seng Fong
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1

1. **INTRODUCTION**
 1.1 Introduction
 1.2 Objectives

CHAPTER 2

2. **LITRATURE REVIEW**
 2.1 Anatomy
 2.2 The rodent teeth and dentition
 2.3 Aetiology and pathogenesis of periodontal disease
 2.4 Clinical signs of periodontal disease
 2.5 Treatment of periodontal disease
 2.6 Animal Rats
 2.6.1 Rats
 2.6.2 Mouse
 2.6.3 Rabbits
 2.6.4 Non-human primates
 2.7 Experimental Periodontal Models
 2.7.1 Ligature model
 2.7.2 LPS model
 2.7.3 Combination of ligature with *Porphyromonas gingivalis* LPS
 2.8 Periodontal evaluation
 2.8.1 Morphological Evaluation
 2.8.2 Histology and Micro-CT Diagnosis

CHAPTER 3

3. **MATERIALS AND METHODS**
 3.1 Animal model and housing
 3.2 Experimental protocol
 3.2.1 Anaesthesia and patient preparation
 3.2.2 Placement of ligature
 3.2.3 Intragingival injection of *Porphyromonas gingivalis* lipopolysaccharide. (*Pg*-LPS)
 3.3 Periodontal evaluation
 3.3.1 Morphological evaluation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Animal sacrifice</td>
<td>17</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Histological Analyses</td>
<td>18</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Micro-CT Evaluation:</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Morphological evaluation</td>
<td>22</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Gingival index score</td>
<td>22</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Plaque index score</td>
<td>25</td>
</tr>
<tr>
<td>4.2</td>
<td>Histological analysis</td>
<td>27</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Measurement of CEJ-ABC distance</td>
<td>29</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Inflammatory cell counts</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Micro-CT</td>
<td>35</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Linear Micro-CT measurement (CEJ-ABC)</td>
<td>35</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Volumetric micro-CT measurement</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>44</td>
</tr>
</tbody>
</table>

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phases of periodontal disease</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental protocol</td>
</tr>
<tr>
<td>3.2</td>
<td>Gingival Index (GI)</td>
</tr>
<tr>
<td>3.3</td>
<td>Plaque Index (PI)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A. Photomicrograph of the periodontium of maxillary molars in a rat from this study. The gingiva is covered with keratinized stratified squamous epithelium, which is different from human. JE= Junctional epithelium, PL= Periodontal ligament. Scale; 2µm. B. Structure of the periodontium in (rats), showing four supporting structures: gingiva, periodontal ligament, cementum, and alveolar bone. XY = CEJ-ABC distance. adapted from http://www.ratbehavior.org/Teeth.htm.</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Stages of periodontal disease with clinical signs</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>A The innovative assembly used to maintain isoflurane anaesthesia and present oral cavity of rats in this study. N, 22mm end of an elbow connector wrapped with Coban™ to fit the rats snout; part of Coban™ is anchored to the rats incisors. H= the elbow connector is fit through a hole in a plastic frame; C= 15mm end of the connector is connected the MJR circuit; P= plastic frame to secure the connector and accommodate the rat in dorsal position; E= a bandage tet connects the elbow connector to the incisor teeth to be the rat not moveable. B; Drawing diagram, explaining the method of induction of inhalation anesthesia in rats by nose cone</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>Placement of 4/0 nylon ligature around the second maxillary molar teeth. M1= first molar teeth, M2= second molar teeth, M3= third molar teeth</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>A- Photomicrograph of a panoramic view of the teeth denoting scoring locations. The presence and intensity of inflammation, degeneration/necrosis, gap or cysts within the periodontal ligament and blood vessel were evaluated at interproximate S1= section 1(M1-M2), S2= section 2 (M2-M3) (2X) [H&E]</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Micro-CT sagittal view showing, (blue line) - distance between cemento enamel junction (CEJ) and alveolar bone crest (ABC) of second molar. (yellow square)- region of interest for measurement of bone volume (BV) of the maxillary second molar</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Representative gross morphology of group C= Control, L= Ligature group, L-LPS= ligature with LPS injection group, LPS= LPS injection group at day 7 (A, D, G, J), 14 (B, E, H, K) and 30 (C, F, I, L). The gingival tissue of second molar in group ligature and ligature with LPS injection at day 7, 14, and 30 showed swellings,</td>
<td>23</td>
</tr>
</tbody>
</table>
redness, and plaque around the nylon thread and bleeding upon palpation. Group LPS injection at day 30 has mild plaque around the teeth without signs of inflammation. No change observed in the control group at all times.

4.2 Gingival index scores of four different groups; C= control, L= ligature, L-LPS = ligature with LPS injections, LPS=LPS injections at three different times A= Day 7, B= Day 14, C= Day 30. Results are expressed as median +/- interquartile range. Different alphabet denotes significant difference, P≤ 0.05; abc, difference between treatment groups; xyz, difference over time within treatment group. (Kruskal-Wallis test, followed by post hoc multiple comparison test with Bonferroni correction)

4.3 Plaque index scores of four different groups; C= control, L= ligature, L-LPS = ligature with LPS injections, LPS=LPS injections at three different times A= day 7, B= day 14, C= day 30. Results are expressed as median +/- interquartile range. Different alphabet denotes significant difference, P≤ 0.05; abc, difference between treatment groups; xyz, difference over time within treatment group. (Kruskal-Wallis test, followed by post hoc multiple comparison test with Bonferroni correction)

4.4 Histologic views of the sections of the labial side frontal aspect of the maxillary second molars in the C= control group, L= ligature group, L-LPS ligature with LPS injection group and LPS= LPS injection groups at day7(A,D,G,J), 14 (B,E,H,K), 30 (C,F,I,L) . PL= periodontal ligament; AB= alveolar bone, CT= Connective tissue. (H&E stain, magnification x 100)

4.5 Distance from cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) of the second maxillary molars. C= control group, L= ligature group, L-LPS= ligature with LPS injection group, LPS= LPS injection group at three different times A= day 7, B= day 14, C= day 30. Note the increase the distance of CEJ-ABC in all experimental periods in L and L-LPS groups. Results are expressed as mean +/- SE. Different alphabet denotes significant difference, P≤0.05; abc, difference between treatment groups; xyz, difference over time within treatment groups. No time difference within group. (Two-way ANOVA, followed by post hoc Tukey’s test)

4.6 The graph shows the inflammatory cells by percentage at A=day 7, B= day14, and C= day 30 of disease induction. C= Control group, L= Ligature group, L-LPS= Ligature with LPS injection group LPS= LPS injection group. Note the increase in tissue inflammation in all experimental periods in L and L-LPS groups. Results are expressed as median +/- interquartile range. Different alphabet denotes significant difference, P<0.05; abc, difference between
4.7 The graph shows number of blood vessels by percentage at day 7, 14, and 30 of disease induction. C = Control group, L = Ligature group, L-LPS = Ligature with LPS injection group, LPS = LPS injection group. Number of blood vessels increased at days 14 and 30 in L and L-LPS groups. Data expressed as median+/− interquartile range. Different alphabet denotes significant difference, \(P<0.05 \); abc, difference between treatment groups; xyz, difference over time within treatment groups. (Kruskal–Wallis test, followed by Bonferroni test)

4.8 Two-dimensional sagittal micro-CT views of the maxillary groups of different models from each group at 7, 14 and 30 days. yellow line=cemento enamel junction (CEJ); blue line=alveolar bone crest (ABC); M2=Second molar teeth

4.9 Distance from cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) of the second maxillary molars, C = control group, L = ligature group, L-LPS = ligature with LPS injection group, LPS = LPS injection group. Note the increase the distance of CEJ-ABC in L and L-LPS groups at all experimental periods. Results are expressed as mean +/- SE. Different alphabet denotes significant difference, \(P \leq 0.05 \); abc, difference between treatment groups; xyz, difference over time within treatment groups. No time difference within group (Two-way ANOVA, followed by post hoc Tukey’s test)

4.10 The graphs show the BV in all experimental periods (A through C). All results are expressed as the mean±SE. \(P \leq 0.05 \) Significant difference compared to all the other groups per times (Two-way ANOVA and Bonferroni hoc tests). Two-way ANOVA revealed no significant time interactions. abc= Difference of treatment groups significant, xyz; differences over time of same groups. Same alphabet no significant differences
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
</tr>
</tbody>
</table>

1. Experimental data from 71 rats of all groups (Ligature, *Pg*-LPS, Ligature-*Pg*-LPS, and Control) at day 7, 14, and 30
2. Appendix 2: Summary of results
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ABC</td>
<td>Alveolar bone crest</td>
</tr>
<tr>
<td>AL</td>
<td>Attachment loss</td>
</tr>
<tr>
<td>BV</td>
<td>Bone volume</td>
</tr>
<tr>
<td>CEJ</td>
<td>Cemento-enamel junction</td>
</tr>
<tr>
<td>CT</td>
<td>Connective tissue</td>
</tr>
<tr>
<td>GI</td>
<td>Gingival Index</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and eosin</td>
</tr>
<tr>
<td>IACUC</td>
<td>Institutional animal care and use committee</td>
</tr>
<tr>
<td>IL-a</td>
<td>Interleukin alpha</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin- six</td>
</tr>
<tr>
<td>IC</td>
<td>Inflammatory cells</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquarter range</td>
</tr>
<tr>
<td>JE</td>
<td>Junctional epithelium</td>
</tr>
<tr>
<td>L</td>
<td>Ligature</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M1</td>
<td>Maxillary first molar teeth</td>
</tr>
<tr>
<td>M2</td>
<td>Maxillary second molar teeth</td>
</tr>
<tr>
<td>M3</td>
<td>Maxillary third molar teeth</td>
</tr>
<tr>
<td>M-CT</td>
<td>Micro-Computed tomography</td>
</tr>
<tr>
<td>μm</td>
<td>Micro meter</td>
</tr>
<tr>
<td>μL</td>
<td>Micro Liter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>PD</td>
<td>Periodontal disease</td>
</tr>
<tr>
<td>PI</td>
<td>Plaque index</td>
</tr>
<tr>
<td>PL</td>
<td>Periodontal ligament</td>
</tr>
<tr>
<td>Pg-LPS</td>
<td>Porphyromonas gingival lipopolysaccharide.</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TNF-a</td>
<td>Tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>VOI</td>
<td>Volume of interest</td>
</tr>
<tr>
<td>2-D</td>
<td>Bi dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>Three dimensional</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Periodontal disease (PD) is a significant oral disorder affecting humans (Poul 2004). It is a multifactorial disease, caused by bacterial plaque in the periodontium. Research has shown that there are many risk factors involved in pathogenesis of periodontitis, such as breed, sex, age, diet, bedding, water, weight, alcohol, zinc deficiency and stress (Duarte et al., 2010). The disease can be graded according to the degree of change in the gums and teeth. It can range from mild plaque and gingivitis, to gingival recession and degradation of the periodontal ligament, to significant inflammation and loss of teeth (How et al., 2016).

Various animal models have been used to investigate mechanism of the periodontal disease and the host bacterial interaction. Non-human primates, dogs, pigs, ferrets, rabbits, rats and mice have been used as the animal models (Polak et al., 2009). Rodents, with rats in particular, are important models for experimental periodontal research because rats are easy to handle and inexpensive (Oz & Puleo et al., 2011).

Methods that have been described to induce periodontitis in rats include inoculation of pathogens such as Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, or their pathogenic products such as lipopolysaccharide (LPS) and, placement of ligatures in the dentogingival area, which allows accumulation of subgingival microorganisms. In the mouse, the ligature model could result in alveolar bone loss within a short period (Molon et al., 2014). Intra-gingival injection of LPS derived from Porphyromonas gingivalis could also induce periodontal inflammation as well as bone resorption in experimental animals. However, to induce the same lesion, this method may need a longer time (Taguchi et al., 2015). Combination of the ligature technique with inoculation of the bacteria P. gingivalis has been reported to induce alveolar bone loss in the rat model (Meulman et al., 2011). Whether combination of ligature with a pathogenic product, such as lipopolysaccharide from P. gingivalis would accelerate the process is not well described. This thesis hypothesis that combination of ligature and injection of LPS would induce periodontal disease in a shorter time compare to use of either ligature or LPS alone.

1.2 Objectives

This thesis aims to find the best model (periodontal disease production in the shortest time) by describe and compare the morphological, histological and radiological changes of periodontal disease induced by ligature, injection of LPS and
combination of ligature-LPS injection in the Sprague Dawley rat model. The specific objectives are: evaluate the:

1. Morphological evaluation of the three different models
2. Histological evaluation of the three different models
3. Radiological evaluation of the three different models.
REFERENCES

Archana, Dr. A., Dr. Venkata Srikanth, Dr. Sasireka, Dr. Bobby Kurien and Dr. Ebenezer (2014). "Fibroblast Heterogeneity in Periodontium – a Review." *International J. Dental Sciences and Research* 2.3 : 50-54.

Dumitrescu AL, Abd El-Aleem S, Morales-Aza B, Donaldson LF. A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption,

Löe, H. (1967). The gingival index, the plaque index and the retention index systems. J. periodontology, 38(6 Part II), 610-616.

Nishida Eiji, Yoshitaka Hara, Takashi Kaneko, Yasuo Ikeda, Takashi Ukai, Ihachi Kato (2011). Bone resorption and local interleukin-1α and interleukin-1β synthesis induced by Actinobacillus
actinomycetemcomitans and Porphyromonas gingivalis lipopolysaccharide. *J. periodontal research.* Vol. 36, Issue 1; 1–8

