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Recently Bag of Visual Words (BoVW) has shown promising results for im-
age annotation and retrieval tasks. In the traditional BoVW model, all visual
words are collected and treated the same, regardless of whether or not they
are from an important part or the background of a picture. Traditional Scale
Invariant Feature Transform (SIFT) features have no spatial information;
therefore, the recognition of difficult objects requires more attention. The
first objective of this thesis was to develop a new BoVW model, the Salient
Based Bag of Visual Word (SBBoVW) model, to recognize difficult objects
that previous methods were unable to accurately identify. This new model
collects visual words based on their importance and combines several Pyra-
midal Histogram of visual Words (PHOW) feature vectors from the salient,
rectangular part of a picture, as well as from the whole picture, to overcome
the above-mentioned problem. After implementation, it was found that this
method of feature extraction affects the accuracy of the results, which were
more accurate than results obtained using seven other state-of-the-art models.
However, the SBBoVW model focused only on gray-scale pictures.
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The DCD is both low-dimensional and less expensive for representing image
colors compared to the previous BoVW model that concentrated on the Color
Scale Invariant Feature Transform (CSIFT), combinations of color SIFTs ex-
tracted from different color spaces, and opponent-color SIFTs extracted from
opponent color spaces to add color information to a SIFT. Therefore, the fi-
nal objective of this research was to develop a late fusion model, the SDCD
BoVW and SBBoVW model. This model fuses the SDCD BoVW, and SB-
BoVW models using late fusion from histograms and is a comprehensive model
for color object recognition. After implementation, the final proposed model
provided more accurate results than the other three state-of-the-art models
mentioned here and 19 additional color feature extraction methods.

Previous research found that integrating color, significantly improved the over-
all performance of both feature detection and extraction because color is an 
important characteristic of human vision. Based on the literature, most of 
the image classification strategies have been developed for gray-based SIFT 
descriptors. Since color content is ignored, misclassification may occur. The 
Dominant Color Descriptor (DCD) is the best color descriptor for region color 
and the focus of improvements because it is a low-dimensional or less expen-
sive descriptor representing colors in images. The DCD uses one to eight 
colors for each picture, and one to four colors for each region. However, some 
background colors are not used in the object of an image. Therefore, the sec-
ond objective of this research was to establish a new Salient Dominant Color 
Descriptor (SDCD) to estimate the number of colors in a salient region using 
an easily implemented algorithm. Based on the results, it was found that if 
the maximum Euclidean color distance (dmax) was set to 20, as suggested by 
other researchers, more accurate results were obtained.
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Kebelakangan ini, model Bag of Visual Word (BoVW) telah mempamerkan 
keputusan yang memberangsangkan dalam tugas anotasi dan dapatan imej. 
Menerusi model BoVW yang tradisional, semua perkataan visual dikumpul 
dan dianggap sama rata antara satu sama lain, tidak kira ianya dari baha-
gian penting gambar ataupun dari bahagian latar belakang gambar. Ciri-ciri 
Scale Invariant Feature Transform (SIFT) yang tradisional tidak mempunyai 
maklumat berkaitan ruang, oleh itu, lebih perhatian diperlukan untuk men-
genalpasti objek yang sukar. Objektif pertama tesis ini adalah untuk mem-
bangunkan model Salient Based Bag Visual Word (SBBoVW) yang baharu 
untuk mengenalpasti objek sukar yang tidak dapat dikenalpasti dengan tepat 
oleh kaedahkaedah yang lepas. Model baharu ini mengumpul perkataan vi-
sual berdasarkan tahap kepentingan dan menggabungkan beberapa ciri vektor 
Pyramidal Histogram of visual Words (PHOW) daripada bahagian penting, 
bahagian segi empat tepat gambar serta bahagian keseluruhan gambar bagi 
mengatasi masalah yang dibincangkan di atas. Selepas perlaksanaan, didap-
ati bahawa kaedah pengekstrakan ciri ini mempengaruhi ketepatan keputu-
san, yang mana keputusan ini adalah lebih tepat berbanding keputusan yang 
diperoleh daripada tujuh model state-of-art yang lain. Walau bagaimana-
pun, model SBBoVW ini hanya memberi tumpuan kep-ada gambar berskala 
kelabu sahaja. Kajian lepas mendapati penggabungan warna dapat memper-
baiki prestasi keseluruhan keduadua ciri pengesanan dan pengekstrakan den-
gan ketara kerana warna merupakan sifat penting dalam penglihatan manusia.
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baharu bagi menganggarkan bilangan warna di dalam satu rantau yang pent-
ing dengan menggunakan satu algoritma yang mudah dilaksanakan. Berdasar-
kan keputusan, didapati bahawa sekiranya jarak maksimum warna Euclidean
ditetapkan pada 20 seperti yang dicadangkan oleh penyelidik-penyelidik yang
lain, maka keputusan yang lebih tepat akan diperolehi.

DCD mempunyai ciri yang berdimensi rendah serta berkos rendah dalam
mewakili warna imej berbanding dengan model BoVW yang lepas yang mem-
beri tumpu-an kepada Color Scale Invariant Feature Transform (CSIFT),
gabungan warna SIFTs yang diekstrak daripada ruang warna yang berbeza,
dan warna berlawanan SIFTs yang diekstrak daripada ruang warna yang
berlawanan untuk menambah maklumat warna kepada SIFT. Maka, objektif
terakhir kajian ini adalah untuk membangunkan satu model gabungan akhir
di antara model SDCD, BoVW dan SBBoVW. Model ini menggabungkan
model-model SDCD, BoVW dan SBBoVW dengan menggunakan gabungan
akhir daripada histogram dan ia merupakan model yang komprehensif dalam
pengenalan warna objek. Selepas perlaksanaan, model terakhir yang dicadan-
gkan memberikan keputusan yang lebih tepat berbanding dengan tiga model
state-of-art yang disebutkan dan sembilan belas kaedah pengekstrakan ciri
warna tambahan.

iv

Berdasarkan kajian yang lepas, kebanyakan strategi pengelasan imej telah 
dibangunkan untuk penghurai SIFT berasaskan kelabu. Oleh sebab kandun-
gan warna diabaikan, kesilapan dalam pengelasan mungkin terjadi. Dom-
inant Color Descriptor (DCD) merupakan penghurai warna yang terbaik 
untuk warna serantau, dan tumpuan diberikan kepada penambahbaikannya 
kerana ia merupakan penghurai berdimensi rendah atau berkos rendah yang 
mew-akili warna-warna di dalam imej. DCD menggunakan satu hingga la-
pan warna untuk setiap gambar, dan satu hingga empat warna untuk setiap 
rantau. Walau bagaimanapun, sesetengah warna latar belakang tidak digu-
nakan dalam objek dalam sesuatu imej. Oleh itu, objektif kedua kajian ini 
adalah untuk mewujudkan Salient Dominant Color Descriptor(SDCD) yang
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CHAPTER 1

INTRODUCTION

This chapter serves as the starting point for the entire thesis. It provides the
background of Content-Based Image Retrieval (CBIR), the Scale-Invariant
Feature Transform (SIFT), and the Bag of Visual Words (BoVW). Then,
the motivation of this research in image retrieval is discussed. The details
of the research’s problem statement, research objectives, research scope, and
research contributions are given in the following sections. The final section
presents an outline of the thesis structure.

1.1 Background

Content-Based Image Retrieval (CBIR) was proposed by Qi and Snyder in the
late 1990s. This method extracts low-level features (color, texture, and shape)
from images and categorizes images based on the differences in these features.
Although low-level features, such as texture, color, spatial relationship, and
shape, are extracted automatically when using computer vision techniques,
CBIR often fails to describe high-level semantic concepts (Zhou and Huang,
2000).

CBIR systems are limited when dealing with large image databases (Liu et al.,
2007); however, low-level features require some preprocessing. In 1999, Lowe
presented a robust feature, Scale-Invariant Feature Transform (SIFT) (Lowe,
1999), which accurately scales, rotates, translates, illuminates, and partially
invariant to affine distortion. SIFT features must be quantized using the
well-known Bag of Visual Words (BoVW) technique, originally presented by
Csurka et al. (2004), to generate a visual word vocabulary (or codebook). The
BoVW method was first proposed for document classification and originally
named as the Bag of Words (BoW); it represents a document as a bag of
words and features extracted based on the frequency of occurrence of each
word. Recently, the BoW model has been applied in computer vision (Fei-Fei
and Perona, 2005), where it has been renamed to BoVW and used with the
visual word vectors of images to extract information from each visual word
in images. For BoVW extraction, blobs and features (e.g., SIFT) are first
extracted, a visual vocabulary is built using the clustering method (e.g., K-
means), and representations of images are compiled from BoVW histograms.
In the final stage, images are classified using methods such as the Support
Vector Machine (SVM). Mikolajczyk and Schmid (2005) compared several
feature descriptors and found that, in many situations SIFT-like descriptors
outperform other descriptors. Therefore, this thesis focused on using SIFT
features. Later, Bay et al. (2006) proposed Speeded Up Robust Features
(SURF), which is quicker than the SIFT, Liu et al. (2008) suggested a faster
algorithm for computation of dense sets of SIFT descriptors, and Dalal and
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Triggs (2005) used the histogram of oriented gradient (HOG) descriptor for
pedestrian detection.

1.2 Motivation and Importance of the Study

The problem with the traditional SIFT feature extraction strategy is that it
disregards all information about the spatial layout of features. To overcome
this limitation, Pyramidal Histogram of Visual Words (PHOW) is currently
used for SIFT features and was proposed by Lazebnik et al. (2006). It uses a
dense SIFT at different scales to build a pyramid of descriptors. Pyramidal
Histogram of Oriented Gradient (PHOG) is the edge version of PHOW, which
means it gathers features of edge detected images. In early experiments, the
author used BoVW for SIFT features with different SVM methods such as
LIBSVM (Chang and Lin, 2011). However, the traditional BoVW model
cannot collect visual words based on their locations in a picture. Therefore,
all the visual words are collected and treated the same even if they are from
both the important areas or background regions (i.e., the classifier relies on
visual words that fall in the background and merely describes the context
of the object (Oquab et al., 2015)). Traditional SIFT features contain no
spatial information, making it difficult to obtain precise object recognition.
To address these problems, a Salient Based Bag of Visual Words (SBBoVW)
model for difficult object recognition and object locating was proposed. This
model collects visual words from whole and salient parts of an image using
spatial PHOW histograms.

Based on the literature, most image classification strategies were developed
for gray-based SIFT descriptors (Yang et al., 2009; Wang et al., 2010; Shabou
and LeBorgne, 2012; Liu et al., 2011; Yang et al., 2010, 2011), despite the
fact that color information is also very important. Misclassification occurs
because color content is ignored during image classification. Vigo et al. (2010)
found that integrating color significantly improved the overall performance of
both feature detection and extraction. Also, by adding color information to
illumination changes, the matching rate becomes more accurate (Chen et al.,
2015; Krylov and Sorokin, 2011).

To add color information to SIFT features, different types of color SIFT
(CSIFT) descriptors were proposed and developed by researchers to utilize
the color information inside the SIFT descriptors (Chen et al., 2015). Bosch
et al. (2007) added color information to SIFT by extracting features from all of
the channels in the Hue, Saturation, Value (HSV) color model, called HSV-
SIFT. Chen et al. (2015) investigated CSIFTs with different color spaces,
including Red, Green, Blue (RGB), HSV, an M-by-3 matrix that contains
the luminance (Y) and chrominance (Cb and Cr) color values as columns
(YCbCr), Opponent, rg, and color invariant spaces and found that YCbCr-
SIFT descriptors achieved the most stable and accurate image classification
performance among the CSIFT descriptors.

2

© C
OPYRIG

HT U
PM



The MPEG-7 standard proposes different methods to obtain color descriptors.
Zhang et al. (2012) found that among the various MPEG-7 color features, the
Dominant Color Descriptor (DCD) was a good descriptor for representing col-
ors in regions with low dimensionality or regions that were less expensive to
compute. Additionally, the Color Coherence Vector (CCV), color correlogram,
and Scalable Color Descriptor (SCD) are useful for whole image representa-
tion. Recently, Talib et al. (2013) proposed a new weighted dominant color
descriptor (weight for each Dominant Color (DC)), to reduce the bad effect
of image background on the accuracy retreival results. They also proposed
a new similarity measurement to measure the similarity based on the DCs
distances. However, the model cannot focus on the foreground and removes
the background colors completely.

Because of the advantages of the DCD for color region extraction of low-
dimensio-nal features, the author focused on the using of this color feature
to solve current problem related to the DCD. Most of the previous BoVW
models concentrated on CSIFTs (Abdel-Hakim et al., 2006), combinations of
color SIFTs (Rassem and Khoo, 2011), opponent colors, and color histograms
to add color information to SIFT and PHOW SIFT features. Therefore, a
new Salient Dominant Color Descriptor (SDCD) BoVW and SBBoVW fusion
model was proposed in the current study to improve the final results.

1.3 Problem Statement

This research addressed the problem of difficult object recognition using a
fusion model. The author found that traditional BoVW models collect visual
words similarly, regardless of where they are located in the image and that
traditional SIFT features contained no spatial information. Therefore, the
recognition of difficult objects requires more attention. Based on the litera-
ture, most image classification strategies were developed for gray-based SIFT
descriptors (Yang et al., 2009; Wang et al., 2010; Shabou and LeBorgne, 2012;
Liu et al., 2011; Yang et al., 2010, 2011) and because color content is ignored,
misclassification occurs. The DCD is a low-dimensional and cost effective
descriptor for representing colors from all regions of an image (Zhang et al.,
2012); however, previous BoVW models concentrated on CSIFTs (Abdel-
Hakim et al., 2006), combinations of color SIFTs (Rassem and Khoo, 2011),
and opponent colors to add color information to SIFTs.

1.4 Research Objectives

The main aim of this research is to propose a new late fusion model for image
retrieval by fusing dominant colors and invariant features. The objectives of
this research are as follows:
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1. To propose a new approach, which is a Salient Based Bag of Visual Word
model (SBBoVW) in order to recognize difficult objects which have had
low accuracy in previous methods, and to introduce a new algorithm for
finding object place based on the salient map automatically.

2. To introduce a new algorithm, Salient Dominant Color Descriptor (SDCD),
to extract dominant colors of the salient object in the picture and find
the suitable maximum Euclidean color distance for the proposed color
descriptor.

3. To present a new model for fusing the SDCD and SBBoVW models to
create a single comprehensive model.

1.5 Research Scope

The potential uses of salient maps for recognizing difficult objects and esti-
mating object locations in pictures were investigated. The Multi-scale Dense
SIFT (MSDSIFT) PHOW features for invariant feature extraction, Spatial
Pyramid Matching (SPM) for adding spatial information, Elkan K-means for
fast visual word dictionary construction, Chi2 Support Vector Machine (SVM-
Chi2) were used as classifiers. A new dominant color descriptor based on the
saliency map was proposed to generate the DCs of the salient region. Lu-
minescence satUration hue angle Value (LUV) was the color space used to
determine the maximum Euclidean color distance (dmax). Color similarity
was measured using the formula proposed in Yang et al. (2008).

To assist the evaluation, previous BoVW models were implemented, and the
same train and test pictures were selected based on their location in the folder.
For the images that could not be run, the same experimental setup was fol-
lowed. The system divided the dataset to train and test the images. With
the help of a confusion matrix, in which each column of the matrix represents
the instances in a predicted class and each row represents the instances in
an actual class (or vice-versa), visualization of the performance of each clas-
sification strategy, including measuring the precision, recall, accuracy, and
classification rate, was possible.

1.6 Research Contributions

Three BoVW models for object recognition were developed, including the
SBBoVW model to collect visual words based on their locations in a picture
and to recognize difficult objects, the SDCD to extract the DCs from salient
objects in a picture, and the combined SDCD and SBBoVW model to en-
hance the final results with salient feature selection and late feature fusion
methods. Each of the proposed models was evaluated and compared against
some of the benchmark methods using large image dataset queries and various
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accuracy measurements (including precision, recall, accuracy, and the classi-
fication rate). This research contributes to establish the BoVW models for
object recognition and Automatic Image Annotation (AIA) methods. There
are many applications in both commercial and scientific fields that routinely
use image data. These proposed methods allow users to find objects and
automatically annotate pictures based on the DCD color and SIFT features.
The contributions of the research are as follows:

1. A novel BoVW model, the SBBoVW model, was introduced to collect
visual words based on their importance and whether they were from the
salient object or background region of an image. Additionally, a new
algorithm for automatically finding object locations based on salient
maps was proposed.

2. A novel SDCD was introduced to extract colors from salient objects in
an image to estimate a suitable color number based on the Euclidean
distance.

3. A novel BoVW model, the combined SDCD and SBBoVW model for
superior color object recognition, was introduced to create a compre-
hensive model for color object recognition.

1.7 Outline of the Thesis Structure

There are three research structure styles used at the University Putra Malaysia
(UPM) based on the Graduate School of Studies (GSO) guidelines for thesis
preparation (2009). The second style was chosen for this thesis, which was
divided into four parts: an introduction, a literature review, the research
methodology, and a conclusion. Each research chapter represents a separate
study and includes introduction, methodology, results and discussion sections.
The sections of this research complement the technical elements that form the
project under discussion. The overall organization of the thesis is as follows.

Chapter one provides an introduction to the research work and discusses the
study research background, problems that arise from each of the respective
object recognition and AIA methods, this research was derived the benefits of
combining these features to create an integrated SDCD and SBBoVW model,
the research objectives, scope of the research, and the contributions of this
research.

Chapter two provides a comprehensive literature review of AIA components
and stages. The components that contributed to the current research are
discussed and compared to determine the advantages and disadvantages of
each.

Chapter three explains the methodology used for this research. There are
five phases involved in the methodology: the research problem identification
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phase, experimental research planning phase, conduction of the experiments
phase, data analysis and discussion phase, and report writing phase. The
experimental framework design is also explained in this chapter. Each of the
experiments conducted for this research are explained thoroughly.

Chapter four explains the design, experimental results, and a discussion for
the first experiment: evaluating six kinds of classification strategies in the bag
of SIFT feature method for animal recognition, and the second experiment
evaluated SIFT feature strategies (including SIFT, Dense SIFT, and Multi-
Scale Dense SIFT) in the special animal domain. These experiments used in
the proposed SBBoVW model, which is also described in detail. The imple-
mentation results and a comparison of all three experiments are discussed in
this chapter. Additionally, the model design, final results, and discussion, in-
cluding a detailed break down of the proposed algorithm for locating objects,
are explained thoroughly.

Chapter five provides a comprehensive explanation of the design, experimental
results, and discussion related to the proposed SDCD algorithm for extracting
colors from salient objects in pictures. In this experiment, different maximum
Euclidean color distances were tested to determine which distance works the
best.

Chapter six provides a comprehensive explanation of the design, experimental
results, and discussion related to the novel, combined SDCD and SBBoVW
model for recognising color objects. In this chapter, the model for SDCD
and MSDSIFT PHOW feature fusion is explained thoroughly. Then, the final
results and a comparison of three state-of-the-art models and 19 different color
feature extraction methods are provided.

Chapter seven summarizes the strengths and limitations of each of the pro-
posed methods, namely the SBBoVW model, SDCD algorithm, and SDCD
and SBBoVW model. Suggestions for future research of the mentioned meth-
ods are also provided in this chapter.
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