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As recorded documents show, it is already less than a century that researchers have 

attempted to evaluate local scour depth around pier as a destructive phenomenon. 

Unfortunately, the climate changes and deforestation have changed and increased rainfall 

and runoff respectively in aggravated conditions to create inundated bridges. Therefore, 

in the last few decades, some other researchers have tried to predict scour depth under 

submerged bridge condition. Although their results are valuable, there are still different 

unstudied factors under submerged bridge condition which should be evaluated. One of 

the mentioned unstudied conditions is the effect of submerged skewed bridge on 

maximum scour depth and the present study endeavoured to determine this under clear 

water condition. Therefore, the main purpose of the present study is to experimentally 

improve existing equations about the prediction of maximum scour depth around the 

foundation of a submerged bridge with different angles between approaching flow and 

bridge deck alignments. In order to collect the required data, six different bridge models 

with and without pier with different angles of 0, 5, 10, 15, 22.5 and 30 degrees were used 

to evaluate the effect of bridge alignments on maximum scour depth. All models were 

tested for partially and fully submergence conditions using two different sizes of bed 

sediments with median sizes of 0.23 mm and 0.80 mm. A total of 48 runs were 

conducted. Analysis of collected data showed that deflection of approach flow along the 

skewed bridge thickness (girders and guard rail) is the main difference in comparison 

with the perpendicular approach flow direction. In actual fact, analysis of the approach 

flow velocity vector along the skewed bridge thickness showed that an unbalanced 

distribution of downward flow velocity occurred, which firstly caused unbalanced unit 

discharge along the upstream edge of the bridge without pier. Then, it made an 

unbalanced scour level along the downstream bridge edge. According to the mentioned 

mechanism, an equation based on mass conservation law was proposed to predict 

maximum scour depth with an acceptable root mean square error (RMSE) and mean 

absolute error (MAE) equal to 0.029 m and 0.023 m respectively. Also, a labyrinth flow 

between two sides of flume walls at the downstream of bridge may occur, in which its 

first direction is the most destructive direction toward the opposite flume wall, which is 

predicted by another obtained equation and changes from 34 degrees up to 65 degrees. 

But under submerged skewed bridge condition with pier, the existence of the pier caused 

maximum local scour depth around itself, and created vortices around the pier is much 

more than the deflection of flow along the submerged skewed thickness. Also, it was 

found that correction factor of pier alignment in submerged bridge is much less than the 
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same condition in free flow. Then, relationship between dependent and independent 

variables firstly was determined. Finally, an equation was proposed by using 

dimensional analysis, collected data and multiple linear regressions with a better 

prediction amongst previous study with the least RMSE and MAE equal to 0.018 m and 

0.014 m respectively. Also, correction factor of pier alignment in submerged bridge is 

almost 50% less than the same correction factor in free flow condition which was 

previously assumed the same. Both the proposed equations can acceptably predict 

maximum scour depth in comparison with the existing equations. Moreover, 

submergence ratios in both submerged bridge with and without pier show that maximum 

scour depth occurs before beginning of the bridge cresting. Although scour depth in 

submerged bridge without pier decreases after cresting in a short limited of submergence 

ratio from 0 to 0.08, it increases again as flow depth increase. Also, existence of a pier 

strongly affects the maximum scour depth around the flume wall which receives the 

deflected flow.   
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Fakulti   :    Kejuruteraan 

 

 

Seperti yang rekod dokumen menunjukkan, ianya sudah kurang daripada satu abad  yang 

mana penyelidik telah mencuba untuk menilai kedalaman kerokan tempatan di keliling 

tiang sebagai fenomena kemusnahan. Dukacitanya, perubahan cuaca dan kemusnahan 

hutan masing-masing telah merubah regim hujan dan aliran air dalam keadaan yang 

teruk yang membuatkan jambatan tenggelam. 

 

 

Oleh itu, dalam beberapa dekad yang lalu, beberapa penyelidik lain telah cuba untuk 

meramalkan kedalaman kerokan di bawah keadaan jambatan tenggelam. Walaupun 

keputusan mereka adalah berharga, masih terdapat faktor berbeza belum dikaji di bawah 

keadaan jambatan tenggelam yang masih perlu dinilai. Salah satu keadaan yang disebut 

belum pernah dikaji adalah kesan jambatan pencong tenggelam kepada kedalaman 

kerokan maksimum dan kajian ini berusaha menentukannya di bawah keadaan air yang 

jernih. Oleh itu, tujuan utama kajian ini adalah untuk menambahbaik persamaan sedia 

ada berkaitan ramalan kedalaman kerokan maksimum sekeliling asas jambatan 

tenggelam dengan sudut yang berbeza antara aliran tuju dan penjajaran dek jambatan. 

Dalam usaha untuk mengumpul data yang diperlukan, enam model jambatan yang 

berbeza dengan dan tanpa tiang dengan sudut yang berbeza 0, 5, 10, 15, 22.5 dan 30 

darjah digunakan untuk menilai kesan penjajaran jambatan ke atas kedalaman kerokan 

maksimum. Semua model telah diuji dalam keadaan separa tenggelam dan tenggelam 

sepenuhnya menggunakan dua saiz sedimen dasar yang berbeza dengan saiz median 0.23 

mm dan 0.80 mm. Sejumlah 48 ujian telah dijalankan. Analisis data yang diperoleh 

menunjukkan bahawa pesongan aliran tuju sepanjang ketebalan jambatan pencong 

(galang dan rel adang) adalah perbezaan utama berbanding dengan arah aliran tuju 

bersudut tepat. Sebenarnya, analisis vektor halaju aliran tuju sepanjang ketebalan 

jambatan pencong menunjukkan bahawa berlaku pengagihan tidak seimbang halaju 

aliran ke bawah, yang mana pertamanya ianya menyebabkan unit kadar alir tidak 

seimbang sepanjang pinggir hulu jambatan tanpa tiang.  Kemudian, ia membuatkan 

tahap kerokan yang tidak seimbang sepanjang pinggir hilir jambatan. Mengikut 

mekanisme yang dinyatakan, satu persamaan berdasarkan hukum pemuliharaan jisim 

telah dicadangkan untuk meramalkan kedalaman kerokan maksimum dengan ralat punca 

min kuasa dua (RMSE) dan ralat min mutlak (MAE) masing-masing bersamaan dengan 

0.029 m dan 0.023 m. Selain itu, aliran labirin antara kedua-dua belah dinding flum di 
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hilir jambatan mungkin berlaku, dengan arah pertamanya adalah arah yang paling 

merosakkan ke arah dinding flum yang bertentangan, yang mana ia dianggarkan oleh 

persamaan lain yang diperolehi, yang berubah daripada 34 darjah sehingga 65 darjah. 

Walau bagaimanapun, dalam keadaan jambatan pencong tenggelam dengan tiang, 

kewujudan tiang menyebabkan kedalaman kerokan tempatan maksimum di tiang, dan 

menghasilkan pusaran sekeliling tiang lebih daripada pesongan aliran di sepanjang 

ketebalan jambatan pencong tenggelam. Juga didapati faktor pembetulan penjajaran 

tiang untuk jambatan tenggelam adalah lebih kecil daripada keadaan yang sama dalam 

aliran bebas. Kemudian, satu hubungkait pembolehubah bersandar dan tak bersandar 

telah ditentukan. Akhirnya, satu persamaan dengan menggunakan analisis dimensi, data 

yang dikumpul dan model regresi linear berganda telah dicadangkan dengan anggaran 

yang lebih baik dari kajian lepas dengan RMSE dan MAE masing-masing bersamaan 

dengan 0.018 m dan 0.014 m. Faktor pembetulan penjajaran tiang dalam jambatan 

tenggelam juga adalah hampir 50% lebih kurang daripada faktor pembetulan yang sama 

dalam keadaan aliran bebas yang mana sebelum ini dianggap sama. Kedua-dua 

persamaan yang dicadangkan mampu meramalkan kedalaman kerokan maksimum yang 

boleh diterima berbanding dengan persamaan yang sedia ada. Selain itu, nisbah 

tenggelam dalam kedua-dua jambatan tenggelam dengan dan tanpa tiang menunjukkan 

bahawa kedalaman kerokan maksimum berlaku sebelum permulaan limpahan aliran 

dijambatan. Walaupun kedalaman kerokan di jambatan tenggelam tanpa tiang 

berkurangan selepas limpahan dijambatan dalam tempoh pendek terhad kepada nisbah 

tengelam daripada 0 hingga 0.08, ia meningkat semula kerana peningkatan kedalaman 

aliran. Tambahan lagi, kewujudan tiang sangat mempengaruhi kedalaman kerokan 

maksimum di sekeliling dinding flum yang menerima aliran terpesong.  
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CHAPTER ONE 

 

 

INTRODUCTION 

 
 
1.1 Background 

 

A bridge is an important and valuable structure which basically connects two 

separate sides of a river as a passage way above natural obstacle elements throughout 

the world (Melville and Coleman, 2000). However the existence of a bridge pier 

inside the flow stream transforms the local environment around pier (Mohamed et al., 

2008). In fact, a bridge pier in contact with flow causes scour hole around pier 

foundations and finally may cause bridge failure (Ghorbani, 2008). Although 

designing knowledge about the solid structure of a bridge is well known, its stability 

against scouring and economical depth of buried foundation still needs to be studied 

more under various conditions. In any case, under prediction or over prediction of 

scour depth can lead to bridge failure or unnecessary expenses respectively (Debnath 

and Chaudhuri, 2010). 

 

 

Local scour around foundation of bridge is a destructive phenomenon to the bed level 

around pier by dislodging and transporting bed grains. Therefore, the impinging of 

water flow to the pier nose as an obstacle causes some vortices such as; downward 

flow, horseshoe vortices, wake vortices which dislodge and entrain bed grains and 

finally digs a reversed conical hole around pier which may endanger the pier stability. 

This process that is attributed to the local scour can be created by stream flow which 

erodes the bed stream around piers and abutments (Lee et al., 2007). That is why 

many bridge collapses are related to the reduction of bridge safety factor which is 

results from local scour around the pier (Heydari and Ghiassi, 2011). 

 

 

However, useful information has been collected in both experimental fields and 

theoretical study by different researchers, but the lack of knowledge about various 

unexpected conditions can still pose a danger to bridge stability and result in some 

unexpected catastrophes from time to time.  

 

 

Hydraulics deficiencies are also important subjects that must be considered as a 

potential destructive factor which threaten bridge stability (Yanmaz and Bulut, 2001). 

For instance, any changes of flow condition (Temporary changes in river) may create 

critical situations and dig deeper local scour depth around the foundation of a bridge 

than predicted in the designing stage which severely endangers bridge stability.  

 

 

The combination of local scour depth around bridge pier with general riverbed 

degradation or aggradation, changes of flow field around bridge structures, human 

interference and debris flow add greater complexity to the subject of bridge stability 

and safety (Lu et al., 2011). For example, land use with high fraction of impervious 

surface area can cause decrease of the ground water recharge and increase surface 
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run-off (Falamalzi, 2014). Some inundated bridges are probably the result of some of 

the above-mentioned conditions. Submergence of bridge may be viewed as a basic 

reason for the development of deeper local scour depth around the foundation of a 

bridge in comparison with an ordinary local scour hole under free surface flow 

condition. This deeper scour depth can reduce the bridge safety factor and finally 

cause bridge failure by undermining. Therefore, some unstudied conditions under 

submerged bridge condition should be investigated.  

 

 

1.2 Problem Statement 

 

There are more than 580,000 bridges in the United States of America, with 84% of 

them constructed over waterways (Kwak, 2001; Deng and Cai, 2010). This huge 

number of bridges in just one country goes to show their importance and confirms a 

very significant need for their care, maintenance and safety. Every year, bridge 

failures are reported in various countries around the world, causing loss of human 

lives, enormous financial damage as well as breakdowns in communication (Lee and 

Sturm, 2009; and Sun and Liu, 2013). Shirhole and Holt (1991) and Briaud et al. 

(2014) based on the U.S. Federal Highway Administration reported that 60% of all 

823 bridge failures in the U.S.A. since 1950, have been related to hydraulic flow. As 

cited by Macky (1990),  in New Zealand alone, the expenditure on bridge  repairs 

due to damages related to the local scour was around NZ$ 18 million per year 
(Melville and Coleman 2000).  

 

 

In some other parts of the world like tropical areas with some high typhoon floods, 

bridges can be threatened by submergence as evidenced by several busy bridges in 

Taiwan located in East- Asia. During 1996, some typhoon floods caused collapses of 

bridges and serious losses (Lu et al., 2008). Another failure attributed to the pier 

scour occurred in China in 2006 and caused a bridge failure in Liaoning (Hong-Wu 

et al., 2009). Moreover, human interference in watersheds such as urban extensions,  

road constructions involving deforestation, mining, animal grazing and land clearing, 

taking sandy construction material from stream and river beds, lead to loss of 

permeability. Also, climate changes can basically change the runoff volume and 

increase the flood regime in any watershed (Huang et al., 2013). The mentioned 

problems bring surplus flood volume in each return period and can easily cause the 

inundation of bridges. In Iowa, heavy rains caused high water level in the rivers, 

crested the bridge and finally surrounded freight cars on 12
th

 June 2008 (Figure 1.1). 
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Figure 1.1. Flood waters submerge bridge and surround freight 

cars in Iowa in 2008 (Associated Press, 2008). 

 

 

Moreover, some limitations around the river do not allow for constructing high level 

bridges to avoid submergence during high floods (Verma et al., 2004). Shen et al. 

(2012) stated that a large number of bridges in the U.S.A. have the potential to be 

inundated. In addition, as a common rule in designing the foundation of  a bridge, 

designers utilize the return period of 50 years or some recorded flood, whichever is 

larger (Johnson and Ayyub, 1992). Therefore, the probability of some larger flood 

than the designed flood that would submerge a bridge is high and should be expected. 

Although some researchers in the last few decades were interested to investigate the 

local scour depth around the foundation of a bridge under submerged bridge 

condition, they all used a perpendicular flow direction to the bridge deck but the 

probability of changes of flow direction during flood periods due to unstable river 

banks or bed river at its upstream is high. In other words, any changes of banks or 

bed river can change flow direction toward the bridge. On the other hand, no one can 

depict that approaching flow direction toward a bridge will always perpendicularly 

impinge the bridge deck. Therefore, additional scour depth in pressure flow can be 

aggravated by increasing angle of flow attack toward un-circular pier where the 

width of the projected pier increases. Although influence of different pier alignment 

under free flow condition has been studied well, effect of mentioned alignment in 

different angle under submergence condition is still unknown.  

 

 

However, Abed (1991) assumed that correction factor of pier alignment under 

pressure flow is the same as its value under free flow. But mentioned correction 

factor under submerged bridge condition should be precisely evaluated wherein this 

coefficient strongly effects on prediction of maximum scour depth around pier. 

Moreover, flow behavior along submerged skewed bridge thickness is still unknown 

and its behavior may bring new problem or may deflect flow toward river bank. 

Therefore, this behavior must be also evaluated wherein it may change the maximum 

scour depth location from middle of river which was found by Guo et al. (2010) 

toward river bank or bridge abutment. Although above mentioned maximum scour 

depth location is important to be predicted, an equation must be able to predict 

maximum scour depth in different flow directions and must apply the angle which all 

previous researches are able to only predict it in perpendicular flow direction. In 

addition, the shape of scour hole and its extension toward bridge abutment because 

of its new position of pier alignment against flow attack can be counted as an 
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important subject which should be also evaluated. Therefore, present study attempts 

to investigate various effects of different flow alignments toward submerged bridge 

with and without pier. 

 

 

1.3 Research Objectives 

 

The main objective of the present study is to investigate and predict the maximum 

local scour depth at the site of a submerged skewed bridge under clear water 

conditions with the following specific objectives:  

 

 

1. To investigate flow behavior around a submerged skewed bridge without pier 

under clear water conditions. 

2. To develop an equation for pressure flow to predict the maximum scour depth due 

to different angles between approaching flow direction and submerged skewed 

bridge alignment without pier under clear water conditions. 

3. To determine the correction factor for the pier alignment in pressure flow (Kθ)s 

under clear water conditions and to predict the maximum local scour depth around 

aligned pier under submerged bridge with pier. 

4. To evaluate the effect of pier on pressure scour at the submerged bridge with pier 

in comparison to the pressure scour at submerged bridge without pier. 

 

 

1.4 Scope and Limitations of the Study 

 

As mentioned earlier, a limited number of studies have been carried out on local 

scour depth under pressure flow, but most of the experiments have been done under 

perpendicular angle between approach flow and bridge directions and the effect of 

different angles on local scour depth is still unknown.  

 

 

The present study is also based on experimental laboratory tests including partially 

and fully submerged bridge under clear water conditions to evaluate the flow 

behavior and maximum scour depth under different angles between flow and bridge 

direction which leads to the ultimate aim. Overall, the process of the present study is 

divided into three phases: designing and constructing some models based on a proper 

scale of real bridge in different alignments. Then, all different models were 

experimentally tested in the laboratory flume with a few variable factors (to avoid 

difficulty in analyzing) including flow depth, sediment sizes and various bridge 

directions in order to collect useful and necessary data. Finally, an analytical 

conclusion could be derived based on the collected data.  

 

 

Although the present study can be useful to evaluate and predict the local scour depth 

under pressure flow with some new results, it still suffers from some limitation as 

follows: 

 

1. Shortage of previous available studies in this area to be compared with the present 

study for achievement of appropriate agreements.  
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2. All test have been carried out with two uniform bed grains with median size of 

0.23 mm and 0.80 mm, a constant ratio of pier width to the pier length (B/L = 

1/10), steady flow and under clear water condition. 
3. Rectangular pier shape with a constant ratio of pier width to the pier length (B/L = 

1/10) is utilized. 

4. According to flume wall, results can be only used for rigid vertical abutment of 

bridge. 

5. The range of fully flow depth was restricted by a carriage above water surface 

flow. 

 

 

1.5 Organization of the Thesis  

 

This thesis comprises five chapters. The first chapter introduces the problems of 

scour around the foundation of a submerged bridge under different flow alignments. 

The objectives, scope and limitations of the present study are also presented in this 

chapter. The next four chapters are divided as follow: Chapter Two (Literature 

Review) is a review of relevant literature, but the most important discussion is the 

scour depth around a submerged bridge pier and vertical contraction in submerged 

bridge. In this chapter, the evolution of scour depth around pier in both free surface 

flow and pressure flow conditions due to effective parameters can resolve the 

problem. In addition, the existing analysis of scour depth around the foundation of a 

bridge under pressure flow conditions is also introduced. 

 

 

Chapter Three includes the experimental setup, data collection and the methodology 

which are explained. Proposed models and their set up are firstly described. Then, 

descriptions of experimental tests and the method of data collection are presented.  

In Chapter Four, analyzing the collected data with graphs, figures and tables is the 

main purpose to provide results. Then, discussion of the  results including prediction 

of maximum scour depth around submerged skewed foundation of bridge and some 

comparisons between previous studies and the present study will determine the   

validity and accuracy of the present study. Besides all the main aims, some other 

important behaviors of flow related to the different mentioned angles are discussed. 

Finally, Chapter Five provides a summary and highlights the main results obtained 

from Chapter Four. At the end, some recommendations for future study are also 

made. 
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