
 
 

UNIVERSITI PUTRA MALAYSIA 
 

COLLISION PREDICTION- BASED GENETIC NETWORK 
PROGRAMMING -REINFORCEMENT LEARNING FOR MOBILE ROBOT 

ADAPTIVE NAVIGATION IN UNKNOWN DYNAMIC ENVIRONMENTS 
 

 
 
 
 
 
 
 
 
 

AHMED HASSAN MOHAMMED 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2018 40 
 
 
 
 
 



© C
OPYRIG

HT U
PM

 

 

 

 
 

 

COLLISION PREDICTION- BASED GENETIC NETWORK 
PROGRAMMING -REINFORCEMENT LEARNING FOR MOBILE ROBOT 

ADAPTIVE NAVIGATION IN UNKNOWN DYNAMIC ENVIRONMENTS 
 
 
 
 

 

 

 

 

 

 

 

 

 

By 
 

 

AHMED HASSAN MOHAMMED  
 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy  

 
 

October 2017  



© C
OPYRIG

HT U
PM

 

 

 

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, icons, 
photographs and all other artwork, is copyright material of Universiti Putra Malaysia 
unless otherwise stated. Use may be made of any material contained within the thesis 
for noncommercial purposes from the copyright holder. Commercial use of material 
may only be made with the express, prior, written permission of Universiti Putra 
Malaysia. 

Copyright © Universiti Putra Malaysia   



© C
OPYRIG

HT U
PM

 

 

 

DEDICATION 
 
 

To the memory of my father and sister… who had dreamt to see this thesis 
completed… but they couldn’t 

 
 

To my mother for her ongoing love and support 
 
 



© C
OPYRIG

HT U
PM

 

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy  

 

 

COLLISION PREDICTION-BASED GENETIC NETWORK 
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ADAPTIVE NAVIGATION IN UNKNOWN DYNAMIC ENVIRONMENTS 

 
 

By  

 
 

AHMED HASSAN MOHAMMED  
 
 

October 2017 
 
 

Chairman :   Professor Mohammad Hamiruce Marhaban, PhD 
Faculty :   Engineering 
 

 

The autonomous navigation of a Mobile Robot (MR) in unknown environments 
populated by abundance of static and dynamic obstacles with a moving target have 
tremendous importance in real time applications. The ability of an MR to navigate 
safely, smoothly, and quickly in such environment is crucial. Current researches are 
focused on investigating these complex features in static or point-to-point dynamic 
environments. On the other hand, the salient downside of Q-Learning such as curse of 
dimensionality (CoD) is aggravated in complex environments. 

The objectives of this thesis is to address the issue of Adaptive Reinforcement 
Learning (RL) approaches in order to meet the requirements of MR navigation. 
Moreover, it aims to tackle CoD problem of Q-Learning (QL) to be suitable for 
complex applications. For this purpose, two genetic network programming with RL 
(GNP-RL) designs are proposed. The first design is based on obstacle target 
correlation (OTC) environment representation and called OTC-GNP-RL. This 
provides a perception of the current environment states. The second design is based 
on the proposed collision prediction (CP) environment representation and called CP-
GNP-RL. This representation is designed to provide collision prediction between MR 
and an obstacle, as well as the perception of current surrounded environment. Besides, 
it could represent an environment with compact state space and requires ones to 
measure positions only. Furthermore, the combination of CP and QL (CPQL) can 
overcome the downside of the CoD problem and improve navigation features.  
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ii 

 

A simulation is used for evaluating the performance of the proposed approaches. The 
results show that the superiority of the proposed approaches in terms of the features 
of MR navigation, where all these features are taken under the design consideration of 
each proposed approach. Through the evaluation, CPQL, CP-GNP-RL, and OTC-
GNP-RL provide significant improvements in terms of safety (7.917%), smooth path 
(71.776%), and speed (10.89%), respectively, compared with two state-of-arts 
approaches, i.e. OTC based Q-learning and artificial potential field. In addition, the 
learning analysis of CPQL shows its efficiency and superiority in terms of learning 
convergence and safe navigation. Hence, the proposed approaches prove their 
authenticity and suitability for navigation in complex and dynamic environments. 
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DENGAAN PENGUKUHAN PEMBELAJARAN BERASASKAN  RAMALAN 

PERLANGGARAN UNTUK PENGEMUDIAN ROBOT BERGERAK 
BERAUTONOMI DI DALAM PERSEKITARAN DINAMIK YANG TIDAK 
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Oleh 

 

 

AHMED HASSAN MOHAMMED  
 
 

Oktober 2017 
 

 

Pengerusi :   Profesor Mohammad Hamiruce Marhaban, PhD 
Faculti :   Kejuruteraan 
 
 
Pandu arah autonomi robot boleh gerak dalam persekitaran tak diketahui, yang dihuni 
limpahan halangan statik dan dinamik dengan sasaran yang bergerak, mempunyai 
kepentingan yang besar dalam aplikasi masa nyata. Keupayaan robot boleh gerak 
untuk mengemudi dengan selamat, lancar, dan cepat dalam persekitaran sedemikian 
adalah amat genting. Penyelidikan pada masa kini, memberi tumpuan kepada 
penyiasatan ciri kompleks di persekitaran statik, atau dinamik titik ke titik. Selain itu, 
keupayaannya diburukkan lagi di dalam keadaan persekitaran kompleks disebabkan 
oleh kekangan utama Pembelajaran-Q seperti laknat kematraan. 

Objektif thesis ini adalah untuk melihat isu pendekatan Pengukuhan Pembelajaran 
Suai bagi memenuhi keperluan pandu arah robot boleh gerak. Selain itu, hasrat kajian 
ini adalah untuk menyelesaikan masalah laknat kematraan di dalam Pembelajaran-Q 
bagi memastikan hasilnya bersesuaian dalam aplikasi kompleks. Untuk tujuan itu, dua 
reka bentuk rangkaian pengaturcaraan genetik dengaan Pengukuhan Pembelajaran 
dicadangkan. Reka bentuk pertama adalah berdasarkan perwakilan persekitaran 
korelasi sasaran halangan, yang diringkaskan sebagai OTC-GNP-RL. Ini dapat 
memberi penganggapan keadaan persekitaran semasa. Reka bentuk kedua adalah 
berdasarkan perwakilan persekitaran ramalan perlanggaran yang dicadangkan dan 
diringkaskan sebagai CP-GNP-RL. Perwakilan ini direka bentuk untuk memberi 
ramalan perlanggaran di antara robot boleh gerak dan halangan, disamping memberi 
penganggapan persekitaran semasa yang dikelilinginya. Selain itu, ia dapat 
mewakilkan persekitaran dengan keadaan ruang yang padat dan hanya memerlukan 
pengukuran kedudukan. Seterusnya, kombinasi ramalan perlanggaran dan 
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iv 

 

Pembelajaran-Q dapat mengatasi isu laknat kematraan dan menambahbaik ciri-ciri 
pandu arah. 

Simulasi digunakan untuk menilai prestasi pendekatan yang dicadangkan. Keputusan 
menunjukkan bahawa keunggulan pendekatan yang dicadangkan dari aspek ciri-ciri 
pandu arah robot boleh gerak, di mana kesemua ciri-ciri di dalam pendekatan yang 
dicadangkan telah dipertimbangkan semasa mereka bentuk. Melalui penilaian, CPQL, 
CP-GNP-RL dan OTC-GNP-RL, setiap satu menunjukkan peningkatan dari aspek 
keselamatan (7.917%), kelancaran (71.776%) dan kelajuan (10.89%) berbanding dua 
pendekatan terbaik sebelum ini, pembelajaran-Q berasaskan  OTC dan bidang potensi 
tiruan . Di samping itu, analisa pembelajaran CPQL menunjukkan kecekapan dan 
keunggulan dari aspek penumpuan pembelajaran dan pandu arah selamat. Oleh itu, 
thesis ini telah menunjukkan pendekatan yang dicadangkan terbukti kesahihan dan 
kesesuaiannya dalam aplikasi pandu arah kompleks  dan persekitaran dinamik. 
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 The relative velocity between the mobile robot and an 
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obstacle  

 Velocity of an obstacle 

 The distance travelled by the mobile robot before its velocity 

reduces to zero 

 Maximum deceleration of the mobile robot 

 Position of an obstacle 

 Positive constant describing the influence range of an 

obstacle 

 Shortest distance between the mobile robot and an obstacle 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview  

Mobile robots (MR's) are category of robots that are capable of moving, sensing, and 
reacting in an environment [1]. MR's can be used to increase productivity or to reduce 
human exposure to hazards [2]. Hence, they play an important role in several real time 
applications [3], for instance, medical services [4], cleaning [5], military [6], mining 
[7], surveillance [8], remote measurement [9], security [10], industrial [2], rescue [11], 
and agriculture [12]. 

Autonomous MR’s are the robots that have self-government and emulate to intelligent 
behavior intelligently and maneuver in unpredictable complex environment, i.e. they 
have the capability of perception of the surrounding environment and taking the right 
action at the right time without human intervention. The process of determining 
collision free path between starting point and target is called MR navigation. This field 
of research is one of the key challenges of mobile robotics, and it has received a 
considerable attention over the last two decades [1, 13]. 

The navigation environment of MR can be classified according to the availability of 
environment knowledge, which can be known [14], partially known [15], and 
unknown [1]. In known environment, the coordinates and variables, e.g. positions, 
velocity, acceleration, and direction, of all obstacles and the target in the environment 
are predefined to the MR before starting navigation. In contrast, all these coordinates 
are unknown in most of MR applications [16]. This what motivates researchers to find 
approaches that can deal with uncertain situations of unknown environment [17]. 

Another dimension along which navigation of MR approaches can be grouped is 
concerned with the nature of the environment, static or dynamic [18]. In static 
environment, the only object that may change its position over time is the MR itself. 
But, dynamic environment has many particles that are moving and changing their 
positions over time such that their future trajectories and complete information cannot 
be known or assumed a priori. Hence, additional challenges of avoiding such obstacles 
have been added to the navigation of autonomous MR in such environment. 
Consequently,  "A robot’s safety cannot be obtained by coming to a standstill in 
dynamical environments and absolute motion safety is even impossible for the robot 
"[19-21], where the capability of avoiding obstacles is termed safe navigation [20, 22, 
23]. Moreover, MR environments in real applications are considered highly dynamic, 
where not only the obstacles but also the target is moving [24, 25], where Tahri et al. 
classified this case as most difficult [26]. Practically, “It is difficult to make a robot 
intercept a moving target, whose trajectory and speed are unknown and dynamically 
changing, in a comparatively short distance when the environment contains complex 
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objects.”[27].  

Some approaches like virtual plane, generalized velocity obstacle, reactive control 
design, and temporal fuzzy rules [28-31] provide dynamic obstacle avoidance. 
However all these techniques are based on measuring the velocity of moving 
obstacles. Practically, this measurement is noisy and difficult to obtain [29, 32, 33] . 

To operate autonomously, effective controller must be designed for those MR's. For 
this purpose, a wide variety of approaches in the literature have been developed to 
obtain optimal or near optimal safety performance of MR. The approaches that are 
widely used in MR navigation are soft computing (fuzzy logic, neural network, genetic 
algorithm, genetic network programming, particle swarm optimization, and ant colony 
optimization), artificial potential field and Reinforcement Learning (RL). However, 
these algorithms are applied on either static environment or dynamic environment with 
a target that is assumed almost stationary. Besides, an increase in the measured 
variables, computational power, and the required memory incur hindrance to the 
applicability of these algorithms. 

Machine learning paradigms aims to produce intelligent programs through a process 
of evolving and learning. They can be classified as supervised, unsupervised and RL. 
Supervised learning has a teacher that takes a known set of input-output data, and 
seeks to build a model that generates reasonable predictions for the response to new 
data, whereas unsupervised learning has no teacher but it draws inferences from 
datasets consisting of input data without labeled responses. Whereas RL is a learning 
without expert supervision in which MR learns how to map states to actions in an 
attempt to maximize a numerical reward signal through trial-and-error interactions 
with its environment. The learner is not told which actions to take, but it must discover 
which actions yield the most reward by trying them.  

In the last decade or so, the application of RL in robotics has spread increasingly [34, 
35] and it seems to be a natural choice for learning control policies on MR’s [36]. It 
basically needs a simultaneous assessment of how good or bad the system is doing. 
Hence, RL seems quite promising because it requires no training data [37] and it is 
suitable to allow robots to learn from their own practices and environment interaction 
[38]. Q-Learning (QL), which is a form of RL, is one candidate of the autonomous 
controller, because it is a model free algorithm [39]. The discrete set of state-action 
(based on lookup table) method of QL is the popular approach for estimating the value 
function in QL in which the convergence is guaranteed subjecting to some restrictions 
on the learning parameters [40, 41]. However, it is not easy to put QL to practical use 
[42] when the complexity of the considered application is increased, where the state-
action pairs of discrete QL are increased exponentially. This increase makes it non-
feasible for MR to visit all the potential states at an adequate time to find the most 
favorable actions for those states. This problem, named Curse of Dimensionality 
(CoD) [43], causes slowness in learning task and restricts discrete QL applicability on 
MR navigation that has broad range of variables. 
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Genetic network programming with RL (GNP-RL) [44-49] is an extension of GNP 
[50] and it  is efficiently combined evolution and learning. Evolutionary computation 
generally has an advantage in diversified search ability, while reinforcement learning 
has an advantage in intensified search ability and online learning. GNP-RL is 
promising in the field of artificial intelligence due to its significant features over other 
algorithm. Some of these features are: directed graph expression, reusability of nodes, 
implicit memory function, saving memory consumption and reducing calculation time 
due to its compact structure, and it is not causing bloat, unlike genetic programming, 
because of its predefined number of nodes. It also provides combinations between 
offline and online learning, and diversified and intensified search. However, it has 
only been applied on navigation of MR in static environment. 

In this thesis, MR navigation has been studied in completely unknown (no prior 
knowledge) environment containing several dynamic and static obstacles. The 
movement of dynamic obstacles is unpredictable and random.  During this navigation, 
the MR is chasing a continuously moving target which can be observed by MR at each 
time instant without knowing or predicting its future movement. Meanwhile, MR 
senses the surrounding environment by laser range finders. It is assumed that the 
velocity of MR is greater than that of the target and greater than or equal to that of 
obstacles. 

Safe navigation, smooth path, and fast movement are crucial demands in MR 
navigation. The desire to avoid collision occurrences with an obstacle ( dynamic 
and/or static), which threatens the safe navigation of MR, makes it moves in sharp 
turning angles and reduces its speed significantly producing zigzag path with large 
fluctuating in speed set points. On the other hand, in the designs that are based on 
certain tuning angle during obstacle avoidance and/or constant speed throughout 
navigation, largest possible turning angle is used to avoid collisions and constant speed 
restricts the obstacle avoidance capability of MR. 

1.2 Problem Statement 

To operate autonomously, effective controller must be designed for MR's. From the 
surveyed papers, a wide variety of approaches in the literature have been developed to 
obtain optimal or near optimal safe performance of MR in avoiding obstacles. 
However, the autonomy of an MR still encounter many challenges in learning and 
execution phases, where the research of MR navigation in static environment is almost 
matured [51, 52], and it is still in progress for dynamic environment [28, 33]. Besides, 
“In most real applications, the environment is dynamic. This means not only the 
obstacles are moving, so does the target. In such situations, the most common methods 
ignore the trend of moving target and obstacles.”[53]. The considered environment in 
this study is completely unknown, populated by abundant obstacles (unpredictable and 
random moving obstacles and static obstacles), and contained a moving target. 
Consequently, many challenges will encounter MR to do its navigation in such 
environment. Hence, the problems of MR navigation that represent the thesis problem 



© C
OPYRIG

HT U
PM

 

4 

 

statement can be summarized as follows. 

MR environments in real applications are considered highly dynamic, where not only 
the obstacles but also the target is moving [24, 25, 53, 54]. Therefore,  "a robot’s safety 
cannot be obtained by coming to a standstill in dynamical environments and absolute 
motion safety is even impossible for a robot "[19-21]. Hence, safety movement of MR 
takes a considerable attention from researchers. However, the effectiveness of most 
researches in the literature are devoted on static environment. Limited number of 
researches are applied on point to point navigation (stationary target) in dynamic 
environment, and it is seldom number of researches investigated obstacle avoidance 
in dynamic environment with a moving target. Besides, an increase in the measured 
variables [28-31, 55, 56], computational power [54-57], and the required memory [58-
60] incur the applicability of these algorithms [61, 62]. Consequently, it becomes 
crucial demand to introduce approaches of MR navigation in the considered 
environment in this thesis that have effective obstacle avoidance feature with reducing 
the requirements of measurements. 

Smooth path is another important features of MR navigation.  Although it generally 
does not investigated widely, it is investigated in static environments more than in 
dynamic environments. In addition, such investigation does not exist for dynamic 
environment including a moving target. Besides, the tendency of some researchers 
[25, 43, 63-65] to use fixed and large steering angles to avoid obstacles conflicts with 
the desire to provide smooth navigation paths. Moreover, discarding previous steering 
angles from the calculations of the current steering angle contributes mainly in 
producing tortuous navigation path during obstacle avoidance. Obviously, this feature 
is not widely included in the designs because of the difficulty in compromising 
between safety and smoothness features. These facts introduce a big challenge to 
combine these two crucial features of MR navigation in one algorithm. 

MR speed is one of the variables that should be controlled to meet the requirements 
of navigation. However, limited number of works investigated MR speed, where the 
majority of these works are applied on static environment, low rate of them are applied 
on dynamic environment contains stationary target, and seldom of them studied it for 
dynamic environment with a moving target. Moreover, some researches [25, 38, 39, 
43, 63, 64, 66-69] assumed that the speed of MR during navigation is constant. This 
assumption has a negative impact on the degree of safe property of avoiding obstacles 
and/or on the consuming time in implementing navigation task. On our knowledge, 
there is no work integrated these three features (safety, smoothness, and speed) in one 
design. Therefore, this variable should also be controlled during MR navigation and 
integrated with the other two features; safety and smoothness. 

QL is a seductive approach to solve the problem of MR navigation in dynamic 
environment due to its generality and ability to teach MR an optimal behavioral 
strategy through direct interaction with its environment without prior knowledge of 
the problem to be solved rather than collecting precise input/output data set. However, 
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it is beleaguered by "Curse of dimensionality" [39, 43, 63, 70-74], which refers to the 
exponential inflation in state-space with each additional variable or dimension that 
describes the problem. Due to the high dimensionality and complexity of the 
environment being studied, curse of dimensionality impedes QL applicability. This 
leads to slowness of learning, slowness in taking decision, and large memory 
requirement. This problem takes a considerable attention from researchers. However, 
they focus mainly on solving it in static environment, and few of them studied it for 
dynamic environment. Therefore, solving this problem for the considered environment 
is encouraging. 

GNP-RL [44-49] provides significant features such as: combinations between offline 
and online learning, and diversified and intensified search. Besides, its compact 
structure reduces memory requirement and computation time. These feature make it 
suitable to be applied on MR navigation in dynamic environment. However, it has 
been applied on navigation of MR in static environment only. Therefore it is 
encouragingly to formulate its gene structure and introduce suitable fitness function 
to be applied on dynamic environment. 

Therefore, the integration of enhancing obstacle avoidance property, optimizing the 
movement and speed of an MR during the avoidance of an obstacle, tackling the CoD 
problem of QL, and utilizing the features of GNP-RL will lead to enhance and improve 
the features of MR navigation in the considered environment. 

1.3 Research Objectives 

The objectives of this research are: 

1. To improve obstacle avoidance capability of an MR navigating in an environment, 
which involves dynamic and static obstacles, while it is chasing a moving target. 

2.  To smooth the navigation path of an MR during avoiding dynamic and static 
obstacles. 

3. To optimize the speed performance of MR during obstacle avoidance to obtain 
fast navigation. 

4. To eliminate the negative impacts of QL's dimensionality curse problem, which 
results from applying QL in highly dimensionality and complex dynamic 
environment. 

5. To develop a design of GNP-RL suitable to control navigation of an MR in a 
dynamic environment. 
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1.4 Research Scope 

This research concentrates on navigating an MR in unknown and dynamic 
environment containing a moving target. The dimensions of this environment is 
unlimited. Many challenges faced by an MR that navigates autonomously in such 
environment. The first and the most important feature is the successful avoidance of 
different types of obstacles (static and dynamic) during chasing a moving target. This 
avoidance conflicts with other two challenges that are; maintaining smooth navigation 
path and driving MR with high speed. This research focuses on the integration of 
obstacle avoidance, smooth path and MR speed, with taking under the consideration 
the mitigation of measurements. Figure 1.1 shows the parameters of research scope.  

 
 

Figure 1.1 : Research Scope Parameters 
 

 

1.5 Limitations 

The proposed approaches enhance the navigation performance of an MR in several 
directions, such as improving the safety of MR during navigation, enhancing the 
smoothness of navigation path and MR speed, and speeding up the learning 
convergence. However, in some circumstances the performance of the proposed 
approaches is degraded due to: 

1. The proposed approaches are dedicated to address the obstacle avoidance problem 
of one obstacle at a time. That is, the nearest obstacle is only taken under the 
consideration of avoidance. However, in case two or more critical obstacles 
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disturb MR at the same instance, MR avoids these obstacles sequentially, but it 
doesn’t avoid all of them in parallel way. 

2. Since the avoidance of dead end static obstacle has been studied intensively in the 
literature, the proposed approaches are focused on avoiding the static obstacle but 
this special case of obstacles are not taken under consideration. 

 

 

1.6 Organization of the Thesis 

This thesis is organized into five chapters. Chapter 2 presents a detailed review on 
MR navigation algorithms, namely, soft computing, reinforcement learning, and 
artificial potential field. The algorithms currently used for controlling MR are then 
analyzed along with the research works devoted to manage MR navigation. In 
addition, the demerits of these algorithms are presented along with the current 
researches that attempt to solve the bottleneck problems, safe navigation, smooth path, 
fast navigation, and curse of dimensionality. Chapter 3 presents the mathematical 
model of the proposed environment representation, as well as another referenced 
representation, provides the methodologies of the proposed approaches with the 
required mathematical models, as well as two state of arts, and introduces the design 
of the workspace that is used to test the proposed approaches. Chapter 4 shows the 
simulation evaluations to prove the efficiency of the proposed algorithms compared 
with two state-of-arts in terms of safe navigation, smooth path, fast navigation, and 
learning convergence. Finally, a comprehensive comparison and discussion are 
presented among the results of all approaches being studied. Lastly, Chapter 5 
concludes the work and recommends some promising directions for future research.  
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