UNIVERSITI PUTRA MALAYSIA

USEFULNESS OF CENTOR SCORE FOR DIAGNOSIS OF GROUP A STREPTOCOCCAL PHARYNGO-TONSILLITIS AND PREVALENCE OF THE DISEASE IN MALAYSIA FROM 2016 TO 2017

ABDULRAHMAN MANSOOR MOHAMMED MUTHANNA

FPSK(M) 2018 1
USEFULNESS OF CENTOR SCORE FOR DIAGNOSIS OF GROUP A STREPTOCOCCAL PHARYNGO-TONSILLITIS AND PREVALENCE OF THE DISEASE IN MALAYSIA FROM 2016 TO 2017

By

ABDULRAHMAN MANSOOR MOHAMMED MUTHANNA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

October 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

USEFULNESS OF CENTOR SCORE FOR DIAGNOSIS OF GROUP A STREPTOCOCCAL PHARYNGO-TONSILLITIS AND PREVALENCE OF THE DISEASE IN MALAYSIA FROM 2016 TO 2017

By

ABDULRAHMAN MANSOOR MOHAMMED MUTHANNA

October 2017

Chairman : Siti Zulaikha Zakariah, MB BCh BAO, DrPath
Faculty : Medicine and Health Sciences

Pharyngo-tonsillitis is very common in general practice and most of the cases are caused by viruses. One of the causes of pharyngo-tonsillitis is group A streptococcus, which has a strong indication for antibiotic treatment. It is difficult to distinguish between streptococcal pharyngo-tonsillitis from non-streptococcal according to the clinical findings. Nevertheless, up to 90% of the patients with sore throat might be treated with antibiotic. Over prescribing of antibiotics has very serious health effects with severe reactions and may promote antibiotic resistance and add significantly to the cost of health care. In Malaysia, Upper Respiratory Tract Infection (URTI) makes up nearly 30% of cases in primary care. Studies have shown trends of inappropriate prescribing of antibiotics for URTI in Malaysian primary care. Centor scoring is a guideline based on a set of criteria that help to identify the likelihood of streptococcal infections in patients with a sore throat. It was conducted to guide physicians to appropriately prescribe antibiotics for adults with pharyngo-tonsillitis. This study aims to describe the epidemiological pattern, etiology and its antibiotic susceptibility, clinical manifestation, antibiotic prescription among adults with sore throat and validity of Centor score in diagnosis group A streptococcal pharyngo-tonsillitis at three primary care clinics in Sepang, Selangor, Malaysia during 2016 to 2017. This cross-sectional study was conducted on 215 patients aged 18 and above with sore throat as one of the complaints at the three primary care clinics during December 2016 until April 2017. Throat swabs were collected from the patients for culture and analysis. Data on clinical manifestations, demographic characteristics, clinical information and throat sample results were analyzed using Chi-square test, and descriptive statistics. From all the participants (42.3% male, 57.7% female), (18.6% smokers, 81.4% non-smokers), (62.8% Malay, 30.2% Indian, 5.1% Chinese, 1.9 % others), 6 isolates (2.4%) were identified as GAS including 50% of those were associated with Centor score of 3 ($p < 0.001$), 50% were associated with Centor score
of 4 ($p < 0.001$), and 0% with Centor scores of 0, 1 and 2. Centor criteria were clinical predictors that associated with group A streptococcal pharyngo-tonsillitis ($p < 0.001$). Pharyngo-tonsillitis was diagnosed in 130 (60.5%) of the total adult participants who complained with sore throat. Beta hemolytic streptococci and influenza A and B viruses were isolated from 37.1% and 3.8% of total participants, respectively. Both Centor scores 3 and 4 had sensitivity of 50%, and specificity of 97.6% and 100%; respectively, positive predictive value 37.5% and 100%; respectively, negative predictive value 98.6% and 98.6%; respectively, positive likelihood ratio 20.5 and 50; respectively, negative likelihood ratio 0.5 and 0.5; respectively. The accuracy of Centor score 3 was 96.3% while the accuracy of Centor score 4 was 98.6%. Antibiotics were prescribed to 48 (22.3%) including 8.3% with group A streptococcus and 91.6% with non-group A streptococcus. A majority of prescribed antibiotics was associated with Centor scores of zero to one (75.0%). Antibiotic susceptibility testing revealed that all beta hemolytic streptococci isolates were susceptible to penicillin G, ampicillin, ofloxacin, cefepime, cefotaxime, ceftriaxone, vancomycin, and linezolid, but 40%, 2.4%, and 9.6% were resistant to tetracycline, clindamycin, and erythromycin, respectively. The current study has suggested that the Centor score is useful for diagnosis and decision making for antibiotic therapy of GAS pharyngo-tonsillitis leading to decrease the unnecessary antibiotic prescription, while achieving better levels of treatment.

Key words: Pharyngo-tonsillitis; Clinical score; Centor score; Streptococcus pyogenes; Group A beta-hemolytic streptococcus; antibiotic prescription
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FAEDAH SKOR CENTOR UNTUK MENDIAGNOSIS FARINGO-TONSILITIS STREPTOKOKUS KUMPULAN A DAN PREVALENS PENYAKIT DI MALAYSIA DARI 2016 HINGGA 2017

Oleh

ABDULRAHMAN MANSOOR MOHAMMED MUTHANNA

Oktober 2017

Pengerusi : Siti Zulaikha Zakariah, MB BCh BAO, DrPath
Fakulti : Perubatan dan Sains Kesihatan

Calitan tekak dianalisis dengan menggunakan ujian Chi-square, dan statistik deskriptif. Daripada semua peserta (42.3% lelaki, 57.7% perempuan), (18.6% perokok, 81.4% bukan perokok), (62.8% Melayu, 30.2% India, 5.1% Cina, 1.9% lain-lain), 6 isolat (2.4%) telah dikenalpasti sebagai GAS, 50% daripada mereka yang mempunyai skor Centor 3 \((p < 0.001) \), 50% dengan skor Centor 4 \((p < 0.001) \), dan 0% dengan skor Centor 0,1 dan 2. Kriteria Centor adalah peramal klinik yang berkaitan dengan faringo-tonsilitis streptokokus Kumpulan A \((p < 0.001) \). Faringo-tonsilitis didiagnosis pada 130 (60.5%) dari jumlah peserta dewasa yang mengadu sakit tekak. Streptokokus beta hemolitik dan virus influenza A dan B telah diasingkan dari 37.1% dan 3.8% daripada jumlah peserta. Kedua-dua skor 3 dan 4 bagi permarkahan Centor mempunyai sensitiviti 50%; manakala kekhususan 97.6% dan 100% masing-masing, nilai ramalan positif 37.5% dan 100% masing-masing; nilai ramalan negatif 98.6% dan 98.6%; nisbah kemungkinan positif 20.5 dan 50; dan nisbah kemungkinan negatif 0.5 dan 0.5. Ketepatan skor Centor 3 adalah 96.3% manakala ketepatan skor Centor 4 adalah 98.6%. Antibiotik telah diberikan kepada 48 peserta (22.3%) termasuk 8.3% streptokokus kumpulan A dan 91.6% dengan streptokokus bukan kumpulan A. Majoriti antibiotik yang ditetapkan dikaitkan dengan skor Centor sifar hingga satu (75%). Ujian kerentanan antibiotik mendedahkan bahawa semua isolat streptokokus beta hemolitik adalah mudah terdedah kepada penisilin G, ampicillin, ofloxacin, cefepime, cefotaxime, ceftriaxone, vancomycin dan linezolid, tetapi 40%, 2.4%, dan 9.6% telah menunjukkan kerintangan kepada tetracycline, clindamycin, dan erythromycin. Kajian semasa mencadangkan bahawa skor Centor berguna bagi mendiagnosis dan membuat keputusan kepada terapi antibiotik untuk faringo-tonsilitis GAS yang membawa kepada penurunan preskripsi antibiotik yang tidak diperlukan, bagi mencapai tahap rawatan yang lebih baik.

Kata kunci: Faringo-tonsilitis; Skor klinikal; Skor Centor; Streptococcus pyogenes; Streptokokus beta hemolitik Kumpulan A; Preskripsi antibiotic
ACKNOWLEDGEMENTS

This work has been achieved with the help of Allah Almighty. I would like to express my deep gratitude and appreciation to my supervisor, Dr. Siti Zulaikha Zakariah, for her valuable and constructive suggestions and patient guidance during the planning and development of this research work. Also, I cannot express enough thanks to Associate Professor Dr. Rukman Awang Hamat, Dr. Nurainul Hana Shamsuddin and Dr. Faisal Ali for their professional guidance and valuable support, enthusiastic encouragement and useful critiques of this research work. Not forget as well, to thank all the nurses, physicians and lecturers in the Department of Medical Microbiology and Parasitology, Department of Family Medicine and three primary care clinics especially who have helped me regarding the sample collection.

I would like to thank my parents for their support and patience. They were always there cheering me up and stood by me through the good times and bad. I wish to thank my lovely sisters (DUNIA and DOA’A) for their supporting and encouragement with their best wishes.
I certify that a Thesis Examination Committee has met on 16 October 2017 to conduct the final examination of Abdulrahman Mansoor Mohammed Muthanna on his thesis entitled "Usefulness of Centor Score for Diagnosis of Group A Streptococcal Pharyngo-Tonsillitis and Prevalence of the Disease in Malaysia from 2016 to 2017" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Siti Norbaya binti Masri, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Niazlin binti Mohd Taib, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Tong Seng Fah, PhD
Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 December 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Siti Zulaikha Zakariah, MB BCh BAO, DrPath
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rukman Awang Hamat, MPath
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Nurainul Hana Shamsuddin, MFamMed
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________

Name and Matric No.: Abdulrahman Mansoor Mohammed Muthanna, GS45658
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________________________
Name of Chairman of Supervisory Committee: Dr. Siti Zulaikha Zakariah

Signature: ______________________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Rukman Awang Hamat

Signature: ______________________________________
Name of Member of Supervisory Committee: Dr. Nurainul Hana Shamsuddin
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem statement 2
1.3 Significance of study 3
1.4 Objectives 3
1.4.1 General objective 3
1.4.2 Specific objectives 3
1.5 Research hypothesis 4
1.6 Conceptual Framework 4

2 LITERATURE REVIEW

2.1 Definition of pharyngo-tonsillitis 6
2.2 Clinical manifestation of pharyngo-tonsillitis 6
2.3 Risk factors of pharyngo-tonsillitis 7
2.4 Epidemiology of pharyngo-tonsillitis 7
2.5 Etiology of pharyngo-tonsillitis 9
2.5.1 Bacterial pharyngo-tonsillitis 9
2.5.2 Viral pharyngo-tonsillitis 9
2.5.3 Candida pharyngitis: 10
2.6 Tools for clinical scoring 11
2.6.1 Centor scoring system 11
2.6.2 McIsaac scoring system 13
2.6.3 Other tools 14
2.7 Transmission of pharyngo-tonsillitis 14
2.8 Pathogenesis of pharyngo-tonsillitis 15
2.8.1 Bacterial pathogenesis 15
2.8.2 Viral pathogenesis 16
2.9 Complications of pharyngo-tonsillitis 17
2.10 Diagnosis of pharyngo-tonsillitis 18
2.10.1 Clinical diagnosis 18
2.10.2 Laboratory diagnosis 18
2.11 Treatment of pharyngo-tonsillitis
2.11.1 Bacterial pharyngo-tonsillitis treatment
2.11.2 Other pharyngo-tonsillitis treatment
2.12 Antibiotics practices in primary care clinics
2.13 Antimicrobial sensitivity and resistance patterns
2.14 Prevention of pharyngo-tonsillitis

3 MATERIALS AND METHODS
3.1 Study design: It was a cross sectional study.
3.2 Study area
3.3 Study duration
3.4 Sampling
3.4.1 Study population
3.4.2 Sampling population
3.4.2.1 Inclusion criteria
3.4.2.2 Exclusion criteria
3.4.3 Sample size
3.4.4 Sampling technique: A simple convenience sampling was used
3.5 Participant selection
3.6 Specimen collection
3.7 Data collection
3.7.1 The proforma
3.7.2 Clinical presentation
3.7.3 Medical report
3.8 Specimen transport
3.9 Bacterial isolation
3.10 β haemolytic streptococci identification
3.11 Antimicrobial susceptibility test
3.12 Viral antigen detection test
3.13 Clinical scoring
3.14 Data analysis
3.15 Ethical approval
3.16 Variables of study
3.16.1 Dependent variables
3.16.2 Independent variables
3.17 Definition of terms
3.17.1 Pharyngo-tonsillitis
3.17.2 Acute pharyngo-tonsillitis
3.17.3 Carriers
3.17.4 Age group
3.17.5 Gender
3.17.6 Ethnicity
3.17.7 Smoking status
3.17.8 Chronic diseases
3.17.9 Clinical manifestations
3.17.10 Sore throat
3.17.11 Fever 35
3.17.12 Cough 35
3.17.13 Rhinorrhea 35
3.17.14 Swollen anterior cervical lymph nodes 35
3.17.15 Tonsillar swelling or exudates 35
3.17.16 Prescribed antibiotics 35
3.17.17 Throat sample results 36
3.17.18 Centor score 36
3.18 Flowchart of study 37

4 RESULTS 38
4.1 Response rate 38
4.2 Normality test 38
4.3 Socio-demographic characteristics of participants 39
 4.3.1 Age group 39
 4.3.2 Gender 39
 4.3.3 Ethnicity 40
4.4 Clinical information of participants 40
 4.4.1 Smoking status 40
 4.4.2 Chronic diseases 41
4.5 The proportion of pharyngo-tonsillitis among participants 42
4.6 The proportion of beta hemolytic streptococci (groups A, B, C, F and G) and influenza A and B viruses among participants 43
4.7 Association between pharyngo-tonsillitis and socio-demographic characteristics 45
 4.7.1 Association between pharyngo-tonsillitis and age group 45
 4.7.2 Association between pharyngo-tonsillitis and gender 45
 4.7.3 Association between pharyngo-tonsillitis and ethnicity 46
4.8 Association between pharyngo-tonsillitis and clinical information 47
 4.8.1 Association between pharyngo-tonsillitis and smoking status 47
 4.8.2 Association between pharyngo-tonsillitis and chronic diseases 47
4.9 Distribution of clinical manifestations and Centor score with throat sample results 49
 4.9.1 Distribution of clinical manifestations with throat sample results 49
 4.9.2 Distribution of Centor score with throat sample results 50
4.10 Validity of the Centor score 51
4.11 Distribution of prescribed antibiotics with Centor score and throat sample results 53
 4.11.1 Distribution of prescribed antibiotics according to Centor score 53
4.11.2 Distribution of prescribed antibiotics with throat sample results 54
4.12 Distribution of the types of prescribed antibiotics with throat sample results 55
4.13 Antimicrobial susceptibility patterns of beta hemolytic streptococci (groups A, B, C, F and G) that are associated with pharyngo-tonsillitis 56

5 DISCUSSION 60
5.1 The proportion of pharyngo-tonsillitis among participants 60
5.2 The proportion of beta hemolytic streptococci (groups A, B, C, F and G) and influenza A and B viruses that are associated with pharyngo-tonsillitis 62
5.3 Association between pharyngo-tonsillitis and socio-demographic characteristics 64
 5.3.1 Association between pharyngo-tonsillitis and age group 64
 5.3.2 Association between pharyngo-tonsillitis and gender 64
 5.3.3 Association between pharyngo-tonsillitis and ethnicity 65
5.4 Association between pharyngo-tonsillitis and clinical information 65
 5.4.1 Association between pharyngo-tonsillitis and smoking status 65
 5.4.2 Association between pharyngo-tonsillitis and chronic diseases 66
5.5 Association between throat sample results and clinical manifestations 67
5.6 Association between throat sample results and Centor score 68
5.7 Validity of the Centor score 69
5.8 Association between prescribed antibiotics and Centor score 71
5.9 Association between prescribed antibiotics and throat sample results 72
5.10 Distribution of the types of prescribed antibiotics with throat sample results 73
5.11 Antimicrobial susceptibility patterns of beta hemolytic streptococci (groups A, B, C, F and G) that are associated with pharyngo-tonsillitis 74

6 SUMMARY, CONCLUSION, LIMITATIONS AND RECOMMENDATIONS 77
6.1 Summary 77
6.2 Conclusion 78
6.3 Limitation 79
6.4 Recommendation 79
 6.4.1 Health care providers 79
 6.4.2 Further studies 79
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Etiology of pharyngo-tonsillitis</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Centor criteria</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of the participants by age group</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>The proportion of beta hemolytic streptococci (groups A, B, C, F and G) and influenza A and B viruses among participants with sore throat (N=215)</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Association between pharyngo-tonsillitis and age group</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Association between pharyngo-tonsillitis and gender</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Association between pharyngo-tonsillitis and ethnicity</td>
<td>46</td>
</tr>
<tr>
<td>4.6</td>
<td>Association between pharyngo-tonsillitis and smoking status</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>Association between pharyngo-tonsillitis and chronic diseases</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Association between throat sample results and clinical manifestations</td>
<td>50</td>
</tr>
<tr>
<td>4.9</td>
<td>Association between throat sample results and Centor score</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>Diagnostic test of Centor criteria and scores confirmed with throat sample results</td>
<td>52</td>
</tr>
<tr>
<td>4.11</td>
<td>Association between prescribed antibiotics and Centor score</td>
<td>54</td>
</tr>
<tr>
<td>4.12</td>
<td>Distribution of prescribed antibiotics with throat sample results</td>
<td>55</td>
</tr>
<tr>
<td>4.13</td>
<td>Distribution of the types of prescribed antibiotics with throat sample results</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Antimicrobial susceptibility patterns of beta hemolytic streptococci (groups A, B, C, F and G) that are associated with pharyngo-tonsillitis</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Inflamed and swollen tonsils</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>White patches on the tonsils</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Centor scoring management</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>The Chain of infection transmission</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Bacterial pathogenesis</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Viral pathogenesis</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Sepang district map</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Throat swab specimen collection</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Appearance of group A streptococcus (\textit{Streptococcus pyogenes}) produces a zone of (\beta) hemolytic around the colonies and it is sensitive to bacitracin disc on the blood agar, following 24 hours of incubation under anaerobic conditions</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Agglutination in No. 1 identified positive result of group A streptococcus and it showed blue latex particles by using a latex agglutination test</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Antimicrobial susceptibility result of group A (\beta) haemolytic streptococcus on Mueller-Hinton agar with 5% sheep blood</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Positive result of influenza B virus will show distinct test and control lines</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Flowchart of recruitment of the participants</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of participants by gender</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of participants by ethnicity</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of participants according to smoking status</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Distribution of participants according to chronic diseases</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>The proportion of pharyngos-tonsillitis among participants (N=215)</td>
<td>42</td>
</tr>
</tbody>
</table>
4.7 The proportion of beta hemolytic streptococci (groups A, B, C, F and G) and influenza A and B viruses that are associated with pharyngo-tonsillitis (n=130) 44

4.8 Distribution of clinical manifestations among participants (N=215) 49

4.9 Distribution of participants according to Centor score (N=215) 51

4.10 Distribution of prescribed antibiotics according to Centor score 53

4.11 Antimicrobial susceptibility patterns of beta hemolytic streptococci that are associated with pharyngo-tonsillitis 57
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>IMR</td>
<td>Institute for Medical Research</td>
</tr>
<tr>
<td>AAFP</td>
<td>American Academy of Family Physicians</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>STSS</td>
<td>Streptococcal toxic shock syndrome</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein Barr Virus</td>
</tr>
<tr>
<td>HSN</td>
<td>Herpes simplex virus</td>
</tr>
<tr>
<td>AGN</td>
<td>Acute Glomerulonephritis</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical package for the social science</td>
</tr>
<tr>
<td>GAS</td>
<td>Group A Streptococci</td>
</tr>
<tr>
<td>GBS</td>
<td>Group B Streptococci</td>
</tr>
<tr>
<td>GCS</td>
<td>Group C Streptococci</td>
</tr>
<tr>
<td>GFS</td>
<td>Group F Streptococci</td>
</tr>
<tr>
<td>GGS</td>
<td>Group G Streptococci</td>
</tr>
<tr>
<td>βHS</td>
<td>Beta haemolytic streptococci</td>
</tr>
<tr>
<td>RADT</td>
<td>Rapid Antigen detection test</td>
</tr>
<tr>
<td>ASO</td>
<td>Antistreptolysin-O</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>EES</td>
<td>Erythromycin Ethylsuccinate</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Pharyngo-tonsillitis is one of the commonest upper respiratory tract infections and it is an inflammation involving both the tonsils and the pharynx wall caused by viral or bacterial infection (Mishra & Agrawal, 2012). Group A streptococcus (also known as *Streptococcus pyogenes*) is the most common and important bacteria cause an acute pharyngo-tonsillitis (Al-Moyed, 2011). Rhinovirus, influenza virus, adenovirus are the main viruses cause pharyngo-tonsillitis, present in 70-80% cases (Anjos et al., 2014). Sore throat, cough, nasal discharge, fever, swollen tonsils, and difficulty swallowing are the main signs and symptoms of pharyngo-tonsillitis. However, cough and nasal discharge are often associated with viral infections than bacterial infections (Anne & Zab, 2017). Serious complications of pharyngo-tonsillitis caused by group A streptococcus are rheumatic fever, scarlet fever, toxic shock syndrome and acute glomerulonephritis (Al-Moyed, 2011). More than 600 million cases annually have been diagnosed as pharyngo-tonsillitis worldwide. Acute pharyngo-tonsillitis is the second most commonly diagnosed pediatric illness. Group A Streptococcal infection frequently cause significant morbidity and are associated with significant mortality rates worldwide (World Health Organization, 2004). There are many ways to identify the organisms that are causing pharyngo-tonsillitis, such as culture of throat swab, rapid antigen detection tests and molecular diagnosis (PCR) (Cheesbrough, 2008). Viral pharyngo-tonsillitis is treated by a symptomatic relief, while bacterial pharyngo-tonsillitis may require the prescription of antibiotics such as penicillin, clindamycin or erythromycin. A specific treatment might be required if the complications occurred (Choby, 2009).

Antibiotics are prescribed for treating bacterial infections, not for viral illnesses. In general, antibiotics are safe, but should be prescribed by a physician after a careful clinical assessment. However, antibiotics that are taken unnecessarily may contribute to the development of antibiotic resistance (Andersson et al., 2016). The excessive use of antibiotics, an unnecessary antibiotic prescription and the diagnosis of pharyngo-tonsillitis adds an economic burden to the health care system around the world, as well as to patients and their families. For example, in the United Kingdom it is estimated that health costs for diagnosis of sore throat alone around 60 million Pound Sterling per year. Therefore, pharyngo-tonsillitis therapy has a great health and economic effects (Andersson et al., 2016). In Malaysia, because of the paucity of studies about sore throat, the economic impact of pharyngo-tonsillitis and its impact on the health are not known (Ministry of Health Malaysia, 2003).
1.2 Problem statement

According to World Health Organization, many people are probably facing the problem of sore throat each year, and a majority of physicians depend on the clinical findings to diagnose the upper respiratory tract infections (World Health Organization, 2004). However, previous studies have shown that clinical signs and symptoms alone cannot be used to rule out or diagnose pharyngo-tonsillitis with an adequate sensitivity and specificity, as it can mimic other type of diagnosis infections (Cardoso et al., 2013; Windfuhr et al., 2016; Júnior et al., 2014). Many physicians will automatically prescribe antibiotics based on clinical symptoms, but the Centers for Disease Control and Prevention (CDC) and American Academy of Family Physicians (AAFP) have instructed that antibiotics can only be given to patients with streptococcal pharyngo-tonsillitis to avoid any emergence of antimicrobial resistance among bacteria (Kuehn, 2013; Hersh et al., 2016).

Moreover, most of pharyngo-tonsillitis cases are caused by viruses and do not require antibiotics (Kuehn, 2013). Furthermore, diagnosis of the pathogens cause pharyngo-tonsillitis by throat culture has always been delayed. Ideally, the should be confirmed by throat swab culture, which usually takes two to three days for the bacterial growth to be identified (Uptona et al., 2017). During this period, the illness might be resolved or patients might suffer several complications such as scarlet fever, toxic shock syndrome, rheumatic fever and acute glomerulonephritis (Wong et al., 2013). Therefore, there is need a quick and effective diagnosis of pharyngo-tonsillitis on the first visit of the patients and determine if the patients need for antibiotic therapy.

Over prescribing of antibiotics has very serious health effects with severe reactions and may promote antibiotic resistance and add significantly to the cost of health care (Llor & Bjerrum, 2014). Furthermore, the resistance of antimicrobial lead to increase morbidity and mortality since resistance increases the risk of inappropriate therapy (Andersson, 2016). The risk is that the patients who do not receive appropriate therapy will have a longer period of disease or fatal effect; therefore, morbidity and transmission of the microorganism will increase due to the patients remain infectious for a long period (Centers for Disease Control and Prevention, 2014). Also, the increasing trend of antimicrobial resistance is a serious challenge in countries at all economic levels (Ventola, 2015). Therefore, there is a need to document the prescription practices of the physicians in the primary care clinics.

In Malaysia, data on the epidemiology of sore throat or pharyngo-tonsillitis with regard to its prevalence, socio- demographic data, aetiology of the pharyngo-tonsillitis and complications is very much lacking (Ministry of Health Malaysia, 2003). Therefore, there is a need to document pharyngo-tonsillitis with respects to its aetiology, risk factors and demographic data in Malaysia.
1.3 Significance of study

Pharyngo-tonsillitis is major public problems globally. Currently, group A streptococcal pharyngo-tonsillitis account for increasing morbidity and mortality. Unnecessarily antibiotic prescriptions add an economic burden not only on the individuals but also the health care system. Also, the risk factors that are associated with pharyngo-tonsillitis increases the risk of pharyngo-tonsillitis and has not been well studied. Centor score is a tool or guideline based on a set of criteria that help to identify the likelihood of streptococcal infections in patients with a sore throat. It was developed as a quick diagnosis of group A streptococcal pharyngo-tonsillitis in adult patients (Borchardt, 2013). Previous studies have shown that the Centor scoring system has an acceptable sensitivity and specificity and it can limit the over prescription of antibiotics, thus will reduce the emergence of antibiotic resistance as well as the cost of health care (Aalbers et al., 2011; Fine et al., 2012). Therefore, this study aims to determine the prevalence and factors associated with pharyngo-tonsillitis and the validity of Centor score to diagnose group A streptococcal pharyngo-tonsillitis among adult patients with sore throat in Sepang, Selangor, Malaysia. The findings in this study will help in understanding the prevalence of pharyngo-tonsillitis in Malaysia, contribute to the advancement of knowledge on this issue and also hope to be beneficial in further research. Furthermore, this study will be a reference to guide physicians to appropriately prescribe antibiotics for adults with pharyngo-tonsillitis in the local setting depending on Centor score.

1.4 Objectives

1.4.1 General objective

To describe the epidemiological pattern, etiology and its antibiotic susceptibility, clinical manifestation, antibiotic prescription among adults with sore throat and validity of Centor score in diagnosis group A streptococcal pharyngo-tonsillitis at three primary care clinics in Sepang, Selangor, Malaysia during 2016 to 2017.

1.4.2 Specific objectives

a. To determine the socio-demographic characteristics (age, gender, and ethnicity), and clinical information (smoking and chronic diseases which are hypertension, diabetes, asthma, chronic obstructive pulmonary disease, allergy, heart diseases and others), proportion of pharyngo-tonsillitis, acute pharyngo-tonsillitis, beta hemolytic streptococci (groups A, B, C, F and G) and influenza A and B viruses that are associated with pharyngo-tonsillitis among the participants.

b. To determine the association between the socio-demographic characteristics and the clinical information with pharyngo-tonsillitis.

c. To determine the validity of using Centor score for management of
sore throat and the association between clinical manifestations and Centor score with throat sample results.

d. To determine the types of prescribed antibiotics by the attending physician at the clinics with throat sample results and the association between Centor score and throat sample results with prescribed antibiotics.

e. To determine the antimicrobial susceptibility patterns of beta-hemolytic streptococci (groups A, B, C, F and G) that are associated with pharyngo-tonsillitis.

1.5 Research hypothesis

Based upon these data, it hypothesized that:

a. There is a significant association between socio-demographic data (age, gender and ethnicity) and pharyngo-tonsillitis.

b. There is a significant association between the clinical information (smoking and chronic diseases which include hypertension, diabetes, asthma, chronic obstructive pulmonary disease, allergy, heart diseases and others) and pharyngo-tonsillitis.

c. There is a significant association between the clinical manifestations and Centor score with group A streptococcal pharyngo-tonsillitis.

1.6 Conceptual Framework

The development of pharyngo-tonsillitis is based on interplay of many correlated factors (Klug, 2014). Pharyngo-tonsillitis is an inflammation involving both the pharynx and tonsils most commonly caused by viral or bacterial infection (Wessels, 2011; Anjos et al., 2014). Pharyngo-tonsillitis reported to be influenced by socio-demographic, risk and environmental factors (Klug, 2017). Clinical manifestations including (Temperature $\geq 38^\circ$C, absence of cough, swollen anterior cervical lymph nodes and tonsillar swelling or exudates) and Centor score found to be associated with group A streptococcal pharyngo-tonsillitis (Centor et al., 1981).
Socio-demographic factors: Age, gender and ethnicity

Risk factors:
- Chronic diseases include (hypertension, diabetes, asthma, chronic obstructive pulmonary disease, allergy, heart diseases and others)
- Smoking

Clinical manifestations:
Temperature ≥ 38°C, absence of cough, swollen anterior cervical lymph nodes and tonsillar swelling or exudates

Centor scores

Dependent variables

Independent Variables
Dependent Variables
REFERENCES

Centers for Disease Control and Prevention. (2001). Women more likely than men to visit the doctor, more likely to have annual exams. Maryland: Vital and Health Statistics.

O’Loughlin, R. E., Roberson, A., Cieslak, P. R., Lynfield, R., Gershman, K., Craig, A., ... & Beall, B. (2007). The Epidemiology of Invasive Group A Streptococcal Infection and Potential Vaccine Implications: United States,

Rossi, R. E., Girelli, C. M., Bernasconi, G., & Conte, D. (2014). Currently neglected, physical examination maintains its clinical relevance. *Internal and emergency medicine, 9*(8), 871-874.

