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Copper based catalysts have industrial importance in different hydrocarbons 

reactions especially in the synthesis of cyclohexanone from dehydrogenation of 

cyclohexanol. Fast deactivation of the copper based catalysts at operating conditions 

is one of the significant problems in the industrial process. The objectives of the 

present work are to formulate the catalyst support (nitrogen doped reduced graphite 

oxide N-rGO) and two types of the supported catalysts namely supported copper 

(Cu/N-rGO) and supported tri metals alloy (CuNiRu/N-rGO) in paper forms, to 

analyse the properties of the synthesised catalyst support (N-rGO) and the 

synthesised catalysts as well as to investigate the catalytic performance of the two 

supported catalysts in the dehydrogenation of cyclohexanol to cyclohexanone, to 

evaluate the suitable kinetics and model that represents the catalysts behaviour in the 

dehydrogenation of cyclohexanol to cyclohexanone. All experiments on the catalytic 

performance were conducted at moderate temperatures (200-270
o
C) and at 1 atm. 

The support and the catalysts were synthesised using chemical reduction of the 

graphite oxide (GO) in NH4OH solution followed by a thermal treatment with N2. 

The morphological, structural, chemical, surface, thermal and crystallinity analyses 

as well as phase determination were performed. The performances of the catalysts 

were evaluated in the gas phase dehydrogenation of cyclohexanol to cyclohexanone. 

The reaction was performed in a fixed bed reactor. The products and by products of 

the process were analysed using the gas chromatography (GC). 

 

 

N-rGO provides more than 63% surface area based on BET analysis than that 

provides by GO. Moreover, N-rGO is thermally more stable than GO by 40
o
C. 

Single catalyst (Cu/N-rGO) showed dispersion of the metal particles with diameter 

approximately ranged from 5 nm to 50 nm and trimetallic catalyst (CuNiRu/N-rGO) 

has a particle size in the range of 1 nm to 10 nm. CuNiRu/N-rGO catalyst has bigger 



© C
OPYRIG

HT U
PM

ii 

 

surface area up to 75% compare to Cu/N-rGO. In Addition, CuNiRu/N-rGO catalyst 

exhibits better thermal stability. After reaction, the detected particle sizes ranged 

from 5 nm to 20 nm for the CuNiRu/N-rGO catalyst and 100 nm to 200 nm for 

Cu/N-rGO catalyst. The conversion of the cyclohexanol using CuNiRu/N-rGO is 4% 

higher than using the Cu/N-rGO. The selectivity for cyclohexanone in case of the 

Cu/N-rGO catalyst is about 83.88%, whilst, the CuNiRu/N-rGO showed 

approximately 6% better performance. The yield of the cyclohexanone using the 

Cu/N-rGO is about 78%, while with the improvement of the Cu/N-rGO by adding 

the Ni and Ru as promoters the yield of cyclohexanone was improved by 8%. The 

significant improvement posed by the CuNiRu/N-rGO is the duration of the steady 

state period that was proposed up to 7 times (from 60 minute to 380 minute). 

CuNiRu/N-rGO performs much better in terms of higher conversion, better 

selectivity, longer steady state period and better resistance for deactivation. The 

kinetics behaviour was fitted based on the Langmuir-Hinshelwood (L-H) models 

presented with different mechanisms models. Using fitting techniques, the single 

active site mechanism of the H2 adsorption and its dissociation on the surface 

reaction suits the experimental data for Cu/N-rGO catalyst.  However, the H2 

adsorption without dissociation on the surface reaction mechanism suits CuNiRu/N-

rGO catalyst better. This indicates that the catalyst exhibit dual active site 

mechanism.  

 

 

This research shows that the N-rGO has the potential to be an excellent support due 

to its excellent flexible interstices that provide the macro and microporous active 

catalytic sites. Furthermore, this study shows that the CuNiRu/N-rGO catalyst 

provides the suitable and selective active sites for the dehydrogenation of 

cyclohexanol to cyclohexanone reaction.  
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PEMANGKIN-BERASASKAN TEMBAGA DISOKONG-PADA GRAFIT 

OKSIDA TERTURUN UNTUK PENYAHHIDROGENAN SIKLOHEKSANOL 

KEPADA SIKLOHEKSANON 

 

 

Oleh 

 

 

ALYAA KHADHIER MAGEED  

 

 

Oktober 2017 

 

 

Pengerusi :  Dayang Radiah Bt. Awang Biak, PhD 

Fakulti     :  Kejuruteraan 

 

 

Pemangkin bahan tembaga mempunyai kepentingan industri dalam pelbagai tindak 

balas hidrokarbon yang berbeza terutamanya dalam sintesis sikloheksanon daripada 

penyahhidrogenan sikloheksanol. Penyahaktifan cepat pemangkin berasaskan 

tembaga pada keadaan operasi adalah salah satu masalah utama dalam proses 

perindustrian. Tujuan kajian ini adalah untuk menghasilkan penyokong pemangkin 

(nitrogen grafit oksida, N-rGO) dengan dua jenis pemangkin sokongan yang 

dinamakan tembaga sokongan (Cu/N-rGO) dan aloi logam (CuNiRu/N-rGO) dalam 

bentuk kertas; untuk mencirikan sifat-sifat penyokong pemangkin (N-rGO) dan 

pemanagkin yang disintesis, untuk menyelidik prestasi dua pemangkin tersokong 

dalam proses penyahhidrogenan sikloheksanol kepada sikloheksanon dan untuk 

menilai kinetik dan model yang bersesuaian bagi mewakili perilaku pemangkin 

dalam proses penyahhidrogenan sikloheksanol kepada sikloheksanon. Semua 

eksperimen terhadap prestasi pemangkin dilaksanakan pada suhu sederhana (200-

270
o
C) dan 1 atm. Penyokong dan pemangkin disintesis dengan menggunakan 

tindakbalas penurunan kimia grafit oksida (GO) dalam larutan NH4OH diikuti 

dengan rawatan haba dalam persehitaran N2. Analisis morfologi, struktur, kimia, 

permukaan, haba dan struktur kristal serta penentuan fasa telah dijalankan. Prestatsi 

pemangkin tersebut dilaksanakan dalam tindak balas fasa gas penyahhidrogenan 

sikloheksanol dalam reaktor lapisan tetap. Produk dan produk sampingan proses 

tersebut dianalisa menggunakan kaegah kromotografigan (GC).  

 

 

N-rGO menyediakan lebih daripada 63% kawasan permukaan berdasarkan analisis 

BET daripada yang disediakan oleh GO. Selain itu, N-rGO adalah termal lebih stabil 

daripada GO oleh 40
o
C. Pemangkin tunggal (Cu/N-rGO) menunjukkan penyebaran 

zarah logam dengan anggaran diameter sepanjang 5 nm sehingga 50 nm dan 

pemangkin trilogam (CuNiRu/N-rGO) mempunyai saiz zarah dalam 1 nm sehingga 
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10 nm. Pemangkin CuNiRu/N-rGO mempunyai luas permukaan yang lebih besar 

sehingga 75% berbanding dengan Cu/N-rGO. Dalam Penambahan, pemangkin 

CuNiRu/N-rGO mempamerkan kestabilan terma yang lebih baik. Selepas 

tindakbalas, zarah yang dihasilkan bersiaz di antara 5 nm sehingga 20 nm bagi 

pemangkin CuNiRu/N-rGO dan 100 nm sehingga 200 nm bagi pemangkin Cu/N-

rGO. Penukaran sikloheksanol menggunakan pemangkin CuNiRu/N-rGO adalah 4% 

lebih tinggi berbanding penggunaan Cu/N-rGO. Kememilihan mangkin kepada 

sikloheksanon ialah 83.88% bagi Cu/N-rGO. Pemangkin CuNiRu/N-rGO 

menunjukkan prestasi 6% lebih efektif. Hasil sikloheksanon menggunakan Cu/N-

rGO ialah 78%, dan apabila di tambah baik dengan Ni dan Ru sebagai penggalak, 

hasil sikloheksanon meningkat lebih 8%. Penambahbaikan ketara yang ditunjukkan 

oleh CuNiRu/N-rGO adalah perlanjutan mass stabil pemangkin di mana tempoh 

stabil dianggarkan sehingga 7 kali ganda (dari 60 minit ke 380 minit). CuNiRu/N-

rGO melakukan lebih baik dari segi penukaran yang lebih tinggi, pemilihan yang 

lebih baik, tempoh keadaan mantap yang lebih lama dan rintangan yang lebih baik 

untuk penyahaktifan. Ciri-ciri kinetik pemangkin yang dihasilkan adalah 

berdasarkan model Langmuir-Hinshelwood (L-H) berasaskan beberapa mekanisme. 

Menggunakan teknik pemasangan, mekanisme tapak aktif tunggal penjerapan H2 

dan penyisihannya pada reaksi permukaan sesuai dengan data eksperimen untuk 

pemangkin Cu/N-rGO. Walau bagaimanapun, penjerapan H2 tanpa pemisahan pada 

mekanisme tindak balas permukaan sesuai dengan pemangkin CuNiRu/N-rGO yang 

lebih baik. Ini menunjukkan bahawa pemangkin mempamerkan mekanisme tapak 

dua aktif. 

 

 

Kajian ini menunjukkan bahawa N-rGO mempunyai potensi sebagai penyokong 

pemangkin disebabkan struktur ruang antaranya yang anjal yang boleh 

menyecliakan tapak mangkin aktif berliang bersaiz mikro dan makro. Tambahan 

pula, kajian ini menunjukkan bahawa pemangkin CuNiRu/N-rGO memberikan tapak 

aktif yang sesuai dan mempunyai kememilihan bagi tindakbalas penyahhidrogenan 

sikloheksanol kepada sikloheksanon.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The formation of cyclohexanone from the catalytic dehydrogenation of cyclohexanol 

is a significant industrial process for the production of caprolactam (Pramod et al., 

2012). Besides the production of caprolactam, cyclohexanone is also used for the 

production of other valuable chemicals such as adipic acid (Simón et al., 2012). Both 

caprolactam and adipic acid are important raw materials for the production of 

polymeric materials such as nylon-6 and nylon-6-6 (Zhang et al., 2013). Due to the 

unique properties of cyclohexanone such as high solvent capability and reactivity, it 

finds wide applications in several industries such as solvent for paints and dyes, in 

pesticides and pharmaceuticals (Lin et al., 2015). The production of cyclohexanone 

from dehydrogenation of cyclohexanol is an endothermic process, with a reaction 

temperature of 200-450
o
C, which requires about 65 kJ/mol of energy (Tangale et al., 

2013). The process is always associated with high temperature and energy intensive. 

The conventional process utilized zinc oxide and calcium carbonate as catalyst and 

performed at an elevated temperature of 200-500
o
C. The conversion of cyclohexanol 

and the selectivity of cyclohexanone were obtained as 70% and 99%, respectively 

(Briicker et al., 2000). In such a condition, the shelf life of the catalyst is greatly 

reduced due to the catalysts deactivity at highly operating temperatures. In order to 

alleviate this problem, several attempts had been made to improve and enhance the 

efficiency of the dehydrogenation of the cyclohexanol at moderate temperature 

namely between 150-300
o
C (Tangale et al., 2013). Hence, the performance of the 

catalysts were investigated and improved. 

The dehydrogenation of the cyclohexanol to cyclohexanone is a very traditional 

petrochemical processing, so various researches had been done to improve this kind 

of process. Improving and optimizing the process parameters, i.e., the process flow 

rates, the time on stream (reaction time) and the catalysts, are the main interest. This 

industrial process is generally catalyzed using Cu-catalysts such as Cu/SiO2 (Jeon et 

al., 1996), Rh-Cu/Al2O3 (Mendes et al., 1997), Cu-ZnO/SiO2 (Ji et al., 2007) 

CuCr2O4 (Romero et al., 2011 a), Cu-Al2O3 and Cu/SiO2 (Popova et al., 2012) at 

operating temperature range between 200-300
o
C. The results from the named studies 

showed that the conversion of the cyclohexanol to cyclohexanone and selectivity for 

the cyclohexanone are dependent on the degree of dispersion of Cu
o
 metallic in the 

catalysts. However, Fridman et al. (2000 and 2004) has described that monovalent 

metal is a better state for this kind of reaction.    

In this way, Jenness and his colleagues highlighted the importance of selecting 

suitable support for the metal catalyst (Jenness et al. 2013). Based on their 

pioneering work, they found that the selection of the support affected dispersion 

degree of the metal. In this manner, it is very important to note that the interaction 
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between the metal nanoparticles and the supports determine the activity of the 

catalysts. 

One advantage of using graphene based materials as catalysts supports is the 

functional groups present in the structures of these materials, such as oxygen or 

nitrogen functional groups which act as anchor sites for the metal particles. For 

example, using reduced graphite oxide (rGO) as a support is the abundant functional 

groups present on the surface of the graphite oxide (GO) which act as anchor sites 

for the metal particles. The dispersion of the metal nanoparticles on the rGO often 

leads to an improved catalytic activity (Chien et al., 2006). In this way, the rGO 

nanosheet has been used as a support for dispersion of Cu catalysts in oxygen 

reduction reaction which the prepared catalyst was in powder form (Ania et al. 

2015). It was found that copper atoms formed 3D framework with rGO with specific 

chemistry homogeneously distributed on the surface (Ania et al. 2015). 

1.2 Problem statement 

The dehydrogenation of the cyclohexanol to cyclohexanone is an important 

industrial process for the production of chemical intermediates for several 

applications. From the industrial point of view, the production of the cyclohexanone 

is still limited due to: 

 High reaction temperature lead to much faster catalyst deactivation rate 

due to faster coke formation rate (Simón et al., 2013)  

 High reaction temperature will cause the sintering of copper particles 

(Popova et al., 2012). Several reports described the works which have 

been done on various metal based catalysts such as cobalt based catalysts 

(Liu et al., 2001), copper based catalysts (Fridman et al., 2004) and 

chromium based catalysts (Zapata et al., 2016), which has been found that 

copper is the best option as a metal catalyst for the dehydrogenation of 

cyclohexanol to cyclohexanone process. However, copper has fast 

deactivation problem due to its fast sintering behaviour in high 

temperature reaction processes. 

 Reduction in the yield and selectivity of the cyclohexanone due to the 

formation of byproducts (Romero et al., 2011). 

 

Researchers had come up with various attempts to:  

 avoid catalysts coking by preventing the sequential dissociation of 

absorbed cyclohexanol and controlling the mechanism of the coke 

formation (Simón et al., 2013).  

 prolong the catalysts activity by improving the catalyst properties using 

suitable supports and promoters (Bai et al., 2008; García-Rosado et al., 

2017).  
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 prevent the byproducts formation by providing suitable monovalent 

copper active sites which are responsible for the dehydrogenation process 

of cyclohexanol to cyclohexanone (Romero et al., 2011).   

 

Various supports had been investigated such as CNT (Liu et al., 2001), Al2O3 and 

SiO2 (Popova et al., 2012).  However, it has been found that copper dispersed on 

Al2O3 tend to the produce highly acidic monovalent copper compound which might 

prefer the formation of the byproducts (cyclohexene). Therefore, it is important to 

find a suitable support which will lead to the formation of the lower acidic 

monovalent copper compounds for the production of cyclohexanone. Nitrogen-

doped reduced graphite oxide (N-rGO), as a kind of novel carbonaceous derived 

materials which has gained much more attention due to its abundant properties, such 

as much larger functional surface area and more chemically active sites for further 

functionalization with metal NPs (García-Rosado et al., 2017). Handling the 

catalysts in powder form is quite difficult in case of the reactors donot have 

distributers to avoid the catalysts losing with the products. Using glass wool inside 

the reactors might not be able to keep the catalysts since the catalysts particle sizes 

are very small. Therefore, prepare the catalyst in a sheet/paper form will reduce the 

handling problem, especially if the catalysts in paper form have the cleavages that 

help the metals settle at the surface as well as between the layers of the support. This 

will reduce the limitations of mass transfer. Moreover, adding the other metals as 

promoters can also significantly enhance the dispersion and increase the resistance to 

coking (Bai et al., 2008).  

1.3 Objectives of the study 

The significant objectives of the present study are:        

1. To formulate the catalyst support (nitrogen doped reduced graphite oxide 

N-rGO) and two types of supported catalysts namely supported copper 

(Cu/N-rGO) and supported tri metals alloy (CuNiRu/N-rGO) in paper 

forms, using Cu/Al2O3 as a basis. 

2. To analyse the properties of the synthesised catalyst support (N-rGO) and 

the synthesised catalysts.                              

3. To investigate the catalytic performance of the supported catalysts in the 

dehydrogenation of cyclohexanol to cyclohexanone. 

4. To evaluate the suitable kinetics and model that represents the catalyst 

behaviour in the dehydrogenation of cyclohexanol to cyclohexanone. 
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1.4 Scope of the research 

1. To achieve objective (1), nitrogen doped reduced graphite oxide (nitrogen 

doped graphene) is prepared using chemical reduction of graphite oxide 

(GO) in NH4OH solution followed by a thermal treatment with N2 and the 

catalysts prepared by the incipient wetness impregnation method. 

2. To accomplish objective (2), the physical (include morphological), 

chemical and thermal properties of the synthesised samples are analysed 

before and after the reaction to distinguish the effects of the modification 

process of copper catalysts.       

3. To support objective (3), the performances of the catalysts and the role of 

support (N-rGO) were evaluated in the gas phase dehydrogenation of 

cyclohexanol in a fix bed reactor.  All experiments were performed at 

various operating conditions of T=200, 225, 250, 260 and 270
o
C, P=1atm, 

liquid flow rate of reactant= 0.1, 0.2, 0.3, 0.4 and 0.5 ml/minute, gas flow 

rate of carrier (N2 gas) = 25 ml/minute, and time of reaction ~ 8 hour. The 

products and by products of the process were analysed using gas 

chromatography (GC) FID and TCD.   

4. The experimental data was fitted into a kinetic model to find the best fit 

theoretical model that is able to describe the mechanism of the catalytic 

reaction process. 

 

 

The overview of the methodology of this study is presented in Figure 1.1. 
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1.5 Research contributions  

This study is contributing the knowledge on the: 

1. Utilization of new nanomaterial converting from powder into sheets which 

are much easier to handle. 

2. Deposition of the metal catalyst on the prepared nanomaterial, to improve 

the dehydrogenation process. 

3. Provision of information on the synergistic effect of the metal 

nanoparticles on the catalyst performance for the dehydrogenation 

process. 

4. Assessment of kinetics on the catalyst surface for the dehydrogenation of 

cyclohexanol to cyclohexanone.   

 

 

1.6 Organization of thesis 

The thesis is arranged in a way that describes the study from all aspects. These have 

been divided into seven chapters. Chapter 1 introduces the subject matter combined 

with the objectives of the research. Chapter 2 discusses the literature review which 

includes brief information about the catalysts and supported catalysts. The literature 

review also presents general information about the importance of both support and 

the promoters for the catalysts and how they are affect the chemical reactions. 

Furthermore, the literature review describes brief information of the kinetic study for 

the catalysts with the models fitting. Chapter 3 illustrates the experimental approach 

as well as the findings with respect to the synthesis of the support and catalysts with 

the elaborated discussion for characterization of the support and different catalysts 

before reactions analyse the activation part. Chapter 4 presents the experimental 

procedure for the performance of the catalysts at different operating conditions. The 

performances of the catalysts at optimum conditions were tested and compared. The 

deactivation characteristics were also analysed in this chapter. Chapter 5 presents the 

kinetic and model fitting works. Here, three different models were analysed and 

compared. Finally, Chapter 6 refers to the overall conclusions based on the finding 

obtained in this study, and recommendation part for future work are also given in 

this chapter. 
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