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BAHAREH KALANTAR GHORASHI HARANDI 
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Chairman : Professor Shattri Bin Mansor, PhD 
Faculty : Engineering 

Videos captured using cameras from unmanned aerial vehicles (UAV) normally 
produce dynamic footage that commonly contains unstable camera motion with 
multiple moving objects. These objects are sometimes occluded by vegetation or even 
other objects, which presents a challenging environment for higher level video 
processing and analysis. This thesis deals with the topic of moving object detection 
(MOD) whose intention is to identify and detect single or multiple moving objects 
from video. In the past, MOD was mainly tackled using image registration, which 
discovers correspondences between consecutive frames using pair-wise grayscale 
spatial visual appearance matching under rigid and affine transformations. However, 
traditional image registration is unsuitable for UAV captured videos since distance-
based grayscale similarity fails to cater for the dynamic spatio-temporal differences of 
moving objects. Registration is also ineffective when dealing with object occlusion. 
This thesis therefore proposes a framework to address these issues through a two-step 
approach involving region matching and region labeling. Specifically, the objectives 
of this thesis are (i) to develop an image registration technique based on multigraph 
matching, (ii) to detect occluded objects through exploration of candidate object 
correspondences in longer frame sequences, and (iii) to develop a robust graph 
coloring algorithm for multiple moving object detection under different 
transformations. 

In general, each frame of the footage will firstly be segmented into superpixel regions 
where appearance and geometrical features are calculated. Trajectory information is 
also considered across multiple frames taking into account many types of 
transformations. Specifically, each frame is modeled/represented as a regional 
adjacency graph (RAG). Then, instead of pair-wise spatial matching as with image 



©
 C

O
P

U
P
M

 
ii

registration, correspondences between video frames are discovered through 
multigraph matching of robust spatio-temporal features of each region. Since more 
than two frames are considered at one time, this step is able to discover better region 
correspondences as well as caters for object(s) occlusion. The second step of region 
labeling relies on the assumption that background and foreground moving objects 
exhibit different motions properties when in a sequence. Therefore, their spatial 
difference is expected to drastically differ over time. Banking on this, region labeling 
assigns the labels of either background or foreground region based on a proposed 
graph coloring algorithm, which considers trajectory-based features. Overall, the 
framework consisting of these two steps is termed as Motion Differences of Matched 
Region-based Features (MDMRBF). MDMRBF has been evaluated against two 
datasets namely the (i) Defense Advanced Research Projects Agency (DARPA) Video 
Verification of Identity (VIVID) dataset and (ii) two self-captured videos using a 
mounted camera on a UAV. Precision and recall are used as the criteria to 
quantitatively evaluate and validate overall MOD performance. Furthermore, both are 
computed with respect to the ground-truth data which are manually annotated for the 
video sequences. The proposed framework has also been compared with existing state-
of-the-art detection algorithms. Experimental results show that MDMRBF 
outperforms these algorithms with precision and recall being 94% and 89%, 
respectively. These results can be attributed to the integration of appearance and 
geometrical constraints for region matching using the multigraph structure. Moreover, 
the consideration of longer trajectories on multiple frames and taking into account all 
the transformations also facilitated in resolving occlusion. With regards to time, the 
proposed approach could detect moving objects within one minute for a 30-second 
sequence,  which means that it is efficient in practice. In conclusion, the multiple 
moving object detection technique proposed in this study is robust to unknown 
transformations, with significant improvements in overall precision and recall 
compared to existing methods. The proposed algorithm is designed in order to tackle 
many limitations of the existing algorithms such as handle inevitable occlusions, 
model different motions from multiple moving objects, and consider the spatial 
information.
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PENGESANAN OBJEK BERGERAK DARI RAKAMAN VIDEO DARI 
UAV MENGGUNAKAN TRAJEKTORI-TRAJEKTORI TERPADAN GRAF 

RANTAUAN BERSEBELAHAN 

Oleh 

BAHAREH KALANTAR GHORASHI HARANDI 

Disember 2017 

Pengerusi : Profesor Shattri Bin Mansor, PhD  
Fakulti : Kejuruteraan 

Video yang dirakam menggunakan kamera dari kenderaan tanpa-manusia udara 
(UAV) biasanya menghasilkan rakaman dinamik yang sering mempunyai pergerakan 
kamera tidak stabil dan beberapa objek bergerak. Objek-objek ini kadang kala 
dihalang oleh tumbuhan atau objek lain, di mana ini mewujudkan satu persekitaran 
mencabar bagi pemprosesan dan analisis video peringkat tinggi. Tesis ini berkait 
dengan tajuk pengesenan objek bergerak (MOD) bertujuan untuk mengenal pasti dan 
mengesan satu atau beberapa objek bergerak dari video. Pada kebiasannya, MOD 
kebanyakan kali diatasi menggunakan pendaftaran imej, di mana kesamaan dicari dan 
ditemukan antara kerangka berturutan berdasarkan persamaan penampilan visual 
skala-kelabu spatial di bawah transformasi tegar dan afine. Walau bagaimanpun, 
pendaftaran tidak sesuai untuk rakaman video UAV kerana persamaan ukuran jarak 
skala-kelabu gagal untuk mengambil kira perbezaan spatio-temporal objek-objek 
bergerak. Pendafataran imej juga tidak berkesan apabila berhadapan dengan masalah 
objek terhalang. Oleh itu, tesis ini mencadangkan satu rangka kerja untuk menangani 
masalah-masalah yang dinyatakan melalui pendekatan dua peringkat, yang melibatkan 
pemadanan rantau dan penglabelan rantau. Secara spesifik, objektif-objektif tesis ini 
adalah (i) untuk membangunkan teknik pendaftaran imej berdasarkan padanan graf 
pelbagai, (ii) untuk mengesan objek-objek terhalang melalui penerokaan koresponden 
calon objek dalam urutan kerangka yang lebih panjang, dan (iii) untuk membangunkan 
satu algoritma pewarnaan graf yang robus bagi objek-objek bergerak pelbagai di 
bawah transformasi berbeza. 

Secara am, setiap kerangka rakaman pada mulanya akan dibahagi kepada rantau-
rantau superpiksel di mana fitur penampilan dan geometri akan dihitung. Maklumat 
trakejtori juga dipertimbang merentasi kerangka mengambil kira pelbagai 
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transformasi. Secara spesifik, setiap kerangka dimodel/diwakilkan oleh garf rantauan 
bersebelahan (RAG). Kemudian, selain menggunakan padanan spatial rawak antara 
dua kerangka sepertimana dalam pendaftaran imej, kesamaan di antara kerangka-
kerangka video dikenal pasti melalui padanan pelbagai graf berasaskan fitur-fitur 
spatio-temporal robust setiap rantauan. Oleh kerana lebih dari dua kerangka diambil 
kira setiap masa, langkah ini lebih mampu mengenalpasti kesamaan antara rantauan 
dan boleh juga menangani halangan objek. Langkah kedua iaitu penglabelan rantauan 
bergantung kepada andaian bahawa objek bergerak pada latar belakang dan latar 
hadapan masing-masing menunjukkan sifat pergerakan berbeza apabila dikaji dalam 
turutan kerangka. Oleh itu, perbezaan spatial antara kedua jenis objek ini dijangka 
amat berbeza dari masa ke semasa. Berdasarkan andaian ini, proses penglabelan 
rantauan menetapkan sama ada label latar belakang atau latar hadapan diberi kepada 
sesuatu rantauan berdasarkan algoritma pewarnaan graf yang dicadangkan, yang mana 
ianya mengambil kira fitur-fitur trajektori. Secara keseluruhan, rangka kerja yang 
merangkumi kedua-dua langkah ini diberi nama Motion Differences of Matched 
Region-based Features (MDMRBF). MDMRBF telah dinilai menggunakan dua 
dataset iaitu (i) dataset Defense Advanced Research Projects Agency (DARPA) Video 
Verification of Identity (VIVID), dan (ii) dua video dari kamera UAV yang dirakam 
sendiri. Precision dan Recall digunakan sebagai kriteria kuantitatif untuk menilai dan 
mengesahkan prestasi pengesanan objek bergerak. Tambahan lagi, kedua-dua ukuran 
ini dikira berkenaan dengan data ground-truth yang dilabel secara manual untuk 
turutan video yang digunapakai. Rangka kerja yang dicadangkan juga telah 
dibandingkan dengan algoritma pengesan terkini. Keputusan eksperimen 
menunjukkan MDMRBF mampu mengatasi algoritma-algoritma berkenaan dengan 
ukuran precision dan recall masing-masing pada 94% dan 89%. Keputusan ini boleh 
dikaitkan dengan integrasi kekangan-kekangan penampilan dan geometrikal bagi 
pemadanan rantau menggunakan struktur multigraf. Tambahan lagi, pertimbangan 
trajektori-trajektori yang lebih panjang pada berbilang kerangka dan mengambil kira 
kesemua transformasi juga telah membantu dalam menyelesaikan masalah objek 
terhalang. Berkaitan masa, pendekatan yang dicadangkan mampu mengesan objek 
bergerak dalam masa satu minit bagi satu urutan 30-saat, yang membawa makna ianya 
eficien secara praktikal. Secara kesimpulan, teknik pengesanan objek pelbagai yang 
dicadangkan robus terhadap transformasi yang tidak diketahui, dengan penambah 
baikan yang penting di dalam kepersisan dan recall secara keseluruhan, berbanding 
kaedah-kaedah lain. Kaedah ini juga direka bentuk untuk menangani kekurangan 
kaedah-kaedah sedia ada seperti menangani objek terhalang, permodelan pergerakan 
berbeza bagi objek-objek bergerak berlainan, dan mengambil kira informosi reruang.
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     CHAPTER 1 

1 INTRODUCTION 

1.1 Background  

Due to the increasing demand for intelligent surveillance and limitations of stationary 
cameras, video surveillance on an airborne vehicle such as unmanned aerial vehicle 
(UAV) has been gaining increasing attention in recent years (Huang et al., 2010). The 
high mobility, fast deployment, and large surveillance scope in UAV videos offer a 
wide range of applications, such as moving object detection (MOD) ( Zhou et al., 
2013; Tian et al., 2011), object tracking (Hu et al., 2015;Cao et al., 2012; Babenko et 
al., 2011; Xiao et al., 2008), motion segmentation ( Lian et al., 2013; Hu et al., 2012),
object classification and identification (Somasundaram et al., 2013), event detection 
(Wang et al., 2008), and behavior understanding and description (Borges et al., 2013).
Essentially, accurate MOD is a fundamental task for establishing robust intelligent 
video surveillance systems. UAVs are low-cost platforms that can provide efficient 
data acquisition mechanisms for intelligent systems. As they fly at low altitudes, 
videos are captured with very high spatial resolution (Zhou et al., 2015). Hence, the 
analysis and interpretation of these video sequences are active research fields. 

In contrast to the stationary cameras, detecting moving objects from videos captured 
by moving cameras is significantly more challenging. This is due to the camera motion 
which is independent of moving objects’ motions. This task is even more challenging 
when surveillance cameras are mounted on airborne vehicles such as UAVs. 
Typically, UAVs fly at low altitudes, and render high mobility, fast deployment, and 
large surveillance scope (Zhou et al., 2015). Therefore, the existence of multiple 
moving objects, large object displacements due to the high velocity, very small object 
movement, objects leaving the field of view, changes in illumination, and occlusion 
caused by terrain features are common in UAV-captured videos. Several approaches 
have been proposed in the literature (Ingersoll et al., 2015; Lee et al., 2015; Zhou et 
al., 2015; Bhaskar et al., 2014; Cao et al., 2012; Rodríguez-Canosa et al., 2012; 
Bhattacharya et al., 2011; Miller et al., 2008), which can be generally divided into 
three main categories, i.e., temporal differencing, background subtraction, and optical 
flow (Lu et al., 2008). 

Temporal differencing is interested in determining the differences between 
consecutive frames in order to classify background and foreground pixels. However, 
this technique is unable to detect all relevant pixels and complete shapes of foreground 
objects. Moreover, small changes in object movements or stopping objects can cause 
temporal differencing to fail. Unlike temporal differencing, background subtraction 
uses a model of the background based on the pixel distribution. Moving objects are 
then detected by subtracting the current frame from the background model (Liu et al., 
2009). A priori knowledge about object shape, motion characteristics, and the spatial 
dependency among neighboring background pixels are not taken into account in 
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background subtraction techniques. Although these methods are flexible and fast, 
background scenes need to be consistent while the camera should also be fixed. 
Otherwise, any changes can potentially be treated as moving objects. This issue 
however, can be resolved by employing image stabilization and registration methods, 
where two images of the same scene taken at different times are geometrically overlaid 
(Jackson and Goshtasby, 2010).

Feature detection and feature matching are two fundamental stages in the majority of 
the registration methods (Zitova and Flusser, 2003). A popular solution for feature 
detection is to represent images as bags of features and find correspondences using 
appearances (Yu et al., 2014). However, spatial feature layouts and correlations 
between pixels are ignored using such order-less sets of local descriptors. The feature 
matching problem is complicated due to the lack of one-to-one correspondences and 
the presence of noise. Moreover, illumination changes in consecutive frames make 
correspondences between feature points unreliable. More importantly, the 
transformations that align points are simply assumed to be parametric (e.g., rigid, and 
affine), which is not the case in real life situations.  Hence, motions of the foreground 
objects are estimated once background motion is eliminated by image registration 
techniques. However, these techniques are not mature enough to truly eliminate 
different kinds of motions. Moreover, estimating multiple foreground motions is still 
problematic.   

Alternatively, moving objects can be detected using optical flow. This is based on 
local image motion approximations where pixel movements between consecutive 
frames are specified. However, optical flow-based methods are sensitive to 
illumination changes, and only partial edge shapes of moving objects are detected (Lu 
et al., 2008). Although most existing algorithms are successful in many situations, 
MOD in aerial videos is still very challenging. This thesis suggests to geometrically 
overlay consecutive images and use motion information to label background and 
foreground objects. Thus, matching and labeling are two main steps in the proposed 
approach. The first step is similar to the registration techniques while it can address 
their problems. The second step can relieve multiple foreground detection under 
different transformations. 

In this thesis, both appearance similarity and geometrical constraints are imposed on 
region-based features. We believe that this combination makes for a representation 
that is more robust to local variations. If images are seen as a set of connected regions, 
they can hence be represented using regional adjacency graphs (RAGs). This allows 
the spatial relationships between pixels to also be incorporated at a higher level, 
making it more robust to illumination and intensity across frame sequences. 
Representing images as graphs of regions also allows the utilization of graph matching 
algorithms in order to find visual correspondences. Therefore, both unary node-to-
node, and pairwise edge-to-edge relationships can be integrated into the model, which 
is different from point-based matching or registration approaches such as Random 
Sample Consensus (RANSAC) (Fischler and Bolles, 1981) and Iterative Closest Point 
(ICP) (Liu, 2004). Specifically, the correspondences between regions of consecutive 
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frames can be obtained using both appearance structural similarities and region 
coordinates as geometrical information. By using both appearances and geometrical 
constraints to find correspondences, the proposed method can be more robust to 
deformation, missing data, and outliers. Therefore, regions are only matched with 
corresponding regions having similar visual and geometrical descriptors within 
context.  

Once one-to-one correspondences between regions in successive frames are 
established, motion models can be constructed to distinguish between background and 
foreground regions. Since different objects (whether belonging to background or 
foreground) in a sequence move independently, their spatial distances must be varying 
with time. Inspired by this, spatial distances between adjacent regions are observed in 
the sequence. Any detected change is interpreted as their motion difference. More 
specifically, a graph is constructed from all detected image regions which their 
correspondences in the trajectory have been successfully established. Edge weights in 
this graph are assigned according to the motion similarity between adjacent regions. 
The objective is to distinguish between background and foreground regions based on 
the motion features. We formulate this as a graph labeling problem which its aim is to 
label graph nodes as background or foreground. This can be efficiently achieved using 
the proposed graph coloring algorithm. This is very surprising since using temporal 
motion information of the neighboring regions in a sequence, we do not explicitly 
estimate their individual transformations. Thus, moving objects can take different 
transformations, either being parametric (e.g., rigid, affine) or nonparametric (e.g., 
nonrigid). We refer to this method as MDMRBF (motion differences of matched 
region-based features). Therefore, this thesis attempts to examine whether using 
trajectories of matched regional adjacency graphs can detect moving objects or not.  

1.2 Problem Statement 

Unlawful transgressive and boundary interference by immigrants are a major obstacle 
demeaned against the border security. Several techniques and scientific methods have 
been proposed over the past decade to ensure protection of the boundaries. The 
traditional border monitoring by artificial monitoring ways include standing guard, 
lookout, patrol, video camera, ground sensors, physical barriers, land vehicles and 
manned aircraft. These methods are unable to meet the needs of border monitoring 
well due to the complex border areas and small surveillance scope. Moreover, it 
becomes cumbersome for human operators to monitor for long durations.  

The rapid development of technology leads to intelligent monitoring system 
development using UAV. Automatic MOD by UAV replaces traditional border 
monitoring. UAV can supply images even on cloudy days, monitor over long distance 
with a low cost, fly flexibly across broad spatial and temporal scales, and carry various 
types of sensors to collect abundant data. However, detecting moving objects in UAV-
captured video sequences is very challenging as two types of motions need to be 
considered. They are the camera motion and also the motions of the moving objects. 
In addition, other issues make detection even more challenging. For instance, the 
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existence of multiple moving objects, large object displacements due to the high 
velocity, very small object movement, objects leaving the field of view, changes in 
illumination, and occlusion caused by terrain features are common in UAV videos. 
This thesis proposes a novel method to effectively address these challenges. Hence, it 
is not only applicable to any surveillance system, but also considers the especial 
difficulties in UAV-captured videos.  

Though many algorithms have been proposed for different situations, developing a 
unified framework for remote sensing image registration is still challenging. This is 
due to the specific circumstances of remote sensing imaging. For instance, 
unavoidable noise, occlusions, repeated structures, and nonrigid transformation are 
prevalent in these images. Hence, simple parametric models (e.g., rigid or affine 
transformation) cannot be applied for images captured under different imaging 
viewpoint variations and distortions (Ma et al., 2015c). Consequently, an accurate 
matching must take into account the nonrigid transformations and outlier removal 
while accommodate to environmental changes.  

In this thesis, a novel approach is introduced, which can efficiently leverage spatial 
context at the pixel level, appearance similarity and geometrical constraints at the 
region level, and outlier removal and occlusion detection on the sequence level; all to 
establish the correspondences between regions in frame sequences from UAV videos.
This is achieved by the proposed multigraph matching technique on RAGs of 
successive frames. Moreover, temporal motion information of the neighboring regions 
in a sequence is used to label graph nodes as background or foreground regions. 

1.3 Research Objectives   

The overarching aim of this research is to develop a multiple moving object detection 
approach, using region trajectories in matched regional adjacency graphs, for UAV-
captured videos. The three objectives of this thesis are: 

1. To develop an image registration technique using a multigraph matching 
algorithm on RAGs of successive frames. 

2. To detect occluded regions by exploring the correspondences in a longer 
sequence, since they can be visible and detectable at long-term trajectories.  

3. To develop a robust graph coloring algorithm for multiple moving object 
detection under different transformations.  
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1.4 Research Questions 

This thesis comprehensively addresses the following research questions: 

1. Which image features should be used for motion compensation? 
2. What kind of methodology is most suitable and more accurate for small 

moving object detection? 
3. Which method can use for detection moving object in dynamic environment? 
4. How should the motion, appearance, and shape of the object be modeled? 
5. How to label background and foreground objects? 

1.5 Scope of Study 

In this thesis, a multiple moving object detection approach from a UAV video based 
on trajectories in matched RAGs will be designed. Trajectories in a matched region 
provide rich information in motion estimation. As the motions are estimated 
independently for each pair of regions in the trajectories, the most common geometric 
distortions found in remotely sensed imagery can be effectively handled. Moreover, 
the motion information in the region trajectories are used not only to differentiate 
between background and foreground regions, but also to locate and detect multiple 
moving objects. More importantly, using a longer sequence of multiple frames has 
another advantage, which is to detect occluded regions because the occluded regions 
which are not visible in the current regions can be detectable in long-term trajectories. 

The videos that are used in the experimental purposes are public standard color 
imagery datasets and our home-made videos. While public standard dataset covers 
about 0.5km2 with an image size of  pixels and a frame rate of 30 Hz, our 
home-made videos have an image size of and  pixels and a 
frame rate of 30 Hz. The videos that are chosen to be tested in this study are: EgTest01, 
EgTest02, EgTest03, EgTest04, EgTest05 selected from a popular dataset, the 
DARPA VIVID videos dataset (Defense Advanced Research Projects Agency 
(DARPA) Video Verification of Identity (VIVID)) (Collins et al., 2005) and our 
home-made videos collected from the campus of Universiti Putra Malaysia (UPM). 
We address vehicles as moving object in this research. In the standard dataset, similar 
vehicles move on a runway, speed up, and pass by each other or two groups of vehicles 
pass by each other on a runway. The scale is changed as the camera circles the scene. 
The vehicles are occluded by each other or by trees, and there are illumination 
changes. Some frames are duplicated as the camera fails to record these frames. Thus, 
there is no motion followed by a sudden discontinuity in the sequence. On the other 
hand, our home-made videos, vehicles are tracked along the outdoor campus 
environment. It contains appearance variations and cluttered scenes. 
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To quantitatively evaluate the performance of the proposed approach, precision and 
recall are utilized. Precision is calculated as the percentage of correctly detected object 
pixels over the total number of detected object pixels. Recall indicates the ratio of 
correctly detected object pixels to the number of actual object pixels. The developed 
algorithm is successfully applied to the data, and the verification result is promising.   

The proposed framework can be used for border protection, reconnaissance, or 
homeland security. Illegal trespassing and border encroachment by immigrants is a 
huge predicament against border security and homeland security. The main 
application of this research is to assist the human operators, by implementing 
intelligent visual surveillance systems which help in detecting suspicious or unusual 
events in the video sequence. 

1.6 Thesis Organization 

The remainder of this thesis is prepared as follows: 

Chapter two presents a description about object representation, and object detection 
from videos using popular algorithms such as segmentation, background subtracting 
and modeling, temporal differencing, and optical flow. Furthermore, this chapter 
reviews some of the major limitations and challenges of MOD using UAV-captured 
videos. This is followed by a review of previous studies include image registration, 
general object detection, and UAV-based object detection. Finally, the gap of research 
is mentioned according to the previous studies.  

Chapter three presents the methodology and the algorithms developed for this thesis. 
A novel approach is proposed for multiple moving object detection from a 
nonstationary camera, based on region trajectories in matched regional adjacency 
graphs. This chapter describes the segmentation algorithm followed by a graph 
construction technique to generate the graphs of the regions. Then a region merging 
process is proposed. Afterward, a multigraph matching algorithm is presented to find 
the correspondence between segmented regions in the frame sequence. Thus, the 
output of the region matching stage is a set of all the matched regions in the trajectory 
of specific length. Later, detection occluded regions are explored by using long-term 
analyzing of multiple frames. A motion similarity graph is constructed using 
corresponding regions in the trajectory, in order to discriminate the foreground and 
background regions. Subsequently, a graph coloring algorithm is proposed to assign 
appropriate labels to background and moving object. Finally, a computational 
complexity analysis and validation of the proposed framework is presented.  

Chapter four provides the results and discussion of the proposed algorithm. In this 
chapter, first, the dataset and implementation and development environment are 
explained. Second, the results of image segmentation and region merging on different 
standard publicly available benchmark datasets and our home-made videos are 
discussed. Then, the results of region matching are explained. This is followed by an 
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evaluation of our algorithm for region matching task on different sequences, and this 
is compared with other methods. Afterward, the occlusion detection results using long-
term trajectories are explained. Then, MOD results are explained followed by 
investigation the effect of UAV parameters on the proposed algorithm. In order to 
quantitatively evaluate the performance of the proposed method, well-known 
precision, and recall techniques are utilized. Finally, the performance of our approach 
on different datasets are discussed and compared with the best state-of-the-art MOD 
techniques. 

Lastly, Chapter five summarizes the contributions of this thesis to the advancement of 
our knowledge in this field, and provides conclusion for this thesis, and suggests some 
future research directions. 
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