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In the last decade, facial emotion recognition has attracted more and more
interest of researchers in the computer vision community. Facial emotions are a
form of nonverbal communication, used to exchange social and emotional
information in human-human-interaction. By finding the emotion from the
human face automatically and reacting proactively, several applications could
benefit. The examples of these are the human-computer-interfaces or security
systems, driver safety systems and social science’s domain. In order to use
facial emotion recognition systems in real time situations, it is essential to
recognize emotions not only from frontal face images but also from images
containing faces with pose variations. Furthermore, facial landmarks have to be
located automatically. The degree of intensity of human facial emotions varies
from person to person. Some people may express the seven basic emotions more
intense than others or they may use it in different ways. In this thesis, a real
time emotion recognition system is presented. The system works on both,
frontal and non-frontal faces. A 3D face pose estimation algorithm detects head
rotations of Yaw, Roll and Pitch for emotion recognition. UPM3D-FE and
BU3D-FE databases are used in this research for training purposes which
include rotation and capturing of faces in different angles. After detecting the
human face, several features are extracted from human face automatically and
the geometrical facial features combined with texture features, are given to a
back propagation neural network which is trained with various face images.
This enables us to determine the emotion in real-time from the face of a person.
Basically, the contributions are that the method is capable of detecting the face
and facial landmarks in the live video; the landmark detection on the face is
done automatically in each frame using both texture of facial points and
relative positions of points on the face. Also, the emotion is detected from
frontal and angled face and in the case where half of face is not visible (side
view) the other half is reconstructed and emotion is detected. Geometrical and
texture features are used for emotion recognition and the texture features are

i



© C
OPYRIG

HT U
PM

taken from specific areas of the face in a novel approach. The results show an
improvement over existing approaches in determining emotions for various face
poses. The effects of gender, ethnicity, color, mixed emotions and intensity of
emotion have been analyzed as well. The resulting face emotion recognition
system works real time in less than twenty milliseconds per frame. For
UPM3DFE, in case of seven emotions, the accuracy is 63.08% for multiview
and 62.19% for near frontal faces for emotion recognition, and for the BU3DFE,
80.61% accuracy was found for near frontal faces and 77.48% for multi view in
the case of seven basic emotions. The achieved face emotion recognition
method has improved emotion recognition accuracy and also it is able to adapt
to the yaw and pitch rotation of face. Both databases (UPM3D and BU3D)
were tested for the role of gender, ethnicity, color, mixed emotions and intensity
of emotions. After cross validation, for the BU3DFE database, the best results
were achieved for Indians and Southeast Asian (56.6% and 50.2%) subjects. In
the case of UPM3DFE, the best results were achieved for Middle east and
southeast Asians subjects (66.6% and 69.1%), and the lowest results were
achieved in both databases for black subjects (45% and 54.54%). With regard
to mixed emotions, it has been found that BU3DFE is 67.72% accurate in
recognizing mixed emotions and UPM3DFE accuracy is 56.09%. In case of
different emotion intensities in BU3DFE, the results for multi view faces
manifested 71.11% for 1st emotion intensity, and 73.21% for 2nd emotion
intensity, 75.1% for 3rd emotion intensity and 79.31% for 4th emotion intensity.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGECAMAN EMOSI WAJAH BERBILANG ARAH
MENGGUNAKAN CIRI-CIRI GEOMETRI DAN TEKSTUR

Oleh

FARHAD GOODARZI

Oktober 2017

Pengerusi : M. Iqbal Bin Saripan, PhD
Fakulti : Kejuruteran

Sejak sedekad yang lalu, penyelidikan tentang pengecaman emosi wajah
semakin mendapat perhatian daripada para penyelidik dalam komuniti
penglihatan komputer. Ekspresi wajah adalah satu bentuk komunikasi bukan
lisan, yang digunakan untuk pertukaran maklumat sosial dan emosi dalam
interaksi sesama manusia. Dengan mengecam emosi seseorang individu dan
diikuti tindak balas yang proaktif, banyak aplikasi boleh mendapat manfaat
daripada sistem pengecaman ekspresi wajah automatik ini, yang mana sebagai
contoh, sistem antaramuka manusia-komputer atau sistem keselamatan.
Aplikasi pengecaman emosi juga terdapat pada sistem keselamatan pemandu
dan sains sosial. Bagi menggunakan sistem pengecaman ekspresi wajah dalam
situasi masa nyata, adalah amat penting untuk mengecam ekspresi bukan
sahaja dari imej pandangan hadapan wajah, malah perlu merangkumi imej
wajah dari pelbagai sudut. Di samping itu, titik-titik penting wajah juga perlu
dikenalpasti secara automatik. Tahap keamatan ekspresi wajah setiap individu
itu berbeza. Sesetengah orang menzahirkan tujuh emosi asas secara lebih jelas
berbanding yang lain atau mereka juga boleh menunjukkannya dengan cara
yang berbeza. Dalam tesis ini, sistem pengecaman emosi masa nyata telah
dibentangkan. Sistem ini berfungsi dengan imej pandangan hadapan muka
ataupun dari sudut pandangan yang lain. Algoritma 3D untuk anggaran riak
wajah mengesan putaran muka hanyutan (Yaw), olekan (Roll) dan jongketan
(Pitch) dalam proses pengecaman emosi. UPM3D-FE dan BU3D-FE
merupakan pangkalan data yang digunakan dalam kajian ini untuk tujuan
latihan termasuk memutar dan megambil imej wajah dalam sudut yang
berbeza. Selepas mengesan kawasan muka, beberapa ciri telah diekstrak secara
automatik daripada wajah tersebut dan ciri-ciri geometri yang digabungkan
dengan ciri-ciri tekstur, akan dijadikan input kepada rangkaian neural
perambatan balik yang akan dilatih menggunakan pelbagai imej wajah. Ini
membolehkan kami menentukan emosi seseorang dalam masa nyata dari imej
wajah mereka. Pada asasnya sumbangan utama kajian ini adalah sistem yang
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dibangunkan dapat mengesan kawasan muka dan beberapa titik penting pada
muka di dalam video secara langsung; pengesanan titik penting pada muka
dilakukan secara automatik pada setiap bingkai menggunakan tekstur titik-titik
penting pada muka dan kedudukan relatifnya. Di samping itu, emosi seseorang
dapat dikesan hanya berpandukan pada imej pandangan hadapan atau dari
sudut pandangan yang lain, yang mana jika terdapat separuh kawasan muka
yang tidak kelihatan, ianya akan dibina semula seterusnya pengecaman emosi
dapat dilakukan. Ciri geometri dan tekstur telah digunakan bagi pengecaman
emosi dan ciri tekstur diambil dari kawasan tertentu menggunakan pendekatan
yang baru. Hasil kajian ini menunjukkan peningkatan berbanding pendekatan
sedia ada dalam menentukan emosi bagi pelbagai gaya muka. Kesan jantina,
etnik, warna dan emosi bercampur-baur serta keamatan emosi juga telah
dianalisis. Kaedah pengecaman emosi wajah ini berfungsi secara masa nyata
dan memerlukan kurang daripada setengah saat bagi setiap bingkai. Untuk
UPM3DFE, dalam kes tujuh jenis emosi, ketepatan yang dicapai adalah 63.08%
untuk paparan pelbagai sudut, dan 62.19% bagi pandangan hadapan dalam
pengecaman emosi. Manakala bagi BU3DFE itu, 80.61% ketepatan telah
dicapai untuk wajah pandangan hadapan dan 77.48% bagi paparan pelbagai
sudut, bagi tujuh emosi asas. Kaedah pengecaman emosi ini telah
meningkatkan ketepatan pengecaman dan boleh berfungsi dengan imej muka
yang telah berputar secara hanyutan (yaw) dan jongketan (pitch). Kedua-dua
pangkalan data (UPM3D dan BU3D) telah diuji untuk kesan jantina, etnik,
warna dan emosi yang bercampur-baur dan berkeamatan berbeza. Dengan
kaedah pengesahan silang, bagi pangkalan data BU3DFE, keputusan terbaik
dicapai dengan subjek dari kaum India dan Asia Tenggara (56.6% dan
50.2%).Bagi UPM3DFE, keputusan terbaik telah dicapai dengan subjek dari
Timur Tengah dan Asia Tenggara(66.6% dan 69.1%) dan ketepatan terendah
didapati pada subjek dari benua Afrika (45% dan 54.54%). Berhubung dengan
emosi yang bercampur-baur, BU3DFE telah berjaya mencapai ketepatan
67.72% dalam mengecam emosi yang pelbagai manakala ketepatan bagi
UPM3DFE ialah 56.09% bagi kes yang sama. Untuk kes keamatan yang
berbeza-beza bagi BU3DFE, keputusan bagi wajah dari pandangan pelbagai
sudut mencapai 71.11% bagi keamatan pertama, 73.21% bagi keamatan kedua,
75.1% bagi keamatan ketiga dan 79.31% bagi keamatan keempat.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Until recently most available data sets of expressive faces were of limited size
mainly the prototypical expressions of seven basic emotions (Anger, Disgust,
Fear, Happiness, Sadness, Surprise and neutral). Recent efforts focus on
recognition of complex and spontaneous emotional phenomena (e.g. boredom,
lack of attention, frustration, stress, etc) [1, 2].

The overall view of a classification system [3, 4] is brought in Figure 1.1 which
consists of a sensor, which is a camera in this thesis, that generates features
(pixels), and next the relative features are selected from these features. After
this, these features are classified into some classes and evaluation is done for the
results of classification.

Figure 1.1: Basic stages of classification system [4]

In case of the proposed classifying system in this thesis, a normal camera or
a webcam device can be used to capture the sequence of pictures. After this,
some features are selected from the many features existing in the image and the
classifier can distinguish between emotional states. In the end, the performance
is evaluated.

Facial imaging is one of the current neurometric or biometric methods used to
measure emotional response. Most of the other techniques such as bio-sensors,
eye tracking, EEG and fMRI require specialized equipment to generate their
measurements. Moreover, they require highly trained specialist to interpret and
analyze the results. facial imaging, by contrast, is comparatively simple to
implement.In other words, facial imaging is easier and has more speed and
precision (and it has lower cost) compared to other methods.

1



© C
OPYRIG

HT U
PM

The applications of the facial imaging system can be expanded to many different
areas, including home, online, store and mobile. The results can be stored as
visualized reports that can be analyzed by statistical software. The data can
also later be used by market research analyzes.

Other applications of facial imaging emotion recognition are in robotics, health
care, monitoring and alarming tasks, and many other areas.

1.2 Problem statement

Due to the complexity in the human face and facial emotions and the many
muscles involved in forming the seven basic emotions, recognizing and classifying
these emotions is a major issue and an open problem in the computer vision.
The problem is more complex when considering non frontal faces since the head
can turn in angles yaw, pitch, and roll.

The distinctions between some emotions are confusing [5]. They are namely,
anger and disgust, fear and happiness, fear and anger, sadness with anger. Also,
some facial expressions represent mixed emotions and the level of the expressed
emotion varies.

In general, emotion is often communicated by changes in one or more facial
features. In addition, the same facial feature may be involved in more than one
emotion. Presence and absence of one or more facial actions can change the
emotion meaning. For example, Figure 1.2 shows different smile expressions. All
three subjects have AU12 (lip corners pulled sideways).
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Figure 1.2: Comparison of different smile expressions with different
expression intensities [6]. a) mild, b) average, c) intense.

Subjects b and c, are examples of emotional smile in which lip corners pulled
sideways (AU12), the cheeks raised (AU6) and lips apart (AU25). Subject c
additionally has wrinkles around the corner of the eyes. The degree of smiling or
happy is related to the intensity of raising cheeks and lip corners and the existence
of wrinkles. Therefore, it is not only important to discover the basic emotions, but
also find out the intensity of these emotions. This helps to discriminate different
emotions that have similar structure on face, but have different meanings.
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Facial Action Coding System (FACS) [7], is a system to describe facial
expressions. This system for facial muscles coding is described in Section 2.4 of
this thesis. Manually coding all the action units (AU) on the face is a
complicated task. It takes up to 10 hours for a trained programmer to code one
minute of video of facial expressions [8, 9]. Therefore, it is desirable and
necessary to automate the process of extraction of facial parts movements and
coding. The system is necessary to work in real time, since the changes of
expressions on the face occur in real time. In the case of absence of such a
real-time feature, some expressions will be missed from detection or even the
emotion may be reported falsely.

The role of gender, ethnicity, and color also need to be analyzed in different
databases, and to find how these factors affect the recognition of emotions.

1.3 Aim and Objectives

Basically, the main aim of this thesis is to detect the seven basic emotions
automatically in real time on the face of the person at different facial poses.

The objectives of this study are:

1. To recognize the seven basic emotions automatically in frontal, non-frontal
and side view faces.

2. To consider the emotion intensity in emotion recognition to find the difference
in emotions and recognizing mixed emotions by discriminating the different
emotion intensities that are present in the face.

3. To identify and analyze the effects of ethnicity, color, gender in emotion
recognition using both BU3DFE and UPM3DFE databases.

4. To analyze the real time delay of the proposed face emotion recognition
method.

1.4 Scope of the study

The scope of this study is to recognize the human facial emotions database with
high accuracy using UPM-3D database [10] and BU3DFE database [11]. The
human facial emotions studied here are mainly the seven basic emotions (anger,
disgust, fear, happiness, sadness and surprise and neutral).

During testing of new data, it can either reject the valid emotion (FN) or
accept the false emotion or data (FP). For security reasons, the first error is not
critical but the second error is critical as should be kept as low as possible. The
classification algorithm can be manipulated to minimize critical error which is
false positive (FP).
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For mixed emotions recognitions the number of mixed emotions for both
BU3DFE and UPM3DFE have been identified to be 13. They are namely
sad-anger, sad-neutral, fear-sad, fear-neutral, fear-anger, anger-disgust,
fear-happy, anger-happy, disgust-happy, sad-happy, fear-surprise,
surprise-happy, and sad-disgust emotions.

1.5 Contributions of Thesis

The contributions of the thesis is automatic recognition of facial emotions in
case of the seven basic emotions (including neutral) for person independent
(unidentified persons) and multi view cases. Current emotion recognition
systems as discussed in the literature review chapter suffer from some aspects
such as lack of multi view face emotion detection (both yaw and pitch), low
accuracy, and not having fully automatic feature extraction for person
independent analysis.

The proposed work includes the missing features in existing systems and shows
improvement over other methods with respect to emotion recognition accuracy.
Moreover, the effects of gender, ethnicity, mixed emotions and degree of emotion
were examined for both UPM3DFE and BU3DFE databases, and composition of
the database in emotion recognition has been carefully studied.

1.6 Outline of Thesis

Chapter 1 (Introduction): Presents the introduction and background for this
research. The problem statement, objectives of research, scope of research, and
contributions of the study were covered in this chapter.

Chapter 2 (Literature review): Presents a critical literature review which covers
various works and methods of facial points detection, face pose estimation, face
emotion recognition and the different databases made for these purposes. This
chapter will outline the strengths and weaknesses of the existing methods.

Chapter 3 (Methodology): It explains the methods and strategies for facial points
detection, pose estimation, face emotion recognition, and the role of gender,
ethnicity, mixed emotions and intensity in emotion recognition which were used
in the research to achieve the specified objectives.

Chapter 4 (Results and discussions): It expresses the obtained results in detail.
The results include emotion recognition accuracy for both BU3DFE and
UPM3DFE, and analysis of the role of gender, ethnicity, color, mixed emotions
and different intensities of emotion in face emotion recognition. These results
are illustrated in the form of accuracy percentages, comparison graphs, plotted
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curves and Figures. The achieved results are discussed in detail in this chapter.

Chapter 5 (Conclusions and future works): Provides a summary of the thesis,
and lists the final achievements and verifies them with the drawn objectives in
the first chapter to ensure all the objectives have been achieved. Finally, the
recommendations for possible future works in the field is also mentioned in this
chapter.

6



© C
OPYRIG

HT U
PM

REFERENCES

[1] Maja Pantic. Affective computing. Encyclopedia of multimedia technology
and networking, 1:8–14, 2005.

[2] Shaohua Wan and JK Aggarwal. Spontaneous facial expression recognition:
A robust metric learning approach. Pattern Recognition, 47(5):1859–1868,
2014.

[3] Richard O Duda, Peter E Hart, and David G Stork. Pattern Classification.
John Wiley & Sons, 2012.

[4] Sergios Theodoridis, Aggelos Pikrakis, Konstantinos Koutroumbas, and
Dionisis Cavouras. Introduction to Pattern Recognition: A Matlab Approach.
Academic Press, 2010.

[5] Irene Kotsia, Ioan Buciu, and Ioannis Pitas. An Analysis of Facial Expression
Recognition under Partial Facial Image Occlusion. Image and Vision
Computing, 26(7):1052–1067, 2008.

[6] Jenn-Jier James Lien. Automatic Recognition of Facial Expressions using
Hidden Markov Models and Estimation of Expression Intensity. PhD thesis,
Washington University, St. Louis, 1998.

[7] Paul Ekman and Wallace Friesen. Facial Action Coding System: A technique
for the Measurement of Facial Movements. Consulting Psychologist, 2, 1978.

[8] Jeffrey F Cohn, Adena J Zlochower, James Lien, and Takeo Kanade.
Automated Face Analysis by Feature Point Tracking has High Concurrent
Validity with Manual FACS Coding. Psychophysiology, 36(01):35–43, 1999.

[9] Marian Stewart Bartlett, Paul A Viola, Terrence J Sejnowski, Beatrice A
Golomb, Jan Larsen, Joseph C Hager, and Paul Ekman. Classifying Facial
Action. Advances in Neural Information Processing Systems, pages 823–829,
1996.

[10] Habibu Rabiu, Syamsiah Mashohor, Mohammad Hamiruce Marhaban, and
M. Iqbal Saripan. UPM 3D Facial Expression Recognition Database
(UPM3DFE). In PRICAI 2012: Trends in Artificial Intelligence, pages 470–
479. Springer, Berlin Heidelberg, 2012.

129



© C
OPYRIG

HT U
PM

[11] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J Rosato. A 3D
Facial Expression Database for Facial Behavior Research. In 7th international
conference on automatic face and gesture recognition, 2006. FGR 2006., pages
211–216. IEEE, 2006.

[12] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001.,
volume 1, pages I–I. IEEE, 2001.

[13] Hanchuan Peng, Fulmi Long, and Chris Ding. Feature Selection based
on Mutual Information Criteria of Max-dependency, Max-relevance, and
Min-redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226–1238, 2005.

[14] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and Simon Baker.
Multi-pie. Image and Vision Computing, 28(5):807–813, 2010.

[15] Paul Viola and Michael J Jones. Robust real-time Face Detection.
International journal of computer vision, 57(2):137–154, 2004.

[16] Timothy F Cootes and Christopher J Taylor. Active shape models, smart
snakes. In Proceedings of the British Machine Vision Conference, BMVC92,
pages 266–275. Springer, 1992.

[17] Xinbo Gao, Ya Su, Xuelong Li, and Dacheng Tao. A Review of Active
Appearance Models. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 40(2):145–158, 2010.

[18] Hyung-Soo Lee and Daijin Kim. Tensor-based AAM with Continuous
Variation Estimation: Application to Variation-robust Face Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(6):1102–1116, 2009.

[19] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active
Appearance Models. In 5th European Conference on Computer Vision,
ECCV’98, pages 484–498. Springer, 1998.

[20] Jaewon Sung and Daijin Kim. Pose-Robust Facial Expression Recognition
Using View-Based 2D 3D AAM. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 38(4):852–866, 2008.

130



© C
OPYRIG

HT U
PM

[21] Robert Anderson, Björn Stenger, Vincent Wan, and Roberto Cipolla.
Expressive Visual Text-to-speech using Active Appearance Models. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
3382–3389. IEEE, 2013.

[22] Timothy F Cootes, Gavin V Wheeler, Kevin N Walker, and Christopher J
Taylor. View-based Active Appearance Models. Image and vision computing,
20(9):657–664, 2002.

[23] Chen Huang, Xiaoqing Ding, and Chi Fang. Pose Robust Face Tracking by
combining View-based AAMs and Temporal filters. Computer Vision and
Image Understanding, 116(7):777–792, 2012.

[24] Jason M Saragih, Simon Lucey, and Jeffrey F Cohn. Deformable Model
Fitting by Regularized Landmark Mean-shift. International Journal of
Computer Vision, 91(2):200–215, 2011.

[25] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham.
Active Shape Models-their Training and Application. Computer vision and
image understanding, 61(1):38–59, 1995.

[26] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International journal of computer vision, 60(2):91–110, 2004.
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